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Dynamics of Cubic Crystals with a Local Change of Mass
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The effects of a local change of mass on lattice vibrations of cubic systems are discussed for simple Bravais
lattices, on the basis of the harmonic theory of crystal dynamics. It is shown that the change of any extensive
property, as well as the values of the discrete frequencies, are given in terms of simple expressions involving
only the distribution function Gp(oP) of the square frequency for the unperturbed lattice; the theoretical
expressions are found to be equivalent to those holding for linear chains, provided that the distribution
function is normalized to one. Perturbative techniques are discussed in some detail; it is found that a
perturbative expansion of the change of any extensive property converges to the right value, provided the
fractional change of mass, e = —(M' —M)/M, lies inside the range from —~ to +-,'. Some applications are
carried out starting from Overton s distribution function for a fcc lattice: a discrete frequency, threefold
degenerate, is found to occur for e& 0.215, and the self-entropy of a substitutional impurity (neglecting the
influence of the elastic distortion) is shown to be related only to the structure of the distribution function, in
the high-temperature limit; this change of entropy is evaluated for several light impurities. Finally, argu-
ments are presented which suggest that the contribution to the self-entropy of a vacant lattice site, arising
from the loss of coupling with the neighbors, may be higher than was estimated by Huntington and
coworkers.

1. INTRODUCTION
" 'N recent years, the influence of point defects on
~ ~ lattice vibrations has received particular attention.
The general theory has been developed by Lifschitz,
Koster and Slater, Montroll, and others, and some
applications have been made to linear chains or to
simple-cubic lattices with nearest-neighbor interactions.

The aim of the present paper is to show that: (i)
the eGects of a local change of mass in cubic monatomic
lattices (such as simple cubic, fcc, and bcc) with any
order of neighbors interactions may be studied simply
in terms of the distribution function Gp(rp') of the
square frequency of the vibrational modes; (ii) a
perturbative expansion of the change of any extensive
property, which converges to the right value, can be
found, provided the fractional change of mass
e= —(M' —M)/M lies inside the range from —~ to
+s; (iii) the change of entropy due to the loss of
coupling around a vacant lattice site may be higher
than estimated by Huntington and coworkers' some
years ago. For the applications presented here use is
made of Overton's calculations' for the distribution
function.
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2. PRELIMINARY REMARKS

For monatomic Born-von Karman lattices the normal
modes equation for the vibrational amplitudes x is

A„(r—r') are the coupling coefficients between the
nuclei at the lattice vectors r, r'; a lattice vector r is
defined by r=P, ', r,a', where a' are the principal
translations of the Bravais lattice, and r; are integers;
M, =Sf are the atomic masses, and s—=oP is the square
frequency. We use x=x', x', x' to label the Cartesian
components. When a foreign atom of mass M' is
substituted at the lattice site r=0, we have

M, =M(1—e bp, ), (2)

where e=—(M—M')/M = —AM/M, and 5p, , is the
Kronecker symbol. If there is no change in the coupling
coe6.cients around the impurity, the normal-modes
equation for the perturbed lattice may be written, in
the matrix notation, as

where I.„(r—r') =—(1/M) A „(r—r'), and D„(r,r')
6O,, 80,, I. may be treated as an unperturbed

operator, and seA as a local perturbation (e is not
supposed to be small). The eigenfunctions of I. are the
plane waves

X, ,
~P (r)=(1/Ã)ls, ,~ exp(ik r)—=(x;r~v„k), (4)

where s. ,k* are the scalar components of the (complex)
polarization vector of the lattice wave having wave
vector k. s=1, 2 corresponds to transverse waves an.d
s=3 corresponds to longitudinal waves. (1/1V)'*is the
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normalization constant, X being the total number of
atoms in the lattice. Imposing the periodic boundary
conditions, the values of k are confined to the first
Brillouin zone (B.z.). The eigenvalues of the unper-
turbed operator are the squares of the vibrational fre-
quencies of the lattice z—=oP=a&,o(k). The square fre-
quency is then

.'(k) =Z Z (',")'L.* ()',." p( k ) (5)

For large crystals, as E tends to inanity, the un-
perturbed operator has a continuous spectrum extending
from zero to a well-defined maximum sr. .

