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entropic contribution when changes in the force
constants are neglected at all. In a more realistic
situation when both loss of coupling and elastic dis-
tortion are taken into account, it is not certain that the
total self-entropy may be split into two terms which
depend separately on these two kinds of perturbation.
It then follows that our result cannot be added to the
entropy change coming from the perturbation on the
force constants only. From Table II, it appears that
the present value is an order of magnitude higher than
Huntington's previous estimate; this fact suggests that

the usual calculations, which neglect the inhuence of
the loss of coupling might underestimate the actual
entropy of a vacancy in monatomic lattices.
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Temperature-Dependent Linewidth of Excited States in Crystals. I. Line
Broadening due to Adiabatic Variation of the Local Fields*
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The effect of strains on the linewidth of the optical spectra of paramagnetic ions in ionic crystals is briefly
discussed and applied to the 'E state of ruby. A mechanism for the broadening of spectral lines in crystals
at elevated temperatures is introduced. This mechanism assumes that the linewidth is due to "slow" varia-
tion in the local electric field of an individual ion. This theory should hold for states which do not interact
with the crystal field to first order and is applied to the 2E states of ruby. The agreement between theory
and experiment is quite good.

A. INTRODUCTION
' 'T is well known that the linewidth of absorption and
~ ~ emission lines in paramagnetic solids is generally
much larger than the inverse of the natural lifetime of
these lines. This condition holds even when zero tem-
perature is approached (O'K). To be sure, the linewidth
tends to decrease with temperature at fairly high tem-
peratures; but below some temperature, generally in
the range 35—80'K, the decrease stops.

Recently Schawlow' ' and others have given some
compelling evidence for the R» and R2 lines of Cr'+, that
the residual linewidth is chieQy due to strains in the
crystal. Strains in chromium-doped MgO have been
discussed rather thoroughly in reference 2 with the con-
clusion that the low-temperature linewidth may be due
to this cause.

Due to strains, different ions are subjected to diferent
local crystalline 6elds. By annealing ruby and MgO
crystals doped with Cr'+ the linewidth has been
decreased by an order of magnitude. (Annealing can
remove only macroscopic strains; that is, where many
neighboring ions have identical fields but ions in distant
parts of the crystal "see" different fields. ) It is not clear

*This research was supported by the Air Force Systems
Command, U. S. Air Force.' A. L. Schawlow, J. Opt. Soc. Am. 51, 472 (1961).' A. I.Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122,
1469 (1961).

whether the residual excess linewidth after annealing is
due to remaining macroscopic strains, microscopic
strains (differences in crystal field of neighboring Cr'+
ions) or other causes.

In the low-lying states of paramagnetic ions in
crystals, the natural radiative linewidth is always
negligible. However, nonradiative relaxations will often
broaden lines when the states concerned interact directly
with the lattice oscillators, and the energy separations
are favorable. This broadening is the analog of spon-
taneous emission, with phonons replacing photons. As
an example, it would be conceivable in ruby that the
upper doublet of 'B (the Rs level, often designated 2A)
could be broadened by direct relaxation to the Rl level

(E). This would require the spontaneous emission of
phonons at low temperatures. That this does not occur
is due to the fact that no vibrations couple E to 2A in
first order. The higher order relaxation of 2A —+E is
discussed in reference 3.

In the rare earths, on the other hand, there are
typically groups of closely spaced energy levels (the
typical crystal 6eld splitting of a Stark manifold

10-200 cm ') which are coupled directly by the
crystal field. In such a case we expect direct relaxations
within a Stark manifold to play a role in broadening of
the lines. The 4T& state of ruby is another example of

s J. Singer, Qttarttlra Etectrortics (Columbia University press,
New York, 1961),Vol. II, (paper by A. Riel).
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this situation. In most of these cases one would not
expect the linewidth to show a radical temperature
dependence.

In some cases the states in question do not interact
directly with the crystal Geld. This appears to be a
requirement for all sharp lines in the transition elements.
For such states the "adiabatic" variation of the local
electric fields can be the chief broadening mechanism. '
It is this case which we consider in this paper. In Sec. 9
we discuss the zero-temperature strain-induced line-
width in ruby chieQy as an introduction to C and D.
Section C introduces the adiabatic model of tempera-
ture-dependent line broadening. Section D is devoted to
a calculation of the linewidth of the 'E(E) sta, te of ruby.
Section E brie6y considers MgO: Cr.

