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Regge Poles and Resonances in Strong Interaction
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The scattering of two particles via the exchange of a resonance system is considered. The exchanged
resonance is approximated by a pole in the Regge representation. The composite nature of the resonance is
taken into account in the Regge-pole description so that one does not encounter divergence difficulties even
though the exchanged resonance may be in a J=1 state.

The exchange of a vs (1=1,J=1) resonance in pion-pion scattering is considered in some detail. It is
shown that this exchange mechanism produces a strong attractive force in the I=1 scattering system.
Whether this exchange force can reproduce a resonance at the observed energy depends on a dimensionless
parameter in the representation. This dimensionless parameter is restricted to be positive and of order unity
on the basis of a crude uncertainty-principle argument. The value of the parameter required to reproduce a
resonance does fall within this range. However, the width of the calculated resonance is broader than the
observed width by a factor of 2 to 3. This discrepancy is not unexpected since all other forces in the problem
have not been considered.

I. INTRODUCTION

POURING the past year, the vrz, rrE, sA, 7rZ, and the
3m resonances have been observed in high-energy

experiments. ' An immediate question one might ask is
whether these resonances are produced by some ex-
change forces or whether they must be regarded as
fundamental particles whose masses and lifetimes are
arbitrary constants. The purpose of this paper is to ex-
plore the former possibility using Regge's representation
for resonances. '

Since the observed resonances have widths that are
characteristic of strong interactions, there is little doubt
that the exchange of these resonating systems will them-
selves provide a substantial exchange force. It would be
even more interesting if such exchange mechanisms
mere responsible for the existence of the resonances.
Several attempts have been made along this direction. '
Unfortunately, in previous work one encounters diver-
gence difficulties in handling the exchange force when
the resonance is in a 7= 1 state. These divergence di%-
culties are associated with the unrenormalizability of
massive vector fields in the Lagrangian theory or,
equivalently, the necessity of a cuto6 in the dispersion
theory. %e shall show that such difficulties do not arise
if one associates the exchanged resonance system with a
pole in the Regge representation of the S matrix. '

In essence, Regge represents a resonance system in
terms of a superposition of all integer angular mo-
mentum states which combine to form a pole of the S
matrix in the complex angular-momentum plane. This
superposition reduces to a single-integer angular-mo-

' References to these experiments can be found in N. H. Xuong
and G. R. Lynch, Phys. Rev. Letters 7, 327 (1961); M. Alston,
L. %. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K.
Ticho, S. G, Wojcicki, Phys. Rev. Letters 6, 300 (1961);E.Pickup,
D. K. Robinson and E. O. Salant, Phys. Rev. Letters 7, j.92
(1961);M. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W.
Graziano, H. K. Ticho, S. G. Wojcicki, Phys. Rev. Letters 6, 698
(&96&).' T. Regge, Nuovo cimento 18, 947 (1960).

e G. F. Chew and S. Mandelstam, Phys. Rev. 119, 467 (1960).
References to related topics can be found in a review article: S.
Mandelstam, Reports on Progress in Physics (to be published).

II. PION-PION RESONANCE

The pion-pion scattering amplitude is considered as
a function of the familiar scalar variables s, t and N;
s=4(qs+1), t= —2qs(1 —cose), N= —2qs(1+cos9). The
E-wave amplitude is defined by

-(s—4)

dt Pr 1+ IAi" (s,t), (1)
s—4i

A, (s)—=-
o

where A"'(s, t) is the I= 1 amplitude in the s channel.
One can write the dispersion relation for Ar(s) in the
form of an integral equation:

(s—4) ",L(s' —4)/s'3'IAr(s') I'
A, (s)=Br(s)+ ds' , (2)

(s &)(s s)

where B,(s) is the generalized "potential term" which is
regular for s&4 and has branch points only along the
negative real axis. ' If B&(s) is bounded in the physical
region s)4, then A, (s) can be solved by the usual 1V/D
method. Here, we shall 6nd it more convenient to con-
vert the ft't/D equations into an integral equation for X