It is well known that the presence of a local pertur-
bation leads to two kinds of e6ects'. first, the elastic
waves propagating in the crystal are scattered and
the perturbed waves are given by the superposition of
the incoming and diffusing wave; secondly, new modes
of oscillation may be possible, in the sense that wave
packets, localized around the impurity, could have
standing character. The frequencies of these new modes
lie outside the interval (O,zro) of the unperturbed
spectrum.

3. DISCRETE FREQUENCIES EQUATION

When 2' lies outside the unperturbed spectrum, the
inverse of the operator (I z) exists, and K—q. (3) may be
written

(6)

substitution of P) and (8) into (6) gives, for the scalar
components with respect to the Cartesian axes,

x (r) = —zc p X..(0) p (1/2z)' dk (z, ,k")*v,,a'

(B.z.)

&& (oo„q'—z) ' exp(ik. r). (10)

In particular, for r=0,

x*(o)= —«2 x"(o) 2 (1/2~)'

X dk ( „*')*„(„'—) '.

(B.R.)

The integral in the right-hand member of the above
expression may be written as

(1/2z.)' dk (tt, q*')*it q'(oo q' —z) i

(B.s.)

zeo

dz'(z' —z) '(1/2z)'

dSI i7to,o(k)
I

—'(v, ,j,*')*v„g*, (11)
or

I I+ze(1.—z)
—'Bjlx)=0. (6')

(N2=z)

where dS is the differential area on the constant-
frequency surface in the k space, and z,o is the maximum
square frequency in the sth band. Taking into account
the symmetry properties of v, ,a in the k space, one can
see that, for cubic lattices, the surface integration of any
mixed component of the tensorial product (v, a)*v, ,q

vanishes, whereas the surface integration of the diagonal
components yields the same result, for either x'x',
x'x', or x'x', owing to the equivalence of the coordinate

In the present case, 6 is a third-rank operator, so that
the three scalar components of the perturbed modes at
the lattice site r=0 are involved in the right-hand
member of (6). We may write':

Alx)= 2 (1/2~)' dklv. ;k)(k; v. lAlx), (7)
8=1

where

(12)

where

(k; v.
l el x)=p(,, „)*x.(0). axes. We have

If lv, ;k)(k; v,
l

indicates the direct product of the (1/2~)o dSlq~ o(k)l
—i(„„)ev „.—g,o, (z)

3X-dimensional vector
I v, ; k) times its imaginary

conjugate (k; v, l, the inverse operator (I.—z) ' is (Ne ~z)

given by the following expression:

(I-—z) '= 2 (I/2z)o dklv»k)(&u, q' —z) '(k; v„l. (g) Go'(z)=g (1/2')o dSIVco, '(k)
I

'(v, ,k*)*v,,a
s=l

(N82 z)

Remembering the orthonormality conditions for the
unperturbed normal modes,

(k; v, I v, i k') =B„(2z.)'8 (k—k'),
4 Hereafter we neglect the normalization factor (1/iVl&, and

we assume as unity the volume a'a'Xa' of the unit cell of the
lattice.

= (1/2z)' dSI V'(oP(k) I
'

(N82=z)

is the distribution function of the square normal
frequency for the unperturbed sth band. Substitution
of (12) into (10) yields the "discrete-frequency
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equations":

j, = 3S6—1
zL

ds' Go(s') (s—s')-',

Go(z)= Z Go'(z).
8=1

for x=x', x', x'; Go(s) is the distribution function for
the entire vibrational branch, i.e.,

Outside the range of the continuous spectrum the
functions (,(s) may have a step character, and this
corresponds to discrete eigenvalues.

