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It is shown here that the formalism for fermions introduced previously by the author is the most general
one, if P, n, A, Z+, Z', Z, ', and are the only elementary baryons, and v, v', e, and p, the only ele-
mentary leptons (v and v' are two kinds of neutrinos). The most general form of the mass operator for all
possible baryons is derived. On this level, x and E mesons are treated phenomenologically.

Next, the formalism is extended to mesons and the most general form of the mass operator for all possible
mesons is obtained. The formalism allows for two new elementary mesons, a singly-strange isoquartet E
and doubly-strange isotriplet D. Also there is a possibility of two new excited mesons. Masses of new mesons
are estimated. A symmetry between strong interactions of baryons and mesons of different kinds is
considered.

INTRODUCTION

N previous papers of the author' a formalism for
~ . fermions has been introduced, in which the following
"intrinsic exclusion principle" (IEP) holds: (8) iso-
doublet p, e, isosinglet A, isotriplet Z+, Z', Z, and
isodoublet "', are the only possible elementary
baryons; (I) isosinglet v, isodoublet v', e, and iso-
singlet p, are the only possible elementary leptons
(v and v' are two kinds of neutrino).

This formulation enables us to write down strong,
electromagnetic, and weak interactions in concise forms
by means of one many-component baryon 6eld, one
many-component lepton field, and some boson fields. '
In other words, all baryons and all leptons can be
treated in this formalism as states of one baryon-
particle and one lepton-particle, respectively. In this
sense, the new formalism is a natural extension of the
~-isospin formalism for nucleons enabling us to consider

p and rs as states of one nucleon-particle. Also, the
advantage of the present formalism is similar to that
of the ~ formalism. One gets here a natural tool to
write down and discuss symmetries of interactions,
e.g. , the charge independence and possible higher
symmetries of strong interactions. ~ In a similar way
the ~ formalism provides the simplest instrument to
express the charge independence of nucleon-pion
interactions.

In Sec. I of the present paper it is demonstrated that
this formalism is the most general one having properties
(&) and (Q. Therefore, it does not impose by itself
any symmetry on interactions such as the charge
independence and some higher symmetries in the case
of strong interactions. On the other hand, the charge
independence and some possible higher symmetries,
like the global symmetry (GS), doublet symmetry
(DS) /called also restricted global symmetry (RGS)$,
and a "generalized. doublet symmetry" (GDS), can be
expressed by this formalism in a quite natural way,

* On leave from Institute for Nuclear Research, Polish Academy
of Sciences, Warsaw, Poland and Institute of Theoretical Physics,
University of Warsaw, Warsaw, Poland.' W. Kr61ikowski, Nuclear Phys. 23, 53 (1961) and previous
papers of the author referred to therein.' W. Kr6likowski, Nuclear Phys 26, 91 (1961)..

To demonstrate the above statement we show that
the most general form of Yukawa strong interactions
between baryons listed in (8) and pions and E mesons
is expressible in terms of this formalism. In this case
the charge independence is additionally assumed from
the very beginning and also higher symmetries may be
imposed. In the case of weak interactions the argument
is similar. For electromagnetic interaction, it is obvious.
The universal Fermi weak interaction was discussed

by means of this formalism in reference i, the weak
interaction for nonleptonic hyperon decays in another
paper. '

In Sec. II we determine the most general form of the
mass operator for all possible baryons, elementary as
well as excited or composite, if only they follow from
a charge-independent theory obeying (8).The existence
of other baryons than the elementary ones listed in (8)
is, from the point of view of the present formalism, a
matter of dynamics and depends in some cases on the
possibility of higher symmetries of strong interactions
like the GS. The point of interest within this problem
was previously the well-known -',—~ m.-V resonance and
now is the i385-Mev mA resonance. ' '

In Sec. III an extension of the formalism to mesons,
pointed out in reference 2, is assumed to be true. By
this extension a list of elementary mesons is determined,
but no symmetries are imposed on interactions. The
formalism allows for two new elementary mesons, a
singly-strange isoquartet and doubly-strange isotriplet.
The most general form of the mass operator for all

possible mesons is discussed. A possibility, but not
necessity, of two new excited mesons is pointed out.
The masses of the new mesons are estimated under
some additional assumptions.

