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Nonadiabatic Theory of Electron-Hydrogen Scattering

A. TEMKIN
(Received August 7, 1961)

A rigorous theory of the s-wave elastic scattering of electrons from hydrogen is presented. The Schrédinger
equation is reduced to an infinite set of coupled, two-dimensional partial differential equations. A zeroth
order scattering problem is defined by neglecting the coupling terms of the first equation. An exact relation
is derived between the phase shift of this zeroth order problem and the true phase shift. The difference be-
tween these is contained in a rapidly convergent series whose terms correspond adiabatically to multipole
distortions of the hydrogen by the incoming electron. The physical significance of the zeroth order problem is
discussed, and its recognition is considered basic to the understanding of the scattering problem. The ex-
change approximation for s-wave scattering is shown to be a variational approximation of the zeroth order
problem. A perturbation theory is introduced to calculate the higher order corrections. The dipole correction
has an increasingly important quantitative effect in the limit of zero energy. The effect of the long-range
part of this correction on the scattering length can be expressed by a formula in terms of inverse powers of a
long-range parameter R. Phase shifts for both singlet and triplet scattering are calculated, including up to
quadrupole terms. The convergence is such that this number of terms should yield better than four-place

1,

Theoretical Division, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland

1962

accuracy. Uncertainties in our calculated values decrease the accuracy to approximately three significant

figures.

I. INTRODUCTION!

HE elastic scattering of electrons from atomic
hydrogen is the most fundamental three-body
scattering problem of quantum mechanics. Neverthe-
less, the process of theoretical understanding has been
slow and is still not complete. Specifically, the lack of a
real quantitative understanding of this problem, as
compared with its counterpart, the ground state of
helium problem, can be traced to two causes. The first
was the lack of a minimum principle, which guarantees
that not only is a certain quantity variational in charac-
ter, but more important that it is greater than (or less
than) the exact quantity one wants to evaluate. The
lack of a minimum principle has recently been overcome
by Rosenberg, Spruch, and O’Malley, who have derived
minimum principles for the scattering length? and who
are attempting to generalize the procedure to include
phase shifts as well.3 The second aspect of scattering
problems which has slowed the process of quantitative
understanding is simply the fact that the scattering
parameters are more sensitive functions of the wave
function than, say, the ground-state energy. The sensi-
tivity may be illustrated in the case of the singlet scat-
tering of electrons by hydrogen, where there is known
to be a singlet bound state of the H~ ion with a binding
energy of 14.460 ev. The electron affinity, ¢, is defined
as the difference between this energy and that of a hy-
drogen atom and a free electron. Clearly, this is the
quantity of physical significanice, for only when it is
negative is the H~ bound. The electron affinity, being a
small difference between two large numbers, is obvi-
ously sensitive to deviations in one of the large numbers.
An approximation which undershoots the total energy

1 A sketch of this method has been published: A. Temkin, Phys.
Rev. Letters 4, 566 (1960).

2 L. Rosenberg, L. Spruch, and T. O’Malley, Phys. Rev. 119, 164
(1960).

3L. Rosenberg and L. Spruch, Phys. Rev. 121, 1720 (1960).

by 69, predicts no binding. The fact that the H~ wave
function corresponds to a barely bound system means
that it must be related to the low-energy e—H scat-
tering wave function. This relationship is expressed by
the approximate formula,*

le[*=1/a+3r0le],

which shows likewise that the effective-range parame-
ters, a and 7o, are also sensitive functions of the wave
function.

The sensitivity of the scattering parameters, i.e., the
phase shifts, to the wave function manifests itself in
another way. Suppose, in considering a scattering prob-
lem, one attempts to replace the interaction of the inci-
dent particle with the (many-body) target by an
equivalent one-body potential. In the bound-state
problem it is known that the Hartree or Hartree-Fock
method leads to just such an equivalent potential. In the
case of scattering of a particle from a compound system
consisting of particles different from the incoming par-
ticle, Mittleman and Watson® have developed formal
expressions for just such a potential, and Mittleman®
has modified the approach to be applicable to the scat-
tering of electrons from hydrogen. The practical diffi-
culty with the equivalent potential is that it is effectively
a series expansion in which the derivation of successive
terms is a major calculational task, particularly for the
in-close behavior of the potential, and in which the
physical meaning of successive terms becomes in-
creasingly obscure. In addition, the potentials become

4S. Borowitz and H. Greenberg, Phys. Rev. 108, 716 (1957).
The effective-range formalism for the e—H problem has been
effectively exploited by T. Ohmura, Y. Hara, and T. Yamanouchi,
Progr. Theoret. Phys. (Kyoto) 20, 82 (1958) and T. Ohmura and
H. Ohmura, Phys. Rev. 118, 154 (1960).

5 M. Mittleman and K. Watson, Phys. Rev. 113, 198 (1959).

6 M. Mittleman, Ann. Phys. 14, 94 (1961). A nonrigorous poten-
tial applicable to electron-atom scattering generally is contained

in B. Lippmann, M. Mittleman, and K. Watson, Phys. Rev. 116,
920 (1959).
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quite nonlocal in character and appear to present con-
siderable difficulties for numerical solution.”

The difficulty of evaluating a potential valid over all
space is symptomatic of the essentially non-two-body
character of the scattering problem. The main idea of
the method that we shall present here is that the cor-
rect zeroth order problem is a three-body problem.
However, given the basic three-body problem, there are
a variety of ways of handling it. Thereafter, the correc-
tions are separable in the first approximation. The
method we shall present is an extension of the method
of Luke, Meyerott, and Clendenin.® The chief formula
is (3.5) which relates the zeroth-order phase shift &
with the exact s-wave phase shift §. The main property
of the terms on the right-hand side (rhs) of (3.5) is that
they constitute a rapidly convergent series. They also
have a natural physical interpretation as long-range
polarization effects. The quantitative importance of the
lower of these terms is basically an expression of the
increased importance of polarization in (most) scat-
tering problems as opposed to (most) ground-state
energy problems. The polarization terms constitute the
part of the wave function from which the extra sensi-
tivity of the scattering parameters stems. Yet the main
contribution of these functions comes from the (adia-
batic) region where the functions are separable. The
nonadiabatic method, however, projects equations for
these functions over all space; one can employ various
devices to get reasonable estimates of the contributions
of these functions from the nonadiabatic region even
without solving the associated partial differential equa-
tions. This will be the subject of the succeeding sections,
and we conclude with the evaluation of fairly accurate
electron-hydrogen phase shifts, and, more important,
with a reliable estimate of the error.

II. DECOMPOSITION OF THE s-WAVE EQUATION

The s-wave scattering of electrons from hydrogen is
described by the Schrddinger equation of zero total
angular momentum for two electrons in the field of a
singly charged nucleus (assumed infinitely heavy). Such
an equation can be reduced to a three-dimensional
partial’differential equation which can be written®

1 621’1 1 321’2 1 1 1 Ié) aJ
ELRLCNIN ENL
71 02 7o Ore:  \ri? - r9?/sinfs 0619 3012

2 2 2
——————I———E]\I/(rl,rzﬁm)zo- (2.1)

Y1 72 Ti2
(Our units are energies in rydbergs, lengths in Bohr

7” M. Mittleman (private communication).