In place of the actual operator L,, it is more con-
venient for the present purposes to work on a sequence
of operators 1.~, defined by the same continuous set of
eigenvectors Iv, ; k) of the original operator, and by
discrete eigenvalues X =ny, m being the integer part of
I ro, ,q'/yj, y is a real parameter(y)0). In the complex
s-plane the inverse operator (L~—s) ' is given by

Therefore, if there are discrete frequencies, they are
threefold degenerate. The critical value e„ for the
appearance of discrete frequencies is

z 0

ds Go(s)(sr, o—s) ' . (14)

where

(L7—z) '= 2 (&-—z) 'fpo.
&

n=o

6'ig„)—= P dkIv„k)(k; v,
I

(17)

If one remembers that for a three-dimensional lattice
the distribution function is normalized to 3, the
expressions (13), (14) are seen to be identical with those
given previously by the quoted authors for simple
lattices with all the oscillations polarized in one
direction.

4. EFFECTS OF THE PERTURBATION IN THE RANGE
OF THE CONTINUOUS SPECTRUM

It has been pointed out by I. M. Lifschitz and by
M. Lax that the change of extensive properties arising
from the effect of a finite-rank operator A on the un-
perturbed operator 1., having a continuous spectrum,
may be evaluated by means of J functions $, (s),
(j=1, 2, 3, , J), of the continuous eigenvalue s. I is
the rank of the perturbing operator. The physical
meaning of this set of functions is the following: Let F
be an additive function of the eigenvalues of L, so that

Fo= Spy(L),
F =Spy(I+A),

where q(s) is a given scalar function, and A is the
perturbation. The change of this property is then

8F= F Fo = SpI y—(L+—A) —y(L)$

= X ds&Go(s)o (z)
0 Nmg)

d Z &()'()

y'(s) is the 6rst-order derivative of p; by Sp ~ we
mean the spur of the operator. ' From the two last
expressions it appears that

is the projection operator on the subset of eigenvectors
for which X„~&oo,,t,'&X„~r,' r, (X„) is the correspondent
region in the k space. The summation in the right-hand
member of (17) is extended to the total number of
distinct eigenvalues, m=1, 2, , le=I sro/7$. The
inAuence of the perturbation on the eigenvalues of I.
may be discussed by putting s= X +y$(X ) in Eq. (6').
In the

I x; r) representation, our perturbation seh is a
third-rank. matrix, so that the determinantal equation
that one obtains from (6') is again equivalent to a
third-order equation. In the limit for y —+0, it then
follows that

det I—se scotLzp(s)$ g (1/2z)'
s=l

X dS
I
~oo '(k)

I
'v„~v„t,*

zL

+so F ds'(s' —z) ' P (1/2~)'
s=l

X dSIVto, s(k)
I

'v,
,~v„~s =0. (18)

(coa2 ——z')

By I' we mean the principal value of the integral. In
this determinantal equation cot(s$) plays the role of
eigenvalue, and s is regarded as a real parameter; g(s)
is assumed to range from —rs to +sr.

The symmetry properties of v, ,& in the k space reduce
the above determinantal equation to three equivalent
scalar equations. The solutions are

Q g, (s) = —X ds' ~Go(s')

' The last expression is the well-known "Trace formula" given
by Lifschitz (see reference t).

=—arctan
—s,sseGo(s)

Z~O

1 sseF ds'(s —z') 'G—o(z-')

(19)
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If we let
g 0

G, (s)==P ds'(s —s') 'Gp(s') (20)

we may write, finally

1 -', seGp(s)
P(s) =—arctan vr—

1——,'seGp(s)
(19')

This expression is still equivalent to that obtained for
simple lattices with polarized oscillations.

We assume both Gp(s), and Gp(s) to be continuous
functions; the points of discontinuity of $(s) are then
confined to the values of s for which the denominator
in the expression in the right member of (19') vanishes.
Let f;, (i=1, , i) be the zeros of 1——',seGp(s)
inside the range (O,srs) of the continuous spectrum;
$(s) shows v jogs, respectively at s=i &, f'&, , f„We.
note that at every jog

0
'I 2

a in units

at 3.8410Nx

in view of this property, let us call i, "points of in-
version" of $.

For a random solid solution of a finite concentration
c, the perturbed distribution function could show small
peaks (or small valleys) at the inversion points.