In Sec. IV a possible symmetry is discussed between
Yukawa strong interactions of elementary baryons and
elementary mesons of diferent kinds. This symmetry
may be called "strangeness independence. "

' W. Kr61ikowski, Nuovo cirnento 20, 79i (1961).
D. Amati, A. Stanghellini, and B. Vitale, Nuovo cimento 13,

1143 (1959);Phys. Rev. Letters 5, 524 (1960).' Ph. Mayer, J. Prentki and Y. Yamaguchi, Phys. Rev. Letters
5, 442 (1960).

s T. D. Lee and C. N. Yang, Phys. Rev. 122, 1954 (1961).
~ R. H. Dalitz, Phys. Rev. Letters 6, 239 (1961).
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TABLE I. Quantum numbers of elementary baryons, leptons, and mesons. '

Ts Baryons J Tz T Leptons J Tg T Mesons J Ty T

0 0

H0HM

u'e

1 0

0 0

~+m x

E0E
R+R'R R (?)

D'D D (?)

a The charge is given by Q =Tg+-', (N&+S). R and D denote predicted new elementary mesons with masses Mz 600 Mev and MD 910 Mev Mar.

(I) as a consequence of (3). This is evident from (13)
and (14).

We can see from (10) that TL= TBL. Leptons have
no fundamental isospin.

Values of 8, Tp, Tq, and T for elementary baryons
and leptons are listed in Table I. We shall assume that
the parities and spins of baryons are equal.

Now we are going to demonstrate that the above
formalism is the most general one obeying the IEP.
To this end let us write down in the present formalism
the following Yukawa strong interaction (without
derivatives) between baryons and pions:

&"='B~.h..(~.*~.) +g..(~.*~.)~.* .s~s]B, (15)

where gR, s (X) are arbitrary real functions. Making use
of representation (7) and formula, (8) and the algebraic
properties of ~ and f, $ *, we can rewrite (15) in the
form

gyB~ i(~N~g~ &Arggsz~(A+ g+g+~)
—igzz Xys&&X+g=' ps~ ] 22 (16)

where

generated by T&B+T, where T is the isospin of the
pions.

(a') The GS": ga (X) =0 and gR P.)=const. Then
gN7r —gAZ71' —gZZ7r gg7i

(b) gF (X)=gs (X). Then gAz =0.
(c) gp (X)= —gs (X). Then gzz =0.
In a similar way we consider in the present formalism

the following Yukawa strong interaction between
baryons and E mesons:

Bv &g"—(~.*~.)'~.* .~+g"(~-*~-)
2%3

&&$$„*~s]o,g *] ~ s}BKso+H.c., (21)

where Kg=ir2K*= (Ko K) Ig= (K+—,Ko). Let us
note that

BVsgs Lt,*~,sos, 4*] ~.sBKs =3BVsgs 4*BKa (22)

After a calculation we get from (21)

IIBR—2K'( NARXQ g NZRf
Z1= (Z —Z+)/v2, Z2= i(Z +—Z+)/V2, Z2=Z', (17) +i(g=~.ysft+g=zR:ps~ X)KG+H c , (23). .
and

g =gp" (0), g" =gR (1)—gs (1):
(18)g"'=gR (1)+gs (1) g='=gF (2)

where

3g~R(1)—3gs" (1)
gNhIC —.

2+6

We ca,n see that interaction (16) is the most general
Yukawa strong interaction (without derivatives)
between baryons and pions. '

The following higher symmetries of interaction (15)
are of interest.

(a) The DS': gs (X)=0. Then g~z~=gzz~ (—=gr~)
Interaction (15) can be expressed by baryon doublets,

&B =iBysgp (&.*P.)~B 2o=s[gN iVp, sÃ
+g" (&go«+Zvs~Z)+g='=-ps~-] m, (19)

where

XA BA = (p,22), I'A ——BA1 (Z+, (Z'———A)/v——2),

ZA BA2 ((Zo+h.)/V2——, Z—
), ——

ZA (BA12 BA2 1)/v2 (PyZ ) ~

(20)

In this case H~ is invariant under transformations

g~ (1)+3gs (1)
gXZK

2+6

R(2)+3g R(2)
AIa.

2+6

(24)

gr (2)—3gs (2)
gZZX —.

2g6

Interaction (23) is the most general Yukawa strong
interaction (without derivatives) between baryons and
E mesons. '

The following higher symmetries of interaction (21)
may be of interest.

(a) The DS: g~~(X)=0. Then gN™=gz (=—gN" )
and g="~=g="ZR (=g="R). Interaction (21) is expres-

' B.O'Espagnat and J. Prentki, Nuclear Phys. 1, 3 (1955). » M. Gell-Mann, Phys. Rev. 106, 1296 (1957).
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sible by baryon doublets,

z
HBK —g+ g K(g eg )2'

&&$$~*~22$2,$ *j ~ pB Kpo+H. c.