8 P. Luke, R. Meyerott, W. Clendenin, Phys. Rev. 85, 401
(1952). The idea for this work is due to G. Breit. I am indebted
to John W. Cooper for having brought the paper of LMC to my
attention.

9 P. M. Morse and . Feshbach, Method of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York 1953), p. 1725.
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radii.) The fact that the s-wave equation can be reduced
to a single three-dimensional equation is the main
mathematical reason that it is susceptible to a highly
quantitative treatment.

Taking advantage of the fact that the Legendre
polynomials, P;(cosf), are eigenfunctions of the angular
dependent operator in the above equation:

1 i}
—— sinfjs——P;(cosfyz)

Sil’lom 6012 6012
= —l(l—l"l)Pl(COSGm),

(2.2)
we expand the wave function
1 =
)4 (1’1,7’2,012) = Z (2l+ 1)%(1)1(717’2)P1(C05012). (23)
172 1=0

Substitution into (2.1) then gives an infinite set of
coupled equations

a2 9 2
—A—I(+1) )+ E-—
67’12 37’2 71
2 w
—}———M;z}@z(hﬁ)z Z, MlmqDM(rlm); (24)
79 m=0
where in the region 71>,
H+m po™
M= QI+1):2m+1) X
n=0 7’1"+1
X / Pi(cosf) P, (cosd) P,(cosf) sinfdf. (2.5)
0

Under exchange, r; 2 1, the three coordinates of the
s-wave problem transform according to 7127y,
61222 +612. Thus there exist singlet and triplet solutions
which have the property W (rirs,012)==¥(rs,71,012),
respectively. In terms of the expansion function ®; this
implies (as a necessary and sufficient condition) that

D, (r1,) =P (ror1).

The symmetry of the operator in curly brackets in (2.1)
further implies that the problem can be solved com-
pletely in the region »;>7, by imposing the additional
boundary conditions

®i(r179) | n=r=0,
(a/an)q)l(rl'r?) I ri=rg = 0,

where d/dn means the normal derivative. Because of the
ri7re factor in (2.3), we have in both cases

triplet

] (2.6)
singlet

®,(110)=0. (2.7)

We are restricting ourselves to the description of
scattering below the threshold for inelastic scattering,
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Fi1c. 1. The >, triangle, to which the whole mathematical
problem is restricted.

thus we must also have
hm ‘I’Q(f’l?’z) = sin (kr1+5)R13 (72),
71->00

(2.8)
lim(I)l(rlrz) = 0, ]> 0.
71>

Here % is the momentum of the scattered electron and is
related to the energy by

E=—1+F.

Ri,(7) is 7 times the (normalized) ground-state radial
function of hydrogen.

The s-wave phase shifts, 6, are then completely
specified by the coupled set of Egs. (2.4) subject to the
boundary conditions (2.6)—(2.8).

Clearly one must solve such a set of equations in some
approximate manner. What we would like to give in the
sequel is a basis for such a method of successive ap-
proximations. The virtue of the method of approxima-
tion is that there is obvious physical significance in each
stage and that one can readily establish both physical as
well as mathematical reasons for the rapid convergence
of the series. A central role in this scheme is the zeroth
order approximation, which we shall now consider.

III. THE ZEROTH ORDER APPROXIMATION
AND THE MULTIPOLE EXPANSION

Noting that
2 rzm

om=——""" P}
(2m—4-1)% it

(3.1)
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let us write the equation for ®¢(r1,7.) explicitly:

02 9? 2
(*‘+——+E+—>‘I’0 (711‘2)

Ir2 Ors? 79

© m

r
=y —— T 5, (3.2
m=1 (2m~4-1)t pymtt

It is natural to attempt to approximate this equation by
neglecting the right-hand side. Consider

2 9 2
(—+——+E+—)‘P°<°><m>=o, (3.3

072 Ors? 79

subject to the boundary conditions (2.6) and (2.7) for
®,@, and with the asymptotic form
lim q)o(o) (717'2) =sin (k7’1+5o)R15 (7’2). (3.4:)
r1->0
It is important to realize that, although the right hand
side of (3.4) is an exact solution of (3.3), 8 is not
arbitrary.!
A relation between &, and 6 can be established by
multiplying (3.3) by ®; and (3.2) by $,¥, subtracting
and integrating over the half plane 7,<r;; one gets

] r1
f / (‘I’oAlzq)(](o) - <1>0(°)A12<I>g)d71dr2
0Jo

m=1

© 0 Ar]
=— Z / / (I:’(](O)Momq)mdfldfg.
0Jo

The operator
A= 92%/ 3724 0%/ 9r22,

is the two-dimensional Laplacian, and using Green’s
theorem, we can write the left-hand side of (3.4) as

0 71
/ / (PoA 15D @ — PO Ay 3B0)dr1drs
0oJo

a d
=/(Cbo'—"‘170(0)"q>o(o)-——q>o)ds.
s\ On on

The boundary s goes around the region 7>, and is
thus the triangle indicated in Fig. 1. The line integral
along s1 is zero by virtue of (2.7) and its counterpart for
®,©®, The integral along s is zero via (2.6) so that we
are left with only the integral along s,. Here 9/dn
=9/9dr1, and using the asymptotic forms of &, and
®@, (2.7) and (3.4), and the assumption that Rj, is

10 Tn the language of partial differential equations, (3.3) is an
elliptic equation with Dirchlet boundary conditions along all sides
for the triplet case and with Neumann conditions along s3 in the
singlet case (see Fig. 1). The boundary condition along s, is
By (w0 ,79)=CRy5(rs), where C is an arbitrary constant corre-
sponding to the arbitrariness in normalization of ®©. For a given
C, the uniqueness of the solution then guarantees that §, is unique
(modulo 27).
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normalized, we arrive at our main formula:

1 » 2
sin(6—8p)=—- y, ———
)= )

o0 71 r m
X/ drlf dr2 @0(0)_2_._@7”. (35)
0 0 ™t

Equation (3.3) is the zeroth order problem and §, the
zeroth order phase shift. It must be emphasized that in
spite of the separability of (3.3) as a partial differential
equation, the problem is nonseparable by virtue of the
nonseparable boundary condition (2.6) for ®,®. The
physical meaning of the equation is clear. Electron 1
comes in seeing no charge at all while the orbital
electron 2 sees the whole nuclear charge. When electron
1 gets inside electron 2, it sees the whole nuclear charge
and becomes the orbital electron while electron 2 goes
off as the scattered particle seeing no charge. This, of
course, is nothing but the shielding approximation as it
applies to a scattering problem. Yet, because the posi-
tion of electron 1 is correlated with the position of
electron 2 which itself is variable, this is distinctly a
three-body problem. It is the thesis of this paper that
this rudimentary three-body problem is at the core of
this scattering problem, and that attempts to reduce the
problem further are either equivalent to mathematical
reformulations of the problem or that they bring in
dubious approximations.