In the present paper we assume that Gp(s) is repre-
sented by the function plotted in Fig. 1. This distri-
bution function is deduced from Overton's calculations'
for a fcc lattice with twelve nearest-neighbor central
interaction. Figure 2 shows Gp(s), as it is obtained by
machine calculations from the above Gp(s). Finally,

2"

1.5"

t

4 0.1 0,2 Q,3 04 0.5 0,6 0,7 08 IN lO~ aq

aL= 3,8418

FIG. 1. Distribution function Gp(s) of the square frequency
@=co for a fcc lattice with nearest-neighbor central interaction.
(From Overton and Dent. ')

FIG. 2. Plot of Gp(s) deduced from Gp(s) with the aid of
a USS 90 Remington computer.

ssGp(s) is plotted in Fig. 3; the zeros of 1—sseGp(s)
are the intercepts of this curve with the line y=1/e
parallel to the s axis. Remembering (13), one sees that
the intercept lying outside the continuous interval
gives the discrete frequency. ssGp(s) shows several
maxima and minima; the absolute maximum occurs at
s=srp, and for 0&e&e„, ((s) does not show inversion
points. For e„(e&0.216, $(s) shows an inversion point
very close to 2'1,0; for 0.216&&(.0.242, there are three
inversion points between 0.9275sl.' and s~', two of
which collapse when &=0.2424, and then disappear for
e)0.2424. For 0.2424(e&0.5606, $(s) shows again a
single inversion point between 0.51sz' and 0.9275sl,',
finally, for values of e increasing from 0.5606 to 1, the
number of inversion points increases up to a maximum
of seven (for e=0.971), and then falls to five for e=1.
For negative values of e, there is always an even
number of inversion points, or none, as it is expected;
the number of inversion points increases from two
(for e& —1), to six (for e(—28.5). Plots of P(s) for
e=0.1; 0.25; 0.5; 1, are shown in Fig. 4(a), (b), (c),
and (d).

5. RELIABILITY OF PERTURBATION TECHNIQUES

On the basis of the present distribution function it
follows that sGp(s) is a bounded function when s lies
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so that

where e and 6 have been already defined. Ke expand'l axis. For values of e sufficiently close to w ere e an
zero one may suppose that the argument o e in

f
' 'n (19') i all r tha. ~O. ~. Inthiscase n=o

$(s) may be evaluated by means of a Taylor expansion;
one obtains

&(s)=sc(1/3)Go(s)+ (sc)'(1/9)Gp(s) Go(x)

—(«)'(1/27) (Go(s) L(Go(s))'+ (~'/3) (Go(s))'])

(LyX—s)-' —(I.—s)-'= —(I.—s)-'K(s) (I.—s)-',

where

+ = 2 "«'() (22) E(s)= P (—1)"~L(L—s)-'X] .
n=O

(27)

h
~

k) representation, the matrix elements ofhen ivenb In t e v, ; reThe change SIC of an extensive property is then g' y

where

oF= Q 5F'"&
n=l

z~o

ds v'(s) ('"'(s)

(23) !(k;, ~A~v. k')=EX o~g, ig(vg, k~vg', i, )o~g', i, . (28)

Substitution of (28) in (27) gives:

(k; v, iK(s) iv, ; k')

bF&') = e

z~o

ds q'(;.)sGp(s),

The factor three in the right-hand member of the above
expression comes from the threefold degeneration of the
perturbed levels. In particular

k1
* ~sn kn (x)sn krX+s1,k1 s1;k1 s1, 1

' *

X (~.„,~„'—s) '(v, „,~„~ v, , ~ )~, ,i«.

~2 z~&

SP & =— ds &'(s)s G, (s)
0

zL 0

ds'(s —s')-'Go(s'). (24)

5-.