B. STRAIN LINEWIDTH OF 'E IN RUBY

FIG. 1. Energy
level scheme of Cr'+
in AI203.
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In ruby as in MgO:Cr, the strains affect the local
crystals fields' which in turn alters the energy levels of
a particular ion. It is the variation in the energy of a
given state which causes the "strain broadening. "

In zero magnetic Geld pure rotations of the crystal
axes should not affect the linewidth. In MgO:Cr'+,
Schawlow et al. observed a shift in the energy of 'E due
to cubic or spherically symmetrical strains. This effect
was comparable to that due to trigonal or other
strains and was attributed to a change in the Racah
parameter B.

In ruby, which is a trigonal (though nearly curbic)
crystal, a trigonal strain will cause a depression of the
energy of '8 linear in the strain. In MgO however, the
change in '8 as a whole depends on the square of the
strain. Hence the relative importance of a static trigonal
strain is much greater in ruby than MgO. Since the
trigonal Geld change due to strains is at least as great as
the absolute change of the cubic field terms (and very
much greater on a relative scale), it is reasonable to
ascribe the strain linewidth in ruby to variations in the
trigonal field parameter K rather than the varia-
tion in B.

We wish to estimate the variation in E necessary to
account for the observed low-temperature line widths
in ruby.

From Fig. 1, which describes the energy level
scheme in ruby, we see that the 'E state interacts with
the 'T2 through the trigonal field. The energy of the 'E
states are all decreased by the same amount 8 due to the
second-order trigonal field interaction (H p)

('Eym t Hp
~

'T,y'm')('Tn 'm'
i Hp

~
'Eym)

(1)

8 may be evaluated by the methods of Tanabe and
Kamimura. '

4 The lower states of a Stark manifold in rare earth crystals may
be broadened chiefly by this mechanism at very low temperatures.

5 Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 1B, 394
(1958).

Choosing the state +1—
2 of 'E we get
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8= 6( (t( ( vt(t ) [trt) ['/d E=6E'/AE,

where E is the trigonal field parameter defined as
above. If hE= —7000 cm ' and E=250 cm ', we get
8= —54 cm '.

Now a variation in E will also cause a variation in
h, b8, which is given by b8= (12/7000)EbE~(3/7)bE.
We assume that the linewidth is given by b8.

It can be seen that a 1% variation in E (bE=2.5
cm ') will produce a linewidth of about 1 cm—'. This, of
course, assumes an essentially uniform distribution
function for E throughout the crystal. In general, both
the magnitude and distribution function for bE is
required to determine the linewidth. Again assuming
something like a uniform distribution, the residual line-
width of a good ruby crystal, about 0.2 cm ', may be
accounted for by a bE=0.5 cm ', that is, by a 0.2%
variation in K.

It should be pointed out that the change in the zero-
field splitting of '8 due to bE also affects the linewidth.
This effect however is about a factor of 7 smaller than
the above effect.

It is also interesting to see how strains will affect the
linewidth of the ground. state. The paramagnetic reso-
nance linewidth is affected by strains chieQy through
variations in the zero-Geld splitting and possibly the
g gactors. If we assume the absolute magnitude of the
cubic-Geld parameter variation is approximately equal
to bE the second. effect will be negligible.

The zero-field splitting is given by

4 Ei2
D——

3 E(4T2)—E('A2)'
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where 'A~ is the ground state, 'T2 is the green band, and
f' is the spin-orbit coupling parameter.

4 SEX (250)'
gg7~ =2.5X10 4~E.

3 (18 000) '

U we use the value of bE=0.5 cm ' necessary to
explain the low-temperature linewidth of the 'E—&432

optical transition, we get

bD—'1.1&10—4 cm—'.

For magnetic field along the c axis the linewidth of
&—,'—+ &~ should be about 2.2)&10 ' cm ' or 2.4 gauss.

The linewidth of the +-', ~ ——,'transition should be
about a factor of 10 smaller since this broadening is
due to variabion in g (which results from a variation in
10 Dq, the cubic-field parameter).

The strain linewidth of the ground state is therefore
smaller than the broadening caused by the nuclear spin
of AP' ( 10 gauss) and hence is not observed in
paramagnetic resonance in ruby.

There are however some crystals in which the hyper-
fine broadening is sufficiently small to allow detection of
strain effects in the ground state at very low concentra-
tions. In this case one would expect smaller linewidths
for the —

p -++—' transition than for the p
—+-.', tran-

sition. Furthermore, the linewidth would probably
continue to decrease even at very low concentration
since we would expect less strain when we decrease the
impurity content.