It is not difficult to show that the exchange approxi-
mation,™* which uses an ansatz ¥ga not depending on
the angle 6,5:

7179V pa =1 (71) R1s(r2) 1 (r2) R1, (r1),

for the s-wave wave function, is in fact a variational
solution of only that part of the original Schrodinger
equation corresponding to (3.3). For if one considers the
matrix element of the complete interaction, 42/7:1+2/7,
—2/r1, with any (symmetric or antisymmetric) func-
tion of the form f(r1,72)," then the integral

/ / I* (fl,fz)( +—— —)f (r1,7r2)@r1dr
Y1 T2 712
/ / [717af (riyrs) | —drldrz
0 1 2
=2/ dflf df’g |7’17’2f(1’1,1’2)|2—
0 0 (£

1P, M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).

125, Geltman [Phys. Rev. 119, 1283 (1960)] has computed
variational phase shifts using wave functions, which for s waves
are functions of 7, and 7, only. According to our analysis, his phase
shifts are approximations of the zeroth order &, only. K. Smith
[Phys. Rev. 120, 845 (1960)] has used the close-coupling extension
of the exchange approximation including various numbers of ex-
cited s states in his wave functions. These too can only approxi-
mate 8.
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where we have used the (anti-) symmetry of f(r,7,).
(Note that other terms of the Schrédinger equation will
also yield matrix elements in this region multiplied by
a factor 2.) We shall see in the next section that the
exchange approximation yields phase shifts practically
identical to 8.12 As such, it is an excellent approximation
of @, yet from (3.5) we see that it neglects all the
higher order corrections associated with the func-
tions ®;.

One more remark is in order concerning the zeroth
order problem and §, in particular: there are no long-
range polarization forces associated with the zeroth
order problem, so that the boundary conditions as-
sociated with $¢@, aside from its s-wave sinusoidal be-
havior at infinity, are very much like a bound-state
problem. This is quite different from the phase shift of
the whole problem in which there are long-range polari-
zation forces, which are, however, manifested in®;(/>0).
A practical consequence of this is that &, considered as a
function of 7, quickly assumes its asymptotic form as is
typical for a particle scattered from a short-range po-
tential. In fact, the Hartree-Fock exchange approxima-
tion potential is an exponentially decaying one. Thus,
in contrast to 6, which only slowly assumes its asymp-
totic form, &, can truly be regarded as unvarying for
large 71. [ This consideration is relevant in the derivation
of (5.15).]

The physical meaning of the functions $; can be
gleaned from the adiabatic region (defined as the region
712515, #1>>1). In this region only the function &, fails to
vanish and only the first term of M ;; (= —2/7y) in (2.4)
need be considered. Thus, these equations reduce to

#? 8 I+ 2
( + + 1+k2)¢’z
61’12 3722 7’22 7o
2r:t  sin(kri+6)
= Ris(re). (3.6)
QI4+1) i

A solution of this equation, neglecting the operation
9%/ on i~ (which is also justified in this region),

is
sin (kr,1+6) ralt? gttt
o‘”( + ) 3.7
+1 1

-2
ooyt
(21+1)}

71 +1

These functions represent multipole distortions of the
hydrogen atom caused by an electron at some distance
from the atom.®

Having obtained the adiabatic form of ®;, we can now
qualitatively establish the reasonably rapid convergence
of (3.5). The configuration space of each double integral
can be divided into roughly four regions, schematically
indicated in Fig. 2. In region D, the adiabatic region,
one can use the explicit forms of ;@ and ®; to see that
the contributions from that region go down rapidly as a

18 A, Dalgarno and A. Stewart, Proc. Roy. Soc. (London)
A238, 269, 276 (1956). A. Temkin, Phys. Rev. 116, 358 (1959).



134 A.

]

n

Fic. 2. The regions of configuration space which give different
magnitude contributions to the multipole integrals.

function of /. In region C where 7s=2r; and both are
large, the contribution is very small in all cases. This is
because Py and the ®; decay exponentially there,
roughly as exp[— (—3E)}(r1+7) ]. WNote E<—%forall
the energies we are considering.) In region 4 where both
71 and 7, are small, the ®;(J>0) are necessarily small by
virtue of the centrifugal barrier —I(l4-1)(1/7241/752)
which pushes the wave functions out from that region.**
For intermediate values of 71 and 7, region B, there will
be an important quantitative contribution whose con-
vergence as a function of / stems from the gradual
disappearance of the region B itself as region 4 merges
into regions C and D.

As a function of increasing energy the multipole
terms on the right-hand side of (3.5) have a decreasingly
important effect on the cross section. Nevertheless the
quantitative contribution of these terms becomes more
difficult to calculate. This is because at the lowest
energies the proportionate contribution from region D
is sizeable yet the function is known there. For higher
energies the proportionate contribution from region D
becomes quite small.

IV. SOLUTION OF THE ZEROTH ORDER PROBLEM

It has already been emphasized that Eq. (3.3) to-
gether with the boundary conditions

B @ (7,0)=0,
lim Cbo(o) (1’17’2) =sin (k71+50)R13 (1’2) ,
71->%0

(4.1)
4.2)

D@ (7,72) l r=rs=0,
(a/an)q)o«» | ri=rg = 0)

triplet
P (4.3)
singlet

presents a highly nonseparable problem. Nevertheless,
“The presence of the centrifugal terms for />0 is the main

reason why the associated ®; can be considered separable in zeroth
order whereas, ®, cannot.

TEMKIN

Eq. (3.3) itself is separable, and the separable solutions
can readily be written down. We shall expand the exact
solution, ®,©, in terms of the totality of such separable
solutions which can possibly enter the expansion:

@0(0) =sin (k7’1+50)R13(7'2)

+<Zn+ / dp)Cne"‘"”Rns(rz). (4.4)

The sum plus integral means, as usual, that the con-
tinuum s states of hydrogen in addition to the discrete
states must be included. For the discrete states

kn= (1—n"2—k2)} 4.5)
and for the continuum
kp= (14 p— k%)% (4.6)

Since each term of (4.4) is separately a solution of
(3.3), the only thing which prevents any expansion from
being an exact solution is its deviation from the bound-
ary condition (4.3). [Note that (4.1) and (4.2) are
automatically satisfied. ] We therefore determine §, and
the C, by the variational condition,

6[ | @@ (r1=7)|%dr1=0, triplet
0

)

Substituting (4.4) into the triplet integral in (4.7) gives

4.7)

0 2

a
—P,©®
n

d1’1=0

T1="2

, singlet.