The range of values of e for which the expansion (23)
converges to the exact expression ~ ~

.
g

'
n ~19'~ is iven by the

two following conditions:

-',s eGo (s)

1——',s eGo (s) (24')

3

~1—3«Go(s)
~

(1.
It would be interesting to compare, 23, w'~23~ with the

correspondent expression obtai y pned b erturbative
b educedtechniques. A perturbative expansion may e edu

from

"oF= (p(s) Sp[(L+A —s)—' —(L—s)
—']ds, (25)

271

~H
o 2"

l
H

/n Q y
gK =OSO06

] ~

expanding the inverse operator (L+It s~ in powers-
of the perturba ionb t A C is a counterclock-wise contour
in the comp ex s-p an,h l — lane enclosing all the eigenvalues o

Ais e nedL and L+A, but none of the pol.es of rp(s) his e n.e
by'

'V 0.6 0$10~x~

z fnuntts

= 3.841500—$0L

A= e'L*AL' o'= e/(1 —c),— —
' See I. M. Lifschitz, reference 1.

(26)

I'zo. 3. Plot of (1/3)sgo(s).
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Fzo. 4. Plot of $(s) versus s, (s) for e=0.1; (b) for e=0.25; (c) for e=0.5; (d) for e=1.0.

As before, it is more convenient to work on the sequence
of operators Er(s):

eigenvalue, and we assume

Q Gp(),)=3.

we have:

n=p
(27')

i=p

I is the unit operator in a three-dimensional space.
The matrix elements of IC~(s) are then

(k; v,
i
E,(s)

i
v, . ; k')

N~

= lim —', P Gp(X, ))t, ()t,—s)
—'I,

y~p ~

p

e=-p

where XGp()t,) is the degeneration factor of the )t, X
~
v.. .t, )o), ,g.. (29)
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The infinite series in the right-hand member of (29)
may be summed, and the result is

Q (—1)"Le'(1—-', s P (s—X~)-'Go(X,))IJ"
i=0 x- plage

1+.'(1—-', s P (s—X,)-'G, (X,))
i=0

1—-',s.P (.—X,)-iG, (Z;)
i=0

. (3o)

By use of (27') and (30), the spur of the operator in the
integrand of (25) is readily obtained; we have:

SpL(L.+~—s) '—(L~—s) 'j
= —SpL(l, —s)-'E (s)(L —s)-'j

=—Q (& —s) 9 Go(&g)
j=0

1—-',se P (s—X )
—'Gp(X)

(31)

FIG. 5. Contour of integration in the s plane.

It is easy to see that the last expression in (31) behaves
like
I Ng 3

+ Z(s), (32)
3

~~z—X-(~+7&(~ ))
where E(s) is a regular function, and $(X,) are the
roots (j=0, , X~) of

where s is the root of (33) lying outside the continuous
spectrum. If one remembers that, in the present case,
$i(s) =$2(s) =$3(s), (34) is seen to be nothing but the
"Trace formula, " (16).

In the derivation of (34) from (25), a critical point is
the convergence of the infinite series in (29) to the
analytical expression (30). If the contour of integration
C in the complex plane is chosen as in Fig. 5, then for
any point z on C we have

1—-', s. g (s—X )-'G, P )=0 (33)

(
1 —-', s P (s—Z )-'Go(X;)

~

&~1,
when we put s=X,+pg(X;), and assume ~&~ &s only
for the values of X; which lie inside the continuous
spectrum. Substitution of (32) in (25) gives

and the critical point for the convergence lies at z=0,
where the left-hand expression reaches unity. It follows
that the above expansion converges to (30) if and only if1 Np 3

~(s) ~ s—(~,+~g(~,))
3

+ ~(s)

(35)

~=0 Z —X,

= Z 3 v (~ +v$(li )) —Z 3~(~ )
j=0

(Np —1)

dz
For &&0, this condition is always ful611ed, while, for
e&0, this condition holds for e&~.

On the other hand, substitution of (27') in (25) gives

v'(l ht(») + 3Lv(s) —
v (l~N, )j. gp= p (gp(~))

n=1
(36)

Taking the limit for y —& 0, we finally obtain The right-hand member of (36) corresponds to an
z 0 expansion in powers of c, its radius of convergence is

ds &'(s)q(s) +3)&(s) &(s 0)j (34) ~e'(=1. This corresPonds to a range of values of e

which is always larger than the range given by (24') for



j.290 G. F. NAR DELL I AN D N. TETTAMANZ I

2.1

2,0

1.9

1.8

1.7—

1.6

I& 15

1.4

of effects. The present calculations are based on the
distribution function plotted in Fig. 1, which was
obtained by Overton and Dent' with the aid of an
electronic computer for a fcc lattice with a twelve-
nearest-neighbor central interaction. The intervals on
the s axis are in units of 2n/M, where n is the force
constant and M is the atomic mass. This distribution
function corresponds to the superposition of three
bands corresponding, respectively, to the two transverse
and to the longitudinal modes of vibration.