For the optical transition, the concentration depend-
ence of linewidth cannot depend on dipolar interaction
since this is far too small. Dependence of strain on
concentration would inhuence linewidth as described in
in the first part of this section. In addition, self-
absorption will probably be a dominant factor for some
transitions at certain conditions of strain and concentra-
tion. It is difFicult on the basis of existing data to
separate these effects.

Direct paramagnetic resonance in the 'E state should
be of great value in answering some of these questions.

C. ADIABATIC VARIATION OF LOCAL FIELDS
DUE TO LATTICE OSCILLATIONS

Thus far, no satisfactory theory has been advanced
which will quantitatively explain the observed tem-
perature-dependent linewidth. In this section we shall
investigate a mechanism for line broadening in crystals
which in certain instances, give reasonable agreement
with both the temperature dependence and magnitude
of the linewidths observed between 50'K and 300'K.
We shall investigate the case of the 'E state of ruby in
detail since this is an excellent example of where this
theory should apply.

The mechanisms which cause the broadening of
spectral lines may be divided into three classes. One
class (a) includes all those mechanisms which reduce
the lifetime of an excited state. This includes such

familiar line broadening causes as the natural lifetime
and collision broadening. Another example of a line
broadening mechanisms in this category would be non-
radiative transitions in solids. The second class (b)
includes all those interactions which broaden an energy
level without affecting its lifetime. Inhomogeneous
broadening in magnetic fields and the statistical strain
broadening described in the previous section are
stationary examples of this. However, it is not necessary
for the energy to be rigorously stationary for a broaden-
ing mechanism to fall in class (b). So long as the adiabatic
condition holds, it is possible for the interaction to
cause slow variations in energy without affecting the
lifetime of a state, as for example, quasi-static Stark.
broadening in gases. Doppler broadening does not
conveniently fit into either previous class so we assign.
it to be the sole member of class (c).The velocity of ions
in crystals is too low for Doppler broadening to be
significant so we will not consider this further.

In this section we show that the "slow" variation in
the energy levels can account for the temperature
dependence of the linewidth in some instances.

The local electric field at the position of a given ion in
a crystal depends on the instantaneous position of its
neighbors. Due to the lattice vibrations the effective
crystal field is a function of time and, moreover, varies
throughout the crystal at a given instant. Let us
determine if the time variation can be considered
adiabatic. I.et E=hv be the energy of the excited state
relative to the ground (or terminal) state for the optical
transition (v)„=vp. The adiabatic condition requires

1 BL~ 1 Op

h ' Bt vo'~t

Now the maximum frequency of the lattice vibrations is
the Debye frequency v& so that

1 Bv 1 vn)

vp Bt vp vpl

For the case of ruby, which has an extremely high
Debye frequency, vg&/vp is less than 0.05. For most rare
earth crystals this quantity is usually less than 0.005.
Hence the variation of the local fields in crystals can be
considered adiabatically slow even for temperatures
near Tn b,v~/Ip. -—-

In our model then, the linewidth at moderate tem-
peratures is caused by the "slow" variation of the energy
of the excited states. The emission or absorption is
reasonably assumed to be uncorrelated to the phase of
the lattice vibrations. Of course, the vibrational period is
very short compared to the time of measurement so that
one always observes a broadened line about some
average frequency. ' The magnitude of the line broaden-

' As stated previously, the phase of the lattice vibrations varies
throughout the crystal. This alone is sufficient to cause the
broadening observed. The magnitude and temperature dependence
of the broadening is the same whether one con.siders spatial or time
variation.
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ing is approximately equal to the amplitude of the
energy variation of the excited state. We shall use this
as our criterion for the magnitude of the linewidth for
the present.

We now consider the details of our model for line
broadening. To be precise let us consider a cubic crystal
with 6 nearest neighbors. The vibrational potential may
be written

case, lines which are sharp enough to be temperature
broadened involve transitions between states whose
energy difference depends on the crystal fields to second
or higher order.

We can compute the expectation value of v in the
usual way:

We need consider only the even vibrational modes
Q~ Q6 of the surrounding complex. For the present we
restrict ourselves to transition element crystals. In this

where (n) is still to be treated as an operator. Now since
we are interested only in second order effects in transi-
tion elements we can express the magnitude of the
oscillatory energy shift (which is approximately equal
to the linewidth') as

(rym, ei,
I
v, 'Q,

I
eq+ I, r'y'm')(r'p'm', i&ii1[ v, 'Q,

I
e irym)

(~&')=
z(r) —z(r')

The Q, must still be expanded in the lattice coordi-
nates ai, al,t (step-up and step-down operators). The e
are lattice oscillator occupation numbers.