= iV2ggNrK( Y—»NKo+gy, NK )—
+g="K(.yAZK'+ -yAYK )j+H—.c. (25)

In this case H~K is invariant under transformations
generated by T&B and hence also by TAB+T .

(a') The GS: g~K(li)=0 and gsK(li)=const. Then
gN AK —gN ZK

g
"AE —

g
"ZK

(b) g (li)=gs (X) Then g =0 g="' =3g="

(c) g K(li) —
g K(li) Then 3gÃAK —gNzK g

AK —0
(d) The "generalized doublet symmetry" (GDS)':

gpKP ) —0 Then gNAK 3gÃzK and g
AK — 3g zK

If one introduces the meson 6eld M; gathering the
mesons E and R discussed in Sec. III, then the inter-
action HBK+HBB can be expressed by baryon doublets,
provided the GDS is satisfied. In this case, HBK+HBB
is invariant under transformations generated by
TIB+T +Tp +TFB where Tp and TA B are the
fundamental isospins of K and J|! mesons (see Secs.
III and IV).

(d') The "generalized global symmetry" (GGS):
gsK(li) =-0 and gIK(X) = const. Then gN~= —3gNzK

g
ZhE —3g ZK

(e) g KP) 3gsKP) Theii gNAK gtvzK —
g

~ zIs 0—
(f) g K(P )

— 3g P ) Then gNzK —0 g
AK —

g
z

Experimental data about the photoproduction of E
mesons seem to suggest that gN~= —gN~K. " This
relation is satisfied, if the case (e) is nearly realized.
Then fg=. AK

[
»)g=-zK

[

which reduce a power series representing f to the
right-hand side of formula (26).

Neglecting electromagnetic and weak interactions,
the mass operator for a single baryon (elementary as
well as excited or composite) is a function of strange-
ness 5= —(s'+( ef ) and isospin squared

T =(t+-:~.* -p~p)'

of the baryon, and also some other quantum numbers
A, e.g. , J'= J(5+1), determining the space structure
of the baryon. Here s' is a matrix describing the
strangeness (with opposite sign) of mesons and baryon
pairs bounded to the baryon, and t=-2'~+t', where t' is
a matrix representing isospin of the bounded mesons
and baryon pairs. Then, using (26) we can write the
mass operator of a single baryon in the form

M™(A,s'+$ *(,(t+ 2(
*t.p$p)')

= rr(A, s'+$,*$„t')+tt(A, s', t2) (t+-', $ *~ pfp)2

+V(A,s', t2) (-.4*~.p&)2 (2&)

If elementary baryons and excited baryons without
excitation of strangeness are considered, then s'=0
and A= J2=J(J+1). In this case the mass operator
is given by

~B ~B(J2 g 0( t2)+PB(J2 12) (1+if +~ pgp)2

+v'(J' t')(lr.*~.p~p)' (»)
For such baryons TF——t and TB= —2,$ *& ppp= TB
particular, for elementary baryons we have

0 for X
$ *$ = ~ 1 for A and Z,

2 for ~™

r
0 for )V

t= 2ie, it "i ppp=
' isospin —2i vector for h. and Z;

0 for ~~

II. MASS OPERATOR FOR BARYONS

We turn now to a discussion of the mass operator for
baryons. First, let us observe that for a regular arbitrary
function f(Xi,X2) we have the following formula, as a
consequence of the algebraic properties of ~ and $, $ *:

for Pg Tg= 2 excited baryons we have

0 for E*
7= 2, $ *$ =~ 1 for A* and Z",

2 for

f(s+4*4, (t+-'4* - 5 )')
= (s+~-*~., t')+~(s,t')(t+!~.* .p~p)'

+~(s,t')(l4* - 5 )', (26) t= isospin —~3 vector,
where s is a matrix commuting with $ *$ as well as
t and —,'$ *~ p$p, and t is an isospin matrix commuting
with 2'$ *~.p$p and —$ *$„eg , t= —2'~. . . Note that
t'=t(t+1) is a c number. Formula (26) follows from
the relations:

'0 for E
—2'$,*~,pPp

——~ isospin ——', vector for A and Z.
0 for ™

If a conjecture is made that
(t.$ *S P/P) = 2t ($ *S P/P) t $ *S P/P,

—
(5-*~-p4)'= 3(E"~-p4)',

(4* - 5 )'(t. t-* .5 ) =3t 4* - 5,
(P *( )(t $ *~ p/p)=t c *~ ppp,

(J B(A2P t2) —~ B(J2 t2)+~ B(J2 t2)( 4P (29)

and that PB and yB are approximately constants
independent of J' and t', then formula (28) turns out to
be equivalent to that used by Lee and Yang' to estimate

"Forrefereiicessee Y. Shimamoto, Phys. Rev. 122, 289 (1961). the masses of Z* and "* (h.*=Y*, Z~=Z* in their
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TABM II. Quantum numbers of excited baryons and mesons. '

0 0

Excited
baryons

A.~

~:" (?)
=-* (?)