We deduced Gp(s) from Gp(s) with the aid of a USS
90 Remington computer, dividing (O,sl. ) into hundred
intervals and rectifying the profile of Gp(s) by linear
segments in every interval. The resulting curve is
shown in Fig. 2.

1.2

~L 1
0 0,1 Q2 03 0.4 0.5 O.b 0.7 O,S O.g 1P

cr"0.219

I'zo. 6. Values of discrete frequency z vs values of e.

the convergence of the analogous expansion (23) in
powers of p; one may conclude that (36) is a more
useful expansion than (23). Prom (25), (27'), and (29)
one obtains

z 0

a. Discrete Frequency

The discrete frequency is given by the root of (13)
which lies outside the continuous spectrum; the value of
e„ is found to be 0.2T5. In Table I the values of the
discrete square-frequency (in units of slP) are reported
for some values of c, and the curve discrete-frequency
vs e is plotted in Fig. 6. YVe note that for values of e

very close to +1 the square frequency approaches the
asymptotic value (1—p) '(4n/M), which corresponds to
the frequency of an uncoupled oscillator. For ~ —& T one
obtains from (13) the asymptotic expression:

for v=1, (bji"'), .&i, .= p'

and,

ds p'(s)sGp(s), (s), i (4n/M);
1

(37)

zL

for n=2, (5I ")),,h.
——(p')'(1/3) ds pp'(s)sGp(s)

zLO

XP ds' s'(s —s')-'Gp(s'). (37)

therefore the Einstein approximation overestimates the
discrete frequency.

b. Change of Extensive Properties

ds p'(s)k(s) + 3L~(s) —p (s~')], (3g)

According to (15), (19'), and (13), the change of an

one remembers the normalization condition for extensive ProPerty is given by

Gp(s), these expressions are seen to be equivalent to z 0
L

(24) when powers of p beyond the second are neglected. SIC =3
6. APPLICATIOlVS

Expressions (13) and (18) solve the eigenvalues
problem for a local change of mass in any monatomic
cubic lattice. The solution is given in terms of the
unperturbed distribution function for the square
normal frequency. For numerical applications, the
usefulness of the above expressions is limited by the
uncertainty in our knowledge of the actual distribution
function. The main diKculty concerns the principal-
value integration of (s—s')Gp(s'); in fact, point dis-
continuities in the distribution function itself, or in its
first derivative could affect to a large extent the value of
the integral and then the denominator in the right-hand
expression of (19); in this case new inversion points
could occur. However, the change of extensive properties
of the lattice is probably quite insensitive to this kind

TAHLz I. Discrete frequencies z (in units of sLO)
for increasing values of e.

1.000 0.2148
1.010 0.2756
1.020 0.2978
1.030 0.3159
1.040 0.3317
1,050 0.3459
1.100 0.4024
1 ~ 150 0.4454
1.200 0.4805
1.250 0.5103

1.300 0.5361 2.200 0.7523
1.350 0.5589 2.300 0.7642
1.400 0.5792 2.400 0.7749
$.500 0.6141 2.500 0.7848
1.600 0.6432 3.000 0.8232
1.700 0.6680 3.500 0.8500
1.800 0.6893 . 4.000 0.8698
1.900 0.7080
2.000 0.7245
2.100 0.7392

where s is the discrete square frequency. $(s) depends
on the value of p; plots of ((s) corresponding to p=0.1,
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TABLE II. Entropy of substitutional impurities of mass M'= (1—c)M.