0

ITE/ ]‘190(0)(7’1=72)]2d7’1
0

0

N
:/ Sin2(k7’+5o)R132(7’)d7’+2 Z Cij
0 =1

Y CHME) A2 Y S CC(ME),;, (48)

7=1 >7=1
where

(AIE) ij:/ e“(""“f)’Ris (7’)st (’)’)dT, (49)
0
and

)

o / sin (kr--80) " Rys (r) Reo (F)dr
0

=9,; 088+ Ie; sindy.  (4.10)
The variation implicit in (4.7) now becomes
911/9C;=0, i=1,---, N, 0Ir/36,=0. (4.11)

The first N equations are

N
Vi+ > C:(ME);;=0, j=1,---,N,

=1
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which may be solved for the C; to give

-1
C;=—1D;® cosdp+D? sindy ],
det

(4.12)
where det is the determinant of the matrix elements: .
[(ME)II (ME)12 c (ME)lN

det=det (ME)zl (M].S>22 o (MI‘?)?N
L(Miz)Nl(Mi«:)w - (ME)xy

D and D, are determinants gotten by replacing the
ith column of the above matrix by the column vectors

(4.13)

(Mo, Maa, * -5 Mon) and (Mey, - -+, Men), respectively.
The variation with respect to 8 gives

Ay ®

—= / sin[ 2 (kr—+80) JR12dr

3o Jo

0

N
+23 Cif cos(kr—+80)Risdr=0. (4.14)
0

=1

Using (4.12) for the C;, and noting that

N N )
Z Ds(z)mciz Z Dc(z)msi,

=1 =1

(4.15)

we can rewrite (4.14) in the form

0=1c08(280) N 2s+sin(280) V2.

2 IS
——sindg cosdy Y (DO ei— D P;)
det i=1 )

2 N
———(cos28o—sin%do) X D, (D9,
det i=1

where N
Nos= / sin (2kr)Ry2dr,
3 (4.16)
Ny= / cos(2kr) Ry %dr.
0

We may readily solve for tan(28o):

2 N
tan(250)=~|:Ngs—d—~ Z Ds(i)mci}/

et =1
1 ~
l:]VZc"__' Z (Ds(i)msi_Dc(i)mci):|. (4.17)
det =1

A completely analogous procedure may be used to
solve for tan28, in the singlet case. One obtains here

2 N
tan(260)=—|:%As—-ch-—_—Z ViD”(i)]/

dets =1

1 ~
[%Ac+k33+—z: (mDM—waD)} (4.18)

ets =1
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and
Ci= (D, cosdy+D,? sindy)/dets. (4.19)
Here
dets=determinant / vaidr||, (4.20)
0
where
9 i)
¢iE|:<——+—>e_"“'1Ris(fz):| . (4:21)
31’1 37‘2 T1=r3
Let

¢OE[<—i+—a—> sin(krl—l-éo)Ru(f?):I ; (4.22)

61’1 37‘2 r1=T2

then y; and »; are quantities independent of §, defined
by

—/ Yol ildr=p; cosdy+v; sind.
Also ’
A,=8 / sin(28)[1—2r+ (1— ) Je—>"dr,
0

4.= 8/ cos(2kr)[1—2r— (1—E)r*]e 2 dr,
0

BSES/ sin(2kr)r (1—7)e~2"dr,
0

B.= 8/ cos(2kr)r(1—r)e2dr.
0

D, and D, are the determinants gotten by re-
placing the 7th column of dets by the column vectors
(u1,p, + + ) and (v1,v,- - +,vw), respectively.

It is worth pointing out the converse nature of this
technique of solution to those usually employed. In
most cases one approximates the exact solution in terms
of functions which are not solutions of the equation, but
do satisfy all the boundary conditions. In close-coupling,
for example, the basis functions are solutions of part but
not all of the equations. The method that is here
presented utilizes functions which are complete solu-
tions of the equation but do not satisfy all the boundary
conditions. In the latter method the smallness of the
deviation from the boundary condition is a very reliable
index of the quality of the solution (providing this
difference is small enough).

The method of performing actual calculations is then
as follows: A selection of N discrete and/or continuum
terms is made (we were necessarily limited to a discrete
sampling of the continuum states), and all the matrix
elements and integrals in (4.17) and (4.18) evaluated.
(Integrals involving discrete states are trivial. Pertinent
formulas for continuum states are included in the
Appendix.) This, then, can be used to evaluate tan2é,
from (4.17) or (4.18). Knowing tan28, determines (28¢)
modulo . The correct quadrant of (28,) is determined
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TasBLE I. Triplet results for 8.2

k Exchange

0.01 2,3, I 2,4, 1, 2,4, I, I, I, I20 3.118
3.11820 3.11823 3.11821
—0.165X 1077 —0.149X1077 —0.424X1078

0.05 2,3, I 2,4, 1, 2,4, I, I, I1o, Ino 3.024
3.0247 3.0255 3.0257
0.160X10-¢ 0.1681075 0.244X1075

0.1 2,3, I, 2,4, I, 2,4, I, I, I'to, 120 2.907
2.9084 2.9097 2.9102
0.283%X 1078 0.465X 1075 0.699X 1075

0.2 2,3, I 2,4, I, 2,4, 1o, I5, I1o, I20 2.679
2.6806 2.6807 2.6809
0.153X 1075 0.173X1075 0.283X 1078

0.3 2,3, 1 2,4, I, 2,4, I, Is, I, I 2.461
2.4634 2.4629 2.4632
0.722X1075 0.433X107% 0.549X 1075

04 2,3, I 2,4, I, Is, I1o, I20 2, 4, I, Is, I, I1, I10, I2o 2.257
2.2582 2.2588 2.2589
0.113X 1075 0.201X 1078 0.169X107%

0.5 2,4, Io 2, 4, Io, I, Ino, I3 2,4, Io, I, Is, I, Tno, Ino 2.070
2.0715 2.0716 2.0721
047710785 0.398X 107 0.365X 1075

0.75 2,4, I 2,3,4, 1, I, I, I3, I 2,3,4, I, In, I, I 1.679
1.6914 1.6830 1.6830
0.355X1073 0.497X10™* 0.474X10™

0.8 2,3,4, I, In, I, I 2,3, 4, Io, I, I, I3, I 2,4, I, I, I, I, Ino, I20 1.614
1.61664 1.61665 1.6220
—0.117X10 —0.123X 10 0.18X1072

a The first row of each entry refers to the terms used in the expansion of ®¢(®. The second row is do in radians. The third row is the diagonal sum, I7.

by seeing which value actually minimizes Ir (or Ig).
This determines 8, modulo . (At this point it is known
for e—H scattering that §— =« from below as £ — 0,
so that in fact no ambiguity remains.!5)

Numerical calculations were coded for the Goddard
Division of NASA IBM 7090 computer. The program
allowed an arbitrary number of terms (limited only by
the capacity of the machine) to be included. In practice,
however, we were restricted to less than 10 terms by the
following, initially unexpected, circumstance. As we
increased the number of terms, both det, dets, and the
related determinants approached zero so rapidly that
we quickly lost all the significant figures contained in
the evaluation of the matrix elements. We therefore had
to restrict the number of terms so that at least some
significant figures remained. Actually, one does not need
to know too many significant figures because one can
consider any set of C;’s and 8o as an approximate ex-
pansion of ®,® and measure its quality by the smallness
Of I 7 O I S.