' G. F. Chew and S. C. Frautschi, Phys. Rev. 124, 264 (1961).

mentum amplitude only at two conjugate points of the
complex-energy plane where the integer angular-mo-
mentum amplitude has poles associated with the reso-
nance. If the energy of the system is in the neighborhood
of the resonance energy, this way of representing the
resonance is almost identical to the usual consideration
of a fixed-integer angular-momentum amplitude. How-
ever, the analytic continuation outside of the resonance
region becomes somewhat different. In fact, the con-
tinuation using Regges representation gives a con-
vergent result even though the system under considera-
tion is primarily a J=l amplitude in the resonance
region. The example of the pion-pion 1=1 resonance is
used to illustrate the general approach using Regge's
representation.
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since this equation only requires B&(s) for s)4.' Thus
Eq. (2) becomes

A i(s) —=X,(s)/D, (s),

(s-4) ",Bi(s') -B&(s)
1V&(s)=B&(s)+ ds

4 (s' —4) (s' —s)

X Ag s',

Eq. (5) gives exactly the Born term for the exchange of
a vector meson.

It is easily seen that B&(s), calculated from Eq. (5),
diverges at least logarithmatically for large s. Such
asymptotic behavior makes the integral equation (2)
insoluble. Thus we are lead to conclude that replacing
Ao&(t, s) and Ao&(u&s) by a P wave-amplitude is not a
satisfactory approximation.

In Regge's representation, the resonance in the t

channel is associated with a term of the form

(s-4)
D, (s)=1— ds

("-4)("- )

(2')
()

A "& (t,s)
sin7rn (t)

X Pa( t) ~ Pa( t)

With the aid of the crossing symmetry condition, B&(s)
can be calculated directly from the scattering amplitude
in the t and I, channels. The crossing symmetry condi-
tion implies'

A "&(s,t) = —A"'(s,u) =-'A&'&(t, s)
+-,'A ~0& (t,s) —-'A "& (t,s), (3)

where the 6rst variable designates the channel in which
this variable is the center-of-mass energy squared and
the second variable is the momentum transfer squared.

Since we are only concerned with the I= 1 amplitude
in the t and u channels, Eqs. (3) and (1) gives

B&(s)
s—4

—(s—4) 2t
dt P, 1+ —,'A o&(t,s)

0 s—4

—(8—4) 2Q
du P, 1+ -'A gg&'&(u, s), (4)

s—4

where Ag'(t, s)LAg'(u, s)] denotes that part of A&'&(t,s)
LA&'&(u, s)j which is regular for negative t(u) and has
branch points along the positive t axis (u axis). For
example, if one keeps only the P-wave amplitude in
A "&(t,s) and A&'&(u, s), then the above argument yields

where n(t) is the position of the pole of the S-matrix in
the complex angular momentum plane and P(t) is the
corresponding residue. ' By definition, o.=1 at the two
conjugate points in the unphysical sheet of the t-plane
where the P-wave amplitude has poles associated with
the resonance. At all other points of the t plane, n is in
general not equal to one. In the neighborhood of the
resonance, one can determine n(t) approximately by a
method analogous to the argument given by Regge for
potential scattering. '

In the neighborhood of the resonance, the P-wave
amplitude may be expressed in the form

~

~

t )l r(t —4)
A, (t)—=

~

e "&sinf&~, (7)
t—4i t,—t—ir(t —4)-:t-1'

where t„and I' are, respectively, the position and the
width of the resonance. It is easily seen that A &(t) con-
tains a conjugate pair of poles in the unphysical sheet
of the t plane. Since the observed width is fairly narrow
(I'&0.3), the locations of these poles are approximately
given by

(t—4):=~(t,—4)1—-', zr(t, —4)t;—:. (8)

At these points, n=1. Now, we expand n(t) in a Taylor
series about these zeros of (n —1):

B&(s)

-(~-4) 2t 3t—4
dt P& 1+

0 s—4

L(t' —4)/t')1
~
A, (t')

~

' 2s
X dt' P, 1+, (5)

(t' —4) (t' —t) t—4

n(t) 1—d $t„—t—iT(t,—4)t, **(t—4)lj. (9)

An estimation of d& may be made according to the
following crude argument.