We have

Q =Xi &a(~i+~i'),

where the b;~ are given in reference 8.
To carry this computation further requires the

introduction of a specific ionic system. We will shortly
consider the case of the '8 state of ruby in detail and
then consider the application of this model to rare
earths. But first we must deal with a rather subtle point.

The substitution of the Eq. (4) for Q;, into Eq. (3)
leads to an expression of the form (where we separate
ionic and lattice coordinates)

I (rym[ z,'Ir'y'm') ['
(68r) =P

E(I')—E(r ')

xg[fg['( . I~u'~~+a, a),t[ ). (5)

If we proceed in this straightforward manner we see
that the zero-point oscillations are included in the final
result; indeed for temperatures below the Debye tem-
perature the major contribution to Eq. (5) would be
from the zero-point Auctuations since most lattice
oscillator modes are unoccupied. (A linewidth of about
100 wave numbers would be predicted at zero degrees
Kelvin if this contribution is included. ) Several writers
have attempted to estimate the linewidth using an
adiabatic model and including the zero-phonon-field
Quctuations contribution. This type of approach is
fundamentally incorrect. While the zero-point Quctua-

~If we were to attempt to complete analogy to the previous
section one would have the matrix element of the operator
(e,Q;)K. However, this operator has no diagonal elements due to
the properties of Q;. Hence the physically observed contribution
must come from {Q,v;)'.' J. H. Van Vleck, Phys. Rev. 57, 426 (1940),

tions of the electromagnetic Geld can affect the linewidth
(for example, natural linewidth) it does so only through
reduction of the hfetime of the excited state. The life-
time is not affected, however, in our model since the
radiative lifetime of most fluorescent states is )10 ' sec
and the fluorescent efficiency, of the states we consider,
is quite high. One must therefore subtract the contribu-
tion of the zero-point fluctuations. We can put this
argument into a more rigorous form.

The contribution of just the zero-point Quctuations in
Eq. (5) is

I(r~mIv Ir'~'m')I
/ II, [2(oooo[~„~,t[oooo). (6)

~(r) —~(r')

This expression is in exact analogy to the self-energy
of the electron in nonrelativistic electrodynamics. In-
deed this is exactly the expression one obtains if he
attempts to compute the self energy of the ion in the
phonon field. (We of course have considered the inter-
action of F with only one manifold, F', here. The exact
self-energy requires summing over all states of the
system. ) As in the analogous case in electrodynamics
this term should be subtracted from the Hamiltonian
preferably by mass renormalization. The only effect it
can have is the so-called level shift which could lead to
a Lamb effect.

We shall not pursue these arguments any further,
contending ourselves with the justification for subtract-
ing the zero-Geld contributions. It is interesting to note
that the evaluation of Eq. (6) leads to a finite result.
This is of course due to the fact that there is only a finite
number of lattice modes in contradistinction to the
infinite number of modes in the electromagnetic counter-
part. The fact that Eq. (6) is finite allows for unam-
biguous subtraction of the self-energy from Eq. (5).

As a final word, I wouM like to point out that in a
more fundamental approach, one would write out the
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entire effective Hamiltonian for the system. The next
step would be subtract the self-energy terms, Eq. (6),
and finally to interpret the remainder of (3) as an
adiabatic strain term. The "real" phonons have a
definite phase unlike the zero-point fluctuation which
must not be considered time dependent.

D. CALCULATION OF TEMPERATURE DEPENDENCE
OF THE LINEWIDTH OF 'E('F )

STATE OF RUBY

For the 'E state of ruby, Eq. (5) reduces to

I
('Equi D4'I'Togas) I'

(7)
E('E)—E('Ts) a

loo
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FIG. 2. Linewidth of the
'8 states of ruby.

We have de6ned our zero-order wave functions to
STRAIN LlNE"
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TTo ~ e ~ ~ ~ ~ ~
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0 t00

216 ((ro')., 5 (ro').v)'=- -e'I ——
I

(»)
49 E R' 9 R' I

I
&4"I'=4m'hv/60~D' (longitudinal)

=3R'hv/60MD' (transverse) We can replace the summation in Eq. (9) by an
integral if we introduce the density function p(v)
=tv'V/v'. Also we can use the relation

where R is the distance from the paramagnetic ion to
the neighboring ligands, M is the crystal mass, v is the
velocity of sound, and v is the phonon frequency.
Equation (7) now becomes

g„=[exp(hv/kT) —17 '.