In Tables I and II we have collected the pertinent
results for the triplet and singlet calculations. The last

16 This example is discussed in connection with an absolute
definition of phase shift in A. Temkin, J. Math. Phys. 2, 336
(1961). The same definition has also been adopted by L. Spruch
and L. Rosenberg (reference 3).

column contains the exchange approximate results
which, as was proved earlier, are a variational approxi-
mate solution of the zeroth order problem. It is clear
that the approximation is in excellent agreement with
the exact result.’® From the tables we see that the
triplet phase shifts are less variable and therefore can be
more accurately determined than the singlet. This
disparity is indicative of the greater accuracy that is
obtainable for the triplet results in all parts of the
calculation. Note that Iy and Ig are positive definite.
These quantities were calculated from (4.8) and its
singlet counterpart, using numbers evaluated by the
machine from the analytic formulas for (ME);; etc. The
fact that some of the entries are negative is due to the
cancellation of all significant figures. Thus, in those

16 Note that NV is the number of terms in addition to the first
term (which must always be present) in (4.4). In reference 1 we
presented results based on using one additional term (the discrete
term for n=2). The results are almost as good as those of the ex-
change approximation itself. Since the calculation is a compara-
tively simple hand calculation, the technique provides an effective
way of approximating the much more laborious process of solving
the integro-differential equations involved in the exchange ap-
proximation. Considerable detail concerning our complete zeroth
order calculation will be contained in an article by the author and
D. Hoover, in Methods in Computational Physics, edited by Alder,
Fernbach, and Rotenberg [Academic Press, New York (to be
published)], Vol. 1.
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TasLE II. Singlet results for d.

137

k Exchange

0.01 3,4 4, I, 3, I, I3 3,4, 1, 14 3.0606
3.0638 3.0637 3.0636 3.0643
—0.373%X 1078 —0.186X 1077 —0.19810"7 0.242X1077

0.05 4, I, 4, Io, 14 3, Iy 3, Io, I3 2.746
2.7595 2.7596 2.7591 2.7593
—0.238X 1076 —0.263X 1076 0.157X10°¢ 0.149X 1076

0.1 S, Io, Is 4, Io, In, I3, 14 4, 1o, Is 4, Io, Is, Is, Inzy 116 2.396
2.4207 24174 2.4182 2.4177
0.774X 1076 0.783% 1076 0.918X10~¢ 0.934x10°¢

0.2 2: 3y11: Iz, [37 14 2) 5,11; 12, 13, 14 2,10, 11, 12, 13, 14 3, 4,I1, Iz, 13 1.870
1.8949 1.8968 1.8947 1.8960
0.777X1075 0.142X10 0.193X 10 0.253X10

0.3 2,5 I, 1o, I5, 14 2, Io, I, Io, I3, 14, I 2,4, 1,15, I5, I, 2,3, I, Is 1.508
1.5350 1.5321 1.5348 1.5245
0.183X10* 0.291X10* 0.129<10~* 0.295%10™*

0.4 2,4, 1,15, I 2,5, I, I, I, I 2, 1o, I, 1o, I3, 14 2,3, 1, I 1.239
1.2694 1.2691 1.2685 1.2697
0.48910°¢ 0.150¢ 105 0.693X1078 0.13410™

0.5 3,4, 1, I» 3,5, Iny I, I, I 2, Io, I, Iy, I3, Is, Is 2, I, I, Is, I, Is 1.031
1.0667 1.0652 1.0647 1.0656
0.926X1075 0.353X107¢ 0.375X107* 0.459X10¢

0.75 2, 3, 4, 10‘75, Il,s, 12,25, 2, 3, Io, Io‘s, 11, 2, 3, 4y 10.5, Il, 11.5, 25 IO: [0.5, 11, 11.5, 0.694

I3, I35, 145 1.5, 12 2 L5 1o, I

0.7556 0.7564 0.7535 0.7566
0.517X 1075 0.117X10~* 0.109X10™¢ 0.131X10

0.8 27 41 5; IO~75: 11.57 2: 37 IO; IO.B; Il) 11,5, 2; 3, 4; 10.75, I!.s, 12.25, 2, 3, 5, 10,5, 11, ]1.5, 0.651

2.25 Iy, I25 I3, I35, L5 I, Ios

0.7289 0.7268 7261 0.7273
0.170X 10 0.175X107* 0.212X10 0.228%X10™

cases, we have obtained a zero deviation from the
boundary condition to within the accuracy of the ma-
chine. (The accuracy of the machine is estimated to be
from five to seven places.) Because of the loss of signifi-
cant figures, the smallness of Iy and I sin Tables I and
II cannot be taken as an unambiguous measure of the
reliability of 8o for the various expansions of $(©.
Nevertheless, we can obtain somewhat better accuracy
in 8o than we can currently achieve for the higher order
corrections.

The cause for the rapid cancellation of significant
figures in the determinants is only a surmise. We think
that it is due to the fact that one is trying to approxi-
mate solutions of an equation where the solutions are
dense. The numerical value of the energy is read into the
computer with finite accuracy, and the matrix elements
and other integrals are evaluated to about the same but
uncorrelated accuracy. The resulting set of equations
rapidly becomes one for which many solutions exist.
Thus, the determinant of the matrix elements becomes
singular, which is what is observed. From a practical
point of view this means that one has to retain more
significant figures for a final result of a given accuracy
than for a bound-state calculation.

V. EVALUATION OF THE MULTIPOLE CORRECTIONS

Granted that the right-hand side of (3.5) converges
rapidly, there still remains an assumption which must be
fulfilled in order for the effectiveness of this method not
to be an illusion. That is that the coupling of the higher
®, to the lower ®; in (2.4) ot be such that the omission
of the higher ®, in the equation for the lower ®; make
the contribution of the latter to sin(§—6o) substantially
different from what it would be if the higher ®; were
correctly included. Actually, our assumption concerning
the importance of the adiabatic contribution implies
this situation for small k. For in the adiabatic region
only &, does not vanish, and this coupling is taken into
account in (3.6) and (3.7). So, if this region gives the
major contribution to the integrals on the right-hand
side of (3.5), then we can be sure that the neglect of the
higher order couplings cannot materially change the
value of the integrals.