First of all, the usual symmetry property A&*(t*)
=A&(t) implies that d, is real. Now, at t=t„, n(t)
acquires an imaginary part,

Of course, this result can also be obtained by the more
conventional procedure of 6rst calculating the left-hand
discontinuity and then integrating over the left-hand
branch cut. Incidentally, if one makes the further ap-
proximation of replacing

~

A &(t')
~

' by a 8 function, then

~ The E/D equations in the form (2') have been derived by J.L.
UretskyPhys. ,Rev. 123, 1459 (1961).

Imn=d&1'(t, —4)&t, '.

This would cause the system to decay after an angular
displacement of

1/Im~=d, 'r '(t„—4) 't, '*.

On the other hand, the total angular displacement
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within the lifetime v. is given by

where R is the expectation value of the distance be-
tween the two resonating pions. From Eq. (8), one finds

21' '(t —4) 't, .

We now equate (11) and (12). This gives

(13)

(14)

Of course, the above argument is valid only for a
nonrelativistic system. However, we believe that at
least the sign and the order of magnitude of d~ may be
inferred from expression (14). We now relate R to the
position and width of the resonance by using a P-wave
effective range formula of the form given by Ross and
Shaw'.

(t ) 3 t t,i-—1i cot6,
i

(15)

By comparing Eq. (15) with Eq. (7), one obtains

A=31't„—'*, d;(-;r)st„-1. (16)

Hence our ignorance of n(t) for large t is not a severe
handicap. We do assume however that the correct
continuation of o. along the negative t axis does not arise
up to a large positive value at large negative t, for this
would cause an unreasonably singular backward scat-
tering at high energy (not to be confused with the
backward peak which must be associated with the u
channel).

We shall now find a representation of (P(t)/sin~n(t) j
which appears in Eq. (6). As emphasized before, we are
only concerned with the contribution of the Regge pole
term to Bi(s) for s)4. Such contribution must come
from the regular part of the Regge pole term for t&0.

Let us denote the regular part of (P/sim. n) for t& 0 by
(P/sin7rn)g and express it in terms of an integral over a
right-hand cut. Since —s(P/sins-n) is identical to the
P-wave amplitude in the limit of t approaching the
resonance poles of the amplitude, we will approximate
the discontinuity of —

s (P/sinvrn) in the physical region
(t'&4) by the imaginary part of the P wave am-plitude.
Hence,

Since pion-pion scattering does involve relativistic
kinematics, we have no decisive way of calculating n(t)
for the problem concerned. However, the above argu-
ment leads us to consider a one parameter formula

sinirn(t)

,
L(t'-4)/t'j'*I A (t')

I

'
X

(t' 4) (t' t)— —(20)

n(t) =1—C(sr)st„-:~t,—t—iI (t„—4)t;—:(t—4)-:j, (17)

where C is expected to be positive and of order unity.
By substituting the observed values I' 0.3 and t 29
into (17), one finds

n (0) 1—0.042C.

This estimation shows that n remains close to unity even
at a fair distance from the resonance. The important
feature of n(t) given by Eq. (17) is that n(t) is pure real
for t (4 and monotonically decreasing towards the left.
We shall use this formula up to a point where n(t)
becomes substantially different from unity and join the
n (t) curve to a constant beyond such point. Fortunately,
Bi(s) is quite insensitive to where we join n to a constant.