J T~ T M (Mev)

1237

1385
1539

163/

Excited
mesons

gg
R* (?)
D* (~)

J Tr T M (Mev)

~ 660

880
~ 990
~1160

' The charge is given by 0 =T3+-', (V&+S). R~ and D+ denote possible new excited mesons.

notation). This equivalence follows from the relations

t=-'~+t'=L, 2'P *~ pgp=M

where

S~= — d3x (1/i)8(M~(x)( *( M(x)+H c . (3. 2)

(l4*~-p4)'=-' —N'.

Formula (28) does not prove, of course, that some
excited baryons follow from the formalism. It only
gives their masses, if such baryons exist. It is well
known that the existence of excited hyperons A*, 5*,
and * is a dynamical problem depending on the
applicability of the GS to strong interactions. 4 '
Interpretation of the observed 1385-Mev +A resonance
as the excited hyperon A.*, or alternatively as a com-
posite particle being a bound state of S and K, is yet
an open question. ' A third possibility would be a priori
provided by an excited nucleon with excitation of
strangeness, which would not be identical with a
composite state of one E and one X.

Possible P; T&= —, excited baryons without excitation
of strangeness are listed for completeness in Table II.
The masses are given as estimated by Lee and Yang
under the tentative assumption that A* is the experi-
mental 1385-Mev zA resonance.

III. MESONS AND MASS OPERATOR FOR MESONS

In Secs. I and II, mesons were treated phenomeno-
logically in the sense that no assumptions were made
about their classification. Especially, the IEP was not
extended to mesons.

Now we assume that the extension of the formalism
to mesons pointed out in reference 2 is correct. We
assume, namely, that the charge properties of mesons
can be described by isospin-1 matrices 6= (6;,) and
matrices t and $ *.Herei=1, 2, 3 (and also j=1, 2, 3)
is an isovector index corresponding in a well-known
way to charge +e, 0, —e. Then, the isospin and charge
of mesons are given by

T~= d x (1/Z)a, M*(x)

X (f)+~/ *~.pfp)M(x)+H c , (30). .

Q~/e= d3x (1/i)8(M*(x)L83+-', P *(r3—1) p]pj
XM(x)+H c = T,M+iS~~ (31)

is the strangeness of the mesons and

M, (x'j

M(x) = M,.(x)
My~go 2 (x)

(33)

represents the meson field. We make here the following
identification:

w;=M;,
E~ and R

=doublet and quartet corning out. from M;,
D,= (M, )~—M,g~)/&2,

(34)

where a singly-strange quartet R and doubly-strange
triplet D are new mesons. Kg=ir~K= (K', K-). This—
formalism extends, therefore, to mesons the IEP in the
following way:

(M) isotriplet ~+, 7r', ~, isodoublet K', K—
isoquartet R+, E', R, R, and isotriplet O', D, D

are the only possible elementary rnesons.
We can see from (3) that T~= TrM+Ta~, where

Tp~= d3x (1/i)B(M*(x)|lM(x)

Ta"—— dgx (1/i)B,M*(x)-,'( *~ p(pM(x).

(35)

Values of S, Tg, Tg, and T for elementary mesons are
listed in Table I.

We sha11 assume that parities and spins of mesons
a,re equal.

The mass operator for a single meson has now also
the form (27), where s' is a matrix describing mesons
and baryon pairs bounded to the meson, and t= 6+t',
where t' are isospin matrices of the bounded mesons
and baryon pairs.