We shall introduce a perturbation theory which is
based on this assumption. The perturbation theory does
not do away with the partial differential equations. (In
fact, it is the essence of this method that partial differ-
ential equations are the most natural way to include
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nonadiabaticity both in ®,® and the higher ®;.) Rather,
it allows the equations to be solved in a sequential
manner. It also allows the construction of “sum rules”
which, to a more limited accuracy, allow for evaluation
of the multipole terms without one having to solve the
associated partial differential equations beyond what is
done in (3.7).17

A measure of the adiabaticity of a region of configura-
tion space is the quantity #,"/7,". We shall assign to
this quantity an order of magnitude A2 in accord with
the fact that the larger », the smaller this quantity is in
a given region of configuration space. We shall expand
the functions ®; according to

= i NP (D,

=0

This embodies the notion that the higher ®; get suc-
cessively smaller in the adiabatic region and their be-
havior away from the adiabatic region can be expanded
in a series about their behavior in the adiabatic region.!8
Utilizing these expansions and the order of magnitude
associated with adiabatic factor 7o»/7,"*, we can reduce
Eq. (2.4) to a set of equations characterized by in-
creasing powers of A% To order M\, we obtain:

N: (Apgk2r 1 E)Bg®=0. (5.1)
A [Ap—20r1 27y D)4 2r - E 10, ©

= 2(3)_%72’}'1_24)0(0). (52)

A (A12+ 27’2_1+E)q30(1) = 2(3)%%7'21'1_2‘1’1(0), (53)
[A—6(ri247s2) 427+ E [0,

=2 (5)“;'7'221'1*3@0(") . (54)

>
[

[A1—2(r 2472+ 2r - E 1810 — $ro%r°8,©
=2(3) trar 2DV +4(15) trar 2B, (5.5)

The multipole series (3.5) becomes an expansion in
integral powers of A

1 2
sin(6—80)=—— > \” _
k ov=1 m-tp=v (2m—i—1)%‘
m>1,u>0

0 71 r2m
X / / B O——B,,Bdridry.  (5.6)
0 0 71m+1

\” is the expected order of magnitude of the correction

17Tn conjunction with E. Sullivan and W. Cahill, we have
been able to solve the second order partial differential equations
numerically. This will be the basis of very precise calculations.

18 This expansion would not be very good in the region r1=2r; if
one were interested in the values of ®;. A re-expression of our basic
idea is that in order to get good phase shifts, one does not need to
know the wave function equally well of all of space. Rather, one
must know @@ in all of space (corresponding to the essential
3-body nature of the function) but ®; less well, because it is only
integrals over these functions which contribute to the phase shift
of which the contribution from the configuration space 1= is of
only limited importance.
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to 8¢. The first-order correction is

12 > pn 72
Adpy=——— / / Do O—P, Oy drs.
EV3 2

0J0 7y

(5.7)

This is the dipole contribution with the exact ®; re-
placed by ®,©. The second-order contribution consists
of two terms, A2, -+ A%5,®, where

— 2 0 AT1 1,22
A% D =—r / / B O—D,Odyydrs, (5.8)
kN5 Jo Jo rd

i 2 0 r1 79
AV =—o / / B O—D; Dy 1drs. (5.9)
V3 Jo Jo 71

A25¢®@ is of course the perturbation theoretic approxi-
mation of the quadrupole term, but A%5® is a dipole
term. It represents the first-order correction on ®; due
to the coupling to ®, in the nonadiabatic region. The
fact that this term enters in the order A2 means that this
contribution is expected to be an order of magnitude less
than Ado. It will be seen that the calculated results are
excellently consistent with this assumption.

The calculation itself was carried out to order A2. This
requires in principle the solution of (5.1) through (5.5).
Actually, the fact that one knows the asymptotic form
of the functions allows us to achieve reasonably accu-
rate phase shifts without further solving these equations.
The adiabatic forms of the functions ®;® are:

7'2l+1

+—l—>. (5.10)

P,

—_ Zrl—l—'l 7 +2
—— sin (krl—}-ﬁo)e“”(
(21+1)% I+1

The asymptotic form of $,® in the adiabatic region is

2 cos (kr1+60) 793
@1(1)§——(ABQ)——E—Tz(—+722>. (5 1 1)
71 2

If a large portion of the various integrals comes from the
adiabatic region, it is clear that (5.10) and (5.11) alone
will give a not unreasonable estimate of their size. One
knows more about these functions, namely, their bound-
ary conditions along 7;=7,. In the triplet case the func-
tion vanishes, and one can easily append a factor which

will do this for ®;. We have used

—2 sin(kry+80) (7’21+2i1’1l+1)
€2
(21+1)r M +1 1

0=

X (1—ePun=r2). (5.12)

D, is a positive constant which can be fairly unambigu-
ously determined as shown below. In the singlet case
there is no truly one-parameter factor which will make
the normal derivative of ®; zero along r1=7r,. We have

used
£ rolH
ROPS

—2  sin(kri460) (1'2”2
T2

¢ ) (5.13)
QI+ (D) i1 1
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the cutoff factor having been inserted in such a way as
to give ;@ the expected behavior, ®,© — 7,1, in the
limit 7, — 71— 0.

The determination of D; was accomplished in the
following way. Using essentially the same method as
that used to derive (3.5), one can derive from (5.1) and
the equations like (5.2) and (5.4), “sum rules” of the
form

0 ATl 1 1
/ / q’[)(o)l:—l(l‘l"‘ 1) (—"‘"—) :I‘I> l“”dﬁdrg
0Jo ri® 1o

2 0 AT] fgl
=m / / —7;;(6130(0))2dr1dr2. (514)
*JoJo 7

The functions ®,©® are known from the zeroth order
calculation, thus the right-hand sides of (5.14) could be
evaluated. The forms (5.12) and (5.13) were used in
conjunction with ®,©® to evaluate the left-hand side as a
function of D;. The adopted values of D; were those
which gave equality. (Some of the results are shown in
Figs. 3 and 4.) The adopted values of D; were then used
to evaluate the terms on the rhs of (5.6), in particular
A60, A269(2), and A250(1).

The types of cutoff we have used do not introduce any
bending of nodal lines in the 7;>7, triangle. Such a be-
havior is reasonable for the lowest energies. At higher
energies one expects the bending to become significant,
thus the errors intrinsic to the calculation will probably
g0 up.

In calculating A%, we have used the same type of
cutoff for ®,® as for ;. One can derive “sum rules”
which tend to indicate that the value of D to be used
should be somewhere between the dipole value Dy and
the quadrupole D,. Nevertheless the contribution of this
function from the nonadiabatic region is expected to be

Exp. of & 2,4,10,15,110,120

——— — — — —_—
-—
, ) P f f¢‘l’ol [_2('1'2* lez)]‘:’n(o)
(0)\2 F2
2 ﬁff“’o Yre,”
J Exp. of & 2,3,10
JE —
/
lof I
/1
Jogk '
|
|
Jos}- |
: D=62
JOT D,=.65
ld '|l 1 1
i ] 2 3 D,

F16. 3. Triplet dipole sum rule for 2=0.1 and two different
expansions of ®,®. The values of A8, using the two expansions of
$¢ and the respective values of D; in $,®, are 0.0303 and 0.0304.
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51
a4k
[Jof [tz + 5 Joi”
3B 2 (0) 2 1,2
IR
D,=8.65,
2 1 1 1 I\ L 1
: 2 4 6 8 10 12 14 De

Fi1c. 4. Singlet quadrupole sum rule for £=0.5. Different ex-
pansions of ®,® give curves which are indistinguishable on this
scale. The value of A25,® for this case is 0.0232.

greater relative to its contribution from the adiabatic
region. In addition, judging from (5.5), its behavior in
the nonadiabatic region is expected to be much more
complicated there. Thus, our evaluation of A%,® should
be considered somewhere between a calculation and an
estimate.