From Eq. (17),

n( —370)=1——',C, n( —770)=1—C,
n (—1200)= 1——,'C. (19)

We have considered each of these three points and joined
o. continuously to the constants indicated. The 6nal
solution for Ai(s) a,s shown in the next section changes
by less than 3% from one case to another. The reason
for this insensitivity is due to the fact that all calculated
values of B,(s) do not differ until s)374. But beyond
s 374, the main contribution to the integral in (4) again
comes from small values of t since P in L

—1—2s/(t —4)$
(—2s/t) ") and n(t) is monotonically nonincreasing.

' M. Ross and G. Shaw, Ann. Phys. (New York) 13, 147 (1961).

Again, Eq. (20) may be continued to the negative t

region until o. becomes substantially different from one.
A test of joining (P/sins n) z to a constant is made at the
point where 0. is joined to a constant. As is expected,
Bi(s) is again insensitive to such maneuverings.

Before we write down the final formula for B,(s), we
note that there is one slight complication in the Regge
pole term due to the Pauli principle. The first P term
in (6) is regular for negative t but the second P term
has a branch point at t= —(s—4) with a discontinuity
of 2i sinn—.nP (—1—2s/(t —4)) in the range —(s—4)
&t&4 In order t.o obtain Aiio)(t, s) from (6), we must
remove this branch point while maintaining the given
branch cuts of n and (P/sin7rn))i along the positive t-axis
(t)4).

The method of removing the branch cut of P is
shown below. The result is unique to within a subtrac-
tion constant which, in any case, gives no contribution
to Bi(s).

Ago) (t,s)

3 P(t) ( 2s i ( 2s )-
P.(ol 1+

2 sin~n(t) )i 5 t 4j 5 t—4—)
3 4

dt'2s,~4 sins-n(t')

sinn-n(t')P. (g.) (—1—2s/(t' —4) )
X (21)

(t' —t)
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In practice, the integral term gives very small contribu-
tion to Bi(s) due to the factor sinI sn(t')].

Finally, we substitute Eqs. (20) and (21) into Eq. (4)
and obtain

2.5

Bi(s)=—
—(s—4)1 ( 2t

dt's,

I
1+

s—4 s—4i

3(t—4) " L(t' —4)/t']'I ~i(t') I'
dt'

X 4 (t' —4) (t' —t)

2s ) 2s )—s~-«&I —1— I+s~-«& 1+
t 4i -t 4i—

2.0-

I.5

SONANCE

1 4

2' —s+4

3(t' —4)
(22)

7r (t"—4) (t"—t')

sinn-n(t') P (,.l (—1—2s/(t' —4) )
dt'

"O,I5 0.20 025 030

An over-all factor of 2 has been inserted to account for
the contribution from the I channel.

It is easily seen that Eq. (22) reduces to Eq. (5) when
ot is replaced by one. In fact, Bi(s) calculated by (22)
does not differ substantially from the +=1 case for
small values of s. However, Bi(s) given by Eq. (22)
vanishes at infinity in contrast to Eq. (5) which pro-
duces a logarithmatic divergence. It is the convergent
asymptotic behavior which allows a solution of the
dispersion integral equation (2).

Although the explicit formulas we used for rr(t) and
P(t)/sinsn(t)]it are by no means exact, we would like
to stress that Bi(s) will approach zero for large s
as long as n(t) (1 for t(4 This featu. re of rr(t) is quite
independent of the details of our derivation. Thus, in
principle, Regge's representation of the pion-pion I= 1
resonance gives an exchange force in the pion-pion
system without producing a divergent result.