From the con- From the dis-
tinuous spectrum crete frequency Total

|S/k
Einstein Pert. theory' Pert. theoryb

approximation up to 2nd order up to 2nd order

«= 0.1
«= 0.25
«= 0.5

Loss of coupling («=1)

-0.1578 ~ ~ ~ —0.1578—0.2437 —0.075 —0.3187—0.5422 —0.3136 —0.8558
Present calculation 6S/k =+0.978

—0.1580 —0.1575 -0.1574—0.4315 —0.4219 —0.4167
1 0397 ( 0 9375)c ( 0 7502)c

Huntington's estimate BS/k =0.09d

a By use of (23) and (24).
b By use of (36) and (37).
& Parentheses are used when the perturbative expansion does not converge.
d See reference 2.

0.25, 0.50, 1.00 are shown in Fig. 4. $(s) is a dimension-
less function closely related to the structure of Gp(s)
which, in turn, depends essentially on the symmetries
of the lattice. On the contrary, it does not depend on
the physical constants of the lattice, i.e., the force
constant n, or the atomic mass M, which give only the
unit (2(r/M) on the s scale. It then follows that the
(classical) self-entropy of a substitutional impurity
(neglecting the influence of the change in the local
force constants) is given by a general expression which
does not involve any physical constant of the lattice.
The classical entropy (T~ oo) may be evaluated by
use of

regarded as the entropy of a lattice of A"—1 particles
plus a vacant lattice site (regardless of the change in
the force constants on the neighboring sites). One
obtains:

(()SA)coup) =—(S' "))ote —Sp'

ZL0

ds ~'(s)6=)(s)

z 0

+ ds (r (s)Gp(s) —3o.(sI.P)

z 0

q (s)=—o (s) = —k ln(As'/k T), (39) ds s '~(', t(s)

where k is Boltzmann's constant and A is Planck's
constant. We have from (38) +—,'k

Z 0

ds ln(sLP/s)Gp(s). (41)

6S = ——',k
L

sk ln(s/s P) (3g~) The numerical result is rePorted on Table II.

7'. COMMENTS
Numerical results for &=0.1, 0.25, and 0.50 are reported
in Table II; in the last three columns the changes of
entropy according to either the Einstein approximation
or the second-order perturbation theory are also
reported.

(N) —(S(N—1)) +3~(s) (40)

where (S(N '))u,t, does not depend on e, and may be

c. Change of Entropy Due to the Loss of
Coupling around a Vacancy

Some years ago, Huntington' suggested that the loss
of coupling around a vacancy should not affect ap-
preciably the self-entropy of the defect itself. On the
basis of the above expressions it is now possible to
estimate this contribution. When e tends to unity, the
discrete frequency approaches the Einstein frequency;
this means that the lattice does not participate in the
high-frequency localized vibrations. I.et So(~) be the
entropy of a perfect lattice of E particles, and S,' ' be
the entropy of the same lattice when one of the atomic
masses is changed from M to cV'= (1—e)M. From the
above considerations it follows that S, && ) may be
split as

We have shown that the change of extensive proper-
ties of monatomic cubic lattices, as well as the discrete
frequencies due to a local change of mass, can be
evaluated by expressions (13), (15), (19') involving
only the distribution function Gp(s) for the square
frequency of the perfect lattice. This result follows
from the point symmetries common to the cubic
systems (sc, fcc, bcc), and its validity is subjected only
to the reliability of the harmonic approximation of the
interatomic potential.

The above theoretical expressions are found to be
identical with those holding for linear chains, provided
the distribution function Gp(s) is normalized to one.

From Table II it appears that for e)0.1 both the
perturbation theory and the Einstein approximation
overestimate, in absolute value, the self-entropy of a
substitutional impurity. Nevertheless the Einstein
model gives a good estimate of the discrete frequency
for very light substitutional impurity (i.e., e 0.9), as
can be seen from (37).

The last point treated here concerns the contribution
to the self-entropy of a vacancy arising from the loss of
coupling between the vacant site and the neighboring
lattice sites. The method presented here gives this
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entropic contribution when changes in the force
constants are neglected at all. In a more realistic
situation when both loss of coupling and elastic dis-
tortion are taken into account, it is not certain that the
total self-entropy may be split into two terms which
depend separately on these two kinds of perturbation.
It then follows that our result cannot be added to the
entropy change coming from the perturbation on the
force constants only. From Table II, it appears that
the present value is an order of magnitude higher than
Huntington's previous estimate; this fact suggests that

the usual calculations, which neglect the inhuence of
the loss of coupling might underestimate the actual
entropy of a vacancy in monatomic lattices.