Inpractice, all doubleintegrals were done numerically.
We were thus forced to stop the integration over 7, at a
finite point ;= R. It is important, however, to take into
account the contribution of the integral for »,> R in the
limit of zero energy. This fortunately can be done
analytically. The analysis for the effect of this long-
range behavior on the scattering length has already been
given.® A somewhat more general derivation yields

1 a‘l"(lo

aza(R)_a<E_ 2R?

where a=7% is the polarizability of atomic hydrogen,

a is the exact scattering length, and ao is the scattering
length of the zeroth order problem. a(R) is the scat-
tering length associated with the part of the wave
function within radial distances of R of the nucleus.
Formula (5.15) is another result of long-range induced
polarization indicative of the basic difference between a
bound state and a scattering problem. For a value of
R=25, a bound-state wave function has essentially as-
sumed its asymptotic form, whereas the portion of the
wave function beyond R=25 contributes (negatively)
almost 109, to the triplet scattering length.!® Equation
(5.15) is valid for any method in which only the part of
the configuration space for 71, 7o <R is included.

19 This analysis is contained in A. Temkin, Phys. Rev. Letters 6,
354 (1961), together with the result of our triplet scattering length
calculation. At that time the significant reduction from the RSO
bound (reference 2) was completely unexpected. We were subse-
quently informed that the «/R term has been derived on the basis
(Zf the Born approximation by R. M. Thaler, Phys. Rev. 114, 827

1959).
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TasLE III. Resume of calculation for triplet 8.

k 8o Ady A5, A%, ) 3 (pol. orb.)
(U 2.338(3) 1.76(3) 1.70(1)
0.01 3.11821(2) 0.00504 0.000295 0.000153 3.1237(4) 3.125P
0.05 3.025(1) 0.0193 0.0013 0.0008 3.046(5) 3.049%
0.1 2.909(1) 0.0303 0.0021 0.0014 2.942(10) 2.946%
0.2 2.6810(5) 0.0379 0.0021 0.0023 2.723(10) 2.732
0.3 2.4630(5) 0.0392 0.0017 0.0026 2.516(10) 2.519
0.4 2.259(1) 0.0379 0.0013 0.0028 2.301(10) 2.320
0.5 2.072(1) 0.0363 0.0011 0.0027 2.112(10) 2.133
0.75 1.683(2) 0.0328 0.0007 0.0024 1.719(10) 1.745
0.8 1.617(2) 0.0282 0.0005 0.0018 1.647(10)

s The k =0 entries are scattering lengths.

b These pol. orb. results are slightly different from those given in Temkin-Lamkin (reference 20) due to the fact that integration there was stopped at

r =20.

The contributions from large 7 die off rapidly as % is
increased to the extent that they are negligible for our
accuracy by £=0.1. Tables IIT and IV contain a sum-
mary of the singlet and triplet calculated results. The &,
are a somewhat visual mean of the values in Tables I
and II. The convergence of the higher terms is evident.
The final 6 contain in parentheses the estimated accu-
racy of the last figure(s). The convergence is such that
all higher multipole contributions should be smaller
than this error. The error is again an estimate of those
due to & and the higher multipoles. (The quantities in
parentheses in the other columns are not deviations
from the electron-hydrogen phase shifts, but rather
from the exact phase shifts of well-defined but different
mathematical problems.) The greatest absolute error of
the higher multipoles is contained in Ado (although it
contains the smallest proportional error.) In the triplet
case we have estimated the error from about 59, to 259,
for increasing k. In the singlet case, the estimated error
ranged from 109, to 409%,. We feel that the errors we
have allowed for are rather liberal, particularly in the
triplet case. For that reason, we have retained more
figures than would seem to be justified by the error. In
the last column we have included the polarized orbital
phase shifts.?

VI. DISCUSSION

The implications of the nonadiabatic theory for the
various well-known techniques of calculating (s-wave)
scattering problems are clear. The exchange approxima-
tion as representative of the zeroth order problem has a
central role and is by no means a bad approximation.
The method of polarized orbitals® and to a lesser extent
the various exchange adiabatic approximations?-2 are
legitimate next order correction. The application of
these conclusions for electron scattering from other
atoms is perhaps even more significant. For in those
cases one cannot readily do better than the exchange

20 A. Temkin and J. Lamkin, Phys. Rev. 121, 788 (1961).

21 D. R. Bates and H. S. W. Massey, Proc. Roy. Soc. (London)
A192, 1 (1947).

22 B. H. Bransden, A. Dalgarno, T. L. John, and M. J. Seaton,
Proc. Phys. Soc. (London) 71, 877 (1958).

approximation. But since one expects the polarization to
act even more classically, the inclusion of an exchange-
adiabatic polarization potential would seem eminently
worthwhile, where the atomic polarizability is non-
negligible. The quantitative alteration, in fact, can be
much more pronounced than in hydrogen. In oxygen,
for example, the polarization potential decreases the
zero-energy exchange approximate cross section by a
factor of 8, and by a factor of 2 at energies of 10 ev.2!.28
Both decreases seem now to be confirmed by ex-
periment.?*

There are, however, at least two related problems
which it would also be well to put on a rigorous basis at
least in the case of hydrogen. One is the scattering of
higher than s partial waves, the second is the inelastic
scattering.

Concerning the first problem, one feels that physical
intuition should be a reasonable guide as to what tech-
niques are best. Thus, for a given incident energy one
would expect the phase shifts to get increasingly further
from the exchange approximation phase shifts. This is
expected to be so because the higher partial waves are
concentrated further from the center, where the adia-
batic potential becomes increasingly important relative
to other effects. Or, to put it another way, for a given
incident velocity, the further away a particle orbit, the
more adiabatic its motion appears (an observation we
have all verified on passing airplanes).?® Nevertheless,
the solution of this problem by an extension of our
nonadiabatic theory is not trivial. This is because the
Schrodinger equation reduces to sets of three-dimen-
sional coupled partial differential equations.® In addi-
tion, at the lowest energies the polarization must be
included in the zeroth order approximation corre-

2 A. Temkin, Phys. Rev. 107, 1004 (1957).

2§, C. Lin and B. Kivel, Phys. Rev. 114, 1076 (1959). R. H.
Neynaber, L. L. Marino, E. W. Rothe, and S. M. Trujillo, Phys.
Rev. 123, 148 (1961).