III. NUMERICAL RESULTS

At present, we would consider Eq. (22) as a semi-
phenomenological representation for Bi(s) and solve

Fio. 1.Qualitative features of solutions to Eq. (2) are shown as a
function of the width of the exchanged resonance (I') and the
dimensionless parameter C. The curve inside the "resonance"
region corresponds to values of I' and C such that the calculated
resonance energy in the s channel coincides with the energy of the
resonance exchanged. The calculated half-width (—',f'„&) on the
low-energy side is approximately 0.2 along the curve. The half
width on the high-energy side is considerably larger. The boundary
lines for "bound state" and "no resonance" curve downward for
large I' due to the increasing slope of n(t)

Eq. (2) using this Bi(s). Aside from the question of
principle discussed above, we would like to point out
some practical advantages of the present representation
over the conventional cutoG theory. Firstly, the result
of the cutoff theory depends strongly on both the posi-
tion and the shape of the cutoff; whereas there is only
one corresponding parameter C in the present formula.
Secondly, the parameters in the cutoff theory vary over
a very wide range, whereas the order of magnitude of C
here is restricted by the uncertainty principle argument.

In the numerical calculation of Bi(s), we use an
effective range formula for the absorptive part of the
I'-wave amplitude in the region t'&4.

)t' —4~ & (t' —4)r
I IA, (t')I' = Im

l t' i t &4 t, 4 (t' —4)I 1—L—, (t')—]—sr(t' —4)L(t' —4)/t']'

2~t' —4y&
L,(t') =-I

I
inI -', (t'—4)1+-',t'1].~it'i

(23)

The two parameters t» and I' are chosen to fit the ob-
served data. We find that t» 25 and F can vary be-
tween 0.15 and 0.30, all within the uncertainty of ex-
perimental results. (Note that t, is slightly below the
resonance peak which is 29.)

For each value of I', we calculate tr(t) with C varied
from 0.5 to 1.5. For each pair of r and C, Bi(s) is

calculated by Eq. (22), and Eq. (2) is solved for Ai(s).
The results are summarized in Fig. 1.

It is clear that the exchange of the I= 1, J~1
resonance does produce a strong attractive force for the
P-wave amplitude as long as C&2. In fact, a P-wave
resonance is found in the solutions corresponding to the

7 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1961).
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unshaded area in the figure. However, the calculated
width of the resonance is in general broader than the
observed resonance width by approximately a factor of
2. This discrepancy is not unexpected since we have not
taken into account other forces in the problem such as
the exchange of an I=O or I=2 pair. Neither have we
considered inelastic processes and the exchange of four
pions, etc.

IV. REMARKS

At this stage, it is a matter of opinion whether Fig. 1
shows sufficient evidence that the exchange of the I=1
resonance is the primary mechanism by which the reso-
nance itself is produced. A detailed study of the I=O, 2
forces as well as inelastic processes and the exchange of
four pions may be necessary before we can arrive at a
definite conclusion. The main point of this paper, how-
ever, is to demonstrate the calculation of scattering
amplitudes using dispersion relations with Regge s de-
scription of composite systems. One could also regard
the convergent result obtained here as a hint to the
renormalization of a composite-vector field theory. Inci-
dentally, we find it somewhat amusing that the crude
formula for n(t) does predict the right order of magni-

tude for C. In fact, the range of C for producing reso-
nances is much closer to unity than we could expect.

A number of problems including mE, xE, and ÃS
scattering are being studied along the same line by a
group in La Jolla. We feel that our present program is
at least a more satisfactory semiphenomenological ap-
proach to the scattering problems compared with the
cut off type methods. By calculating B&(s) directly from
the crossing condition, we also avoided the evaluation
of the "left-hand cuts" in the usual-dispersion calcula-
tions of partial wave amplitudes. ' In fact, Regge's
representation produces a divergent oscillating left-hand
cut for 8~(s). A complicated subtraction procedure
would be needed if we were following the conventional
procedure of first calculating the left-hand cut and then
solving the 1V/D equations. We believe that our present
program is much simpler and the crossing condition on
physical amplitudes is somewhat more direct.

The CDC-1604 computer of the University of Cali-
fornia at San Diego was used to obtain the numerical
results in Fig. 1.

'The author has bene6ted by a discussion with G. F. Chew
concerning this point.