ACKNOWLEDGMENTS

It is a pleasure for the authors to express their
gratitude to Dr. E. Abate and to Dr. L. Bodini who

performed all the computations on a USS 90 Remington
computer. The writers wish to thank Professor R.
Fieschi for his encouragement and interest in the course
of this work.

PHYSICAL REVIEW VOLUME 126, NUMBER 4 MA Y 15, 1962

Temperature-Dependent Linewidth of Excited States in Crystals. I. Line
Broadening due to Adiabatic Variation of the Local Fields*

A. KxEr,
The Johns Hopkins University, Radiation Laboratory, Baltimore, 3faryland
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The effect of strains on the linewidth of the optical spectra of paramagnetic ions in ionic crystals is briefly
discussed and applied to the 'E state of ruby. A mechanism for the broadening of spectral lines in crystals
at elevated temperatures is introduced. This mechanism assumes that the linewidth is due to "slow" varia-
tion in the local electric field of an individual ion. This theory should hold for states which do not interact
with the crystal field to first order and is applied to the 2E states of ruby. The agreement between theory
and experiment is quite good.

A. INTRODUCTION
' 'T is well known that the linewidth of absorption and
~ ~ emission lines in paramagnetic solids is generally
much larger than the inverse of the natural lifetime of
these lines. This condition holds even when zero tem-
perature is approached (O'K). To be sure, the linewidth
tends to decrease with temperature at fairly high tem-
peratures; but below some temperature, generally in
the range 35—80'K, the decrease stops.

Recently Schawlow' ' and others have given some
compelling evidence for the R» and R2 lines of Cr'+, that
the residual linewidth is chieQy due to strains in the
crystal. Strains in chromium-doped MgO have been
discussed rather thoroughly in reference 2 with the con-
clusion that the low-temperature linewidth may be due
to this cause.

Due to strains, different ions are subjected to diferent
local crystalline 6elds. By annealing ruby and MgO
crystals doped with Cr'+ the linewidth has been
decreased by an order of magnitude. (Annealing can
remove only macroscopic strains; that is, where many
neighboring ions have identical fields but ions in distant
parts of the crystal "see" different fields. ) It is not clear

*This research was supported by the Air Force Systems
Command, U. S. Air Force.' A. L. Schawlow, J. Opt. Soc. Am. 51, 472 (1961).' A. I.Schawlow, A. H. Piksis, and S. Sugano, Phys. Rev. 122,
1469 (1961).

whether the residual excess linewidth after annealing is
due to remaining macroscopic strains, microscopic
strains (differences in crystal field of neighboring Cr'+
ions) or other causes.

In the low-lying states of paramagnetic ions in
crystals, the natural radiative linewidth is always
negligible. However, nonradiative relaxations will often
broaden lines when the states concerned interact directly
with the lattice oscillators, and the energy separations
are favorable. This broadening is the analog of spon-
taneous emission, with phonons replacing photons. As
an example, it would be conceivable in ruby that the
upper doublet of 'B (the Rs level, often designated 2A)
could be broadened by direct relaxation to the Rl level

(E). This would require the spontaneous emission of
phonons at low temperatures. That this does not occur
is due to the fact that no vibrations couple E to 2A in
first order. The higher order relaxation of 2A —+E is
discussed in reference 3.

In the rare earths, on the other hand, there are
typically groups of closely spaced energy levels (the
typical crystal 6eld splitting of a Stark manifold

10-200 cm ') which are coupled directly by the
crystal field. In such a case we expect direct relaxations
within a Stark manifold to play a role in broadening of
the lines. The 4T& state of ruby is another example of

s J. Singer, Qttarttlra Etectrortics (Columbia University press,
New York, 1961),Vol. II, (paper by A. Riel).