The rest of the computation follows reference 3 closely.
We obtain finally

I
('E~~i Z.,'I sT,~~)

I

s

n„.
E('E)—E('Ts) v 33A' Vh (kTD) e ((ro') /E' 5(ro') /9R')—

(»r)=».2
iE(sE) —E('T,) iWe have neglected the longitudinal mode in Eq. (9)

since it has a larger velocity than the transverse modes.
We use the strong field approach of Tanabe and

Kamimura' to evaluate the matrix element in Ev4'. By
methods similar to that used in reference 3

T ' &i x'dx
X

TD 0 e —1

diagonalize the natural trigonal field of ruby. This is the
reason that only the Q4D4 of Eq. (5) was required above j

500 500
(where Q4 and D4' have the same symmetry and orienta-
tion as the natural trigonal field). Only the interaction
of "'T2 with E was considered since this is the n arest

the indicated integration we obtain
state (7500 cm ') which can interact directly with 'E
through the lattice vibrations. i('E1+-', IED 'i'T 1+-,') i'

If we average over the phase and propagation direc-
tions of the lattice waves we get

I
('EI+r'IzD4'I'Tsl+r') I'=6

I «tier(Ts) i'&I' (1o)

The function It/) and Itq) are just the proper functions
of an electron with azimuth quantum numbers +1
and —1.

The form of the oscillating potential for a cubic com-
plex is well known. ' In our case

6' 15xyr~ 35
Dr(TS) =e' — + — -(~'y+e") (11)

R3 2E'

where x, y, s, and r are ionic coordinates. If we perform

' J. H. Van Vleck, J. Chem. Phys. 7, 76 (1939).

dz ™~~1'~
e*—1

Figure 2 shows the predicted linewidth as a function
of temperature for ruby. The dashed curve gives the
linewidth versus temperature as measured by Schawlow.
The horizontal line gives the observed zero-temperature
linewidth.

At 100'K our theory predicts a linewidth of 0.6 cm '
compared to the value 0.5 cm ' obtained in Schawlow's
experiments. "The general character of the two curves
are quite similar although the rise of linewidth with

A. L. Schawlow (private communications). I am grateful to
Dr. Schawlow for making the experimental data in Fig. 2 available
to me before publication.
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temperature is somewhat more rapid in the theoretical
curve.

The over-all agreement between theory and experi-
ment is quite good especially considering the crudeness
of the model used. The fact that the theoretical curve
lies above the experimental curve can be explained by
the deviations of the oscillator spectrum from the simple
one assumed.

It would be profitable to discuss the analytic behavior
of Eq. (13) briefly. For temperatures much less than the
Debye temperature (T/T~ (0.05) the upper limit of the
integral may be taken as infinity so that

6.48
p4

4

which is reminiscent of the black body equation. For
temperatures much greater than the Debye temperature
(which is unrealistic in the case of ruby but holds for
room temperature for many rare earth crystals) the
quantity x'(e —1) ' may be approximated by x':

( 7" 4 TD/T

x'dx=
&TD 3TD

E. CONCLUSIONS

The previous theory should apply to most energy
levels in paramagnetic solids which do not interact
with crystal field in 6rst order and do not relax too
rapidly to neighboring states. The second condition will

be fullfilled at low temperatures when the state in
question is separated from the next lowest state by an
energy either much less than the Debye limit or several
times greater than the Debye limit. Other effects such
as the variation of 8 or f with the vibrating fields are
special cases of the theory presented in Sec. C.

The case of Cr'+ in MgO is also of some interest.
The vibrational distortions cannot split the '8 states

to the order considered by Schawlow et al. This is
because the Q, do not have any diagonal matrix
elements. The tetragonal modes Qq, » also interact with
'8 only through configuration interactions. This effect
will be small compared to that of the trigonal vibrations
because of the large energy denominator. A contribution
from the cubic mode Qi may occur through the con-
figuration interaction t'~te' but again the energy
denominator is larger than for Q»'. The Racah parameter
8 will be affected by Q& and this can lead to line broaden-
ing. It is diKcult at this point to compare this effect to
the broadening due to Q»'. If the latter effect is domi-
nant (and I believe it is), we may use the results of
Eq. (13) with only minor changes of the parameters.
Actually no very significant difference is found in the
parameters for the two cases so that we may assume
the results of Eq. (13) hold fairly well for MgO:Cr.
However, the zero-temperature linewidth in MgO:Cr
should be somewhat smaller than that of ruby for equal
strains.
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