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then we shall obtain a partial-wave dispersion relation,
whose spectral function vanishes at least in a region'

'The region (12) corresponds to a circle s=(3P—p')e'& on
the s plane. If the Mandelstam representation is assumed, all

While the third inequality in (11) is always satisfied, '
the other two inequalities in (11)are not always satisfied
in general graphs. But we can easily prove that they
are satisaed in the graphs in which the two external
pion lines are attached to the nucleon open polygon. In
order to prove the partial-wave dispersion relation for
general graphs, it will be necessary to investigate de-
tailed properties of the weight functions.
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