% The picture may not be as rosy as one thinks. Recent experi-
ments by R. H. Neynaber, L. L. Marino, E. W. Rothe, and S. M.
Trujillo [Phys. Rev. 124, 135 (1961)] of the e—H total elastic
cross section, if they are correct, would indicate that the triplet
p-wave phase shifts are much closer to the exchange approximate
results. This heightens the necessity for a rigorous quantitative
theory for the higher partial waves.
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TasBLE IV. Resume of calculation for singlet é.

k 50 A3o A250(1) A250(2) ] k) (pO]. orb.)
0 7.8(1) 5.6(4) 5.7
0.01 3.0640(5) 0.026 —0.008 0.004 3.086(4) 3.085(1)
0.05 2.759(1) 0.117 —0.035 0.019 2.86(2) 2.86
0.1 2.420(3) 0.187 —0.045 0.030 2.59(3) 2.58
0.2 1.895(2) 0.215 —0.030 0.034 2.11(5) 211
0.3 1.535(10) 0.189 —0.016 0.030 1.74(6) 1.75
0.4 1.269(1) 0.165 —0.009 0.026 1.45(6) 1.47
0.5 1.066(2) 0.148 —0.007 0.023 1.23(6) 1.25
0.75 0.756(2) 0.131 —0.0025 0.021 0.91(6) 0.91
0.8 0.728(2) 0.126 —0.002 0.020 0.87(6)

sponding to the fact that the effective-range formula
gets altered in its first term.?*:26

The second problem is also difficult to handle by our
present method. Consider for example the s-wave part
of the 1s—2s excitation problem. This is a zero orbital
angular momentum equation governed again by (2.1).
The difficulty here is in the boundary condition (2.8)
must contain all states that are energetically accessible.
Even the solution of the zeroth equation (3.3) is
enormously complicated for the same reason. One is
restricted to the statement that present s-wave close-
coupling approximations which include only s-excited
states of hydrogen?” are again approximations of only
the zeroth order problem (3.3). Here, however, it ap-
pears that the zeroth order problem is a much more
uncertain approximation of the whole problem.
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APPENDIX

We give here formulas for integrals involving con-
tinuum Coulomb wave functions. We would like to
acknowledge the guidance of Dr. L. Maximon in per-
forming these integrations. All formulas are obtainable
from the very general formulas of Alder et al.2® The
results involve, among others, the various kinds of

hypergeometric and Bessel functions. The notation for
these are standard aside from minor variations. Defini-
tions may be found in innumerable books; we mention
only Morse and Feshbach.® Many of the formulas are
not manifestly real ; nevertheless, they may all be shown
to be real. Those matrix elements which should be sym-
metric with respect to the interchange of initial and final
states can be shown to be symmetric. The reality and
symmetry are, in fact, closely related.

The continuum Coulomb functions are normalized as
follows:

wy (1) =re=F (14i/p; 2; 2ipr),
wa(r) = limae, () = (7/2)172((87)1).

F(a;b;x) is the confluent hypergeometric function;
J (%) is the Bessel function of order #. In practice, all
integrals involving the zero-energy Coulomb wave func-
tion #o(r) (denoted by the index 70) can be derived from
the formulas involving a general p (denoted by Ip) by
suitable limiting processes. For the purpose of giving the
discrete-continuum matrix elements it is convenient to
write the discrete wave functions in the form

Rna(f')= —r/n 'Z;[ Cnﬂ’j,
=

where C,; is the coefficient of 77 in
R.s(r)= )t 2ru)e~"IWF(—n+1; 2; 2rnt).

All tan™! functions are to be taken between —x/2 and
m/2. Triplet formulas:

_(ortp2)

tan™!
pip2 A p1p2

(pa—p1) | <)\2+ (pr—p2)?
n
2p1pe N (p1tp2)?

(ME)1p1,1p2= “:2)\ exp(

-
7

X {F(“ih—l, iprt; 1 x)—

p1— Do (p1—p2) p1tope
tan

A

)]/ vo i+ (ot

29[\ +i(pr—p2)]
——————F(1—ips ™, 1+ipi125%) ¢,
N (p1—p2)? (=ips S )

where F(a,b; ¢c; x) are hypergeometric functions, A=rkp1Fkp2, x=4p1ps/[ N2+ (p1+p2)%], and y=1—x.

26 R. Thaler, Phys. Rev. 114, 827 (1959). L. Spruch, T. O’Malley, and L. Rosenberg, Phys. Rev. Letters 5, 375 (1960).
27 K. Smith (reference 12). R. Marriott, Proc. Phys. Soc. (London) 72, 121 (1958).
28 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. Winther, Revs. Modern Phys. 28, 432 (1956). See in particular formula

(II. B. 53).
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2\ —2n 2 P 2p —4ip\ 2(\+ip) —4ip
(ME)z0,1p= exp< —tan—'—+ )[F(ip—l; 1; )— F(H—ip“l; 2; )],
(>\2+p2)2 A?_‘_P? P )\ )\2+p2 )\2+P2 A2+P2 x2+p2

where A =ko+«,. WMo, 1p=25(\,p) sind, N, ,r,=2S(A,) cosb,

(ME) r0,r0=2\"3e~4M I (4\"1) — 11 (4\1)}, Ap=14ky,
SAp) =20 (1+p) ] exp(—p~* tan™'p),
1 atp(p—k
» 6= tan™!(/k,)+— ln[——w}
(-L\’IE)n,Ipz Z ancgj()\np>- 21? >‘p+P(P+k)

=1 . .
WMo, 10=lmI;,1p, e, 70=Hm:,, 10,
-0 »-0

where A=2« and I,(x) are the Bessel function of
imaginary argument.

where A pp=kntrptu, §;N) = So° e riu,(r)dr, hence

JidW)=—(3/N)gj—1(\), and where the only nontrival limit is
JoA)= (N2t exp[—2p7! tan~1(p/N)]. Oo=tan=t(k/ko) — kAL
(ME),, ro=lim(ME) , 1. Singlet formulas (the symbols have the same meaning
P0 as the corresponding triplet formulas):

(SME)1p1,1p2= [ 2 p1k 2t po2Fkp? A"k p1 A2 p1— $22) JME) 11,12

p1—p2 p1—p2\ Pitpe prtpa\  i(pa—p1) 'IF(1—iP2_1, 1+ipi5 25 %)
tan“( )— tan‘1< )—i— Iny

pipe A P1p2 A 2p1pe —I N+ (p1tpo)?

(SL\[E) Ip,J0= [zKpK0+K02+}\_1Kp ()\2‘*"?2)] (L\/IE) Ip,I0

+2 exp[

2 —4
= o (i ),

2 2
+2 ex ,:—-i—— tan~!(p/N)+
p )\2+P2 p an (P/ ) K2+P2 )\2+P2

e 4 4 4
(SME)r0,70= {5]0<—>—311(—) },
2\ A A

(SNIE)anz (Kn_ 7"_1) i an{ (Kn+)‘n:v)(gi(>\np) - jgj—l O\n:v) } +Z:1Cn1'j{ (Kn"l')\np)gj—l O\np) - (]_ 1)57‘—2 ()\np)};

(SBIE)n,IO'—_lin{}(SI\/IE)n,Ip, #Ip=NS‘?‘Ip_-Z\Tst—'_kA/VCTIpy lechrIp_Zvclp_kzvsrlp,
P>

where
Norrp=25(\p) [ kn sinf—k cos ], Nerp=2S(A\p) (1+xa)[ (2¢,41) cosh+% sing],

Norp=2(a+1)S(\p)[ (2k,+1) sing—E cost], uro=limur,,
Vio=— limvlp.
>0

Zvcrlp= 25()\p) I:Kn cosf+k sin&],