If one wants to discuss elementary mesons and
excited mesons without excitation of strangeness, then
s'=0 and A= J'= J(J+1). In this case the mass
operator has the form analogous to (28). For such
mesons Tp ——t and Tp ——a't *z pgp= TpM. In particular,
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for elementary mesons we have

0 for x
J=O, $ *$ = 1 for E and R,

2forD

0 for m

t= 8, xs$ *z
span «——isospin ——,

' vector for E and R;
Ofora

for I't Tr = 1 excited mesons (if they exist), we have

0 for sr*

J= 1, $ *$ =«1 for X* and R*,
2 for D*

mined as follows:

tres(4s, ss) =M~ ss (—Mx M—g) =882 Mev,

oP (15/4, 15/4) =Mz~ ss (—Mx M—x) = 1328 Mev,

tran(s, ,')=—',(M-- M—~) =190Mev,

~P (15/41,5/4) =~t'(s, s)+ (M~™~)
—(M~~—M~)+Ps =200 1VIev,

P~=-,'(Ms —Mg) =38 Mev,

4 5Ms+3Ms M~+M-„
=20 Mev.

3 8 2

(37)

t= isospin —1 vector,

0 for z*
s $ *s sfp= « isospin —

s vector for g* and R*.
0 for D~

In both cases 1=1.
If a conjecture is made that a formula analogous to

(29) holds here also and that P~ and p~ are approxi-
mately constants independent of J' and t' like Ps and
p~, then one gets for mesons a mass formula correspond-
ing to the Lee-Yang mass formula for baryons.

Possible I"j Tp = 1 excited mesons without excitation
of strangeness are listed in Table II. Masses are
obtained as follows.

The excited meson m* having J= 1 and T= 1 is
tentatively identified with the ~m. resonance discovered
theoretically by Frazer and Fulco."The mass of this
resonance seems recently to be 47 M ."."Further, it
is natural to interpret tentatively the excited meson
X*with J= 1 and T= —,

' as the 880 Mev mX resonance.
In this way we have in the formula for MM four known
masses M, M~, M +, and M~+ and six unknown
constants, ns (0,2), mrs (2,2), nt (0,2), nt (2,2), P~, y~.
It is impossible, therefore, to determine all those con-
stants without any additional assumption. The follow-

ing argument suggests an approximation procedure.
Under the conjecture that ns ~= rrP ~+rrr ~

~
S

~

and that Ps ~ and 7s ~ are nearly constants, the mass
operator for elementary and excited baryons and
mesons has the form

M~ M =no~ ~(J(1+1),TI (Tr'+1))
+~P ~P(~+1), T,(T„+1))IS

~

+&'"(T(T+1))+~' (s4*~-~b)': (36)

where in the case of baryons the constants are deter-

'~W. R. Frazer and J. R. Fulco, Phys. Rev. Letters 2, 365
(1959); Phys. Rev. 117, 1603, 1609 (1960)."F.J. Bowcock, W.¹Cottingharn, and D. Lurid, Phys. Rev.
Letters 5, 386 (1960); Nuovo cimento 16, 918 (1960); 19, 142
{196k).S. Bergia, A. Stanghellini, S. Fubini, and C, Villi, Phys.
Rev. Letters 6, 367 (1961).' J. A. Anderson, Vo X. Bang, P. G. Burke, D. D. Carmony,
and N. Schmitz, Phys. Rev. Letters 6, 365 (1961).

We can see from (37) that the terms in Ms containing
Ps and ys can be treated as small corrections to the
remaining terms in (36). Assuming that the same is
true for mesons, we can neglect in the 6rst approxi-
mation the corresponding small terms in M~ or equate
them to appropriate terms in M~. The latter approxi-
mation seems to be more adequate, since it does not
change some qualitative features of the mass spectrum.
Formula (36) for M with P =Ps and y =y was

just used for a rough estimate of Mg, MD, Mg+, and
MD+ given in Tables I and II. Four constants in M~,
besides Ps and ys, are determined by four masses M,
M~, M +, and M~+ as follows:

mrs~(0, 2) =M —2P~=65 Mev,

ns~(2, 2) =M + 2Ps=—585 Mev,

u (0,2) = Mx —M + (5/4)P —4sys=386 Mev,

nt~(2, 2)=Mx* M~*+ (5/4)P ———'y~=250 Mev.

(38)

We can see that MD)M-. —M~. This is consistent
with the stability of in strong interactions. Note that
MD as estimated is very close to the nucleon mass M&.
On the other hand, MD (2M~ and, of course, MD &2M~
+M, . It guarantees the stability of D in strong inter-
actions. Further, Mrt(Mx+M„and Mrt(Mx+2M .
Hence R is also stable in strong interactions. Singly-
strange mesons E.' and R would, therefore, decay by
electrodynamic process R ~K+y, whereas R+ and R—
and doubly-strange mesons D would decay only by
weak processes, e.g. , R —+ 2m and D —+Z+m. . Similarly,
for antiparticles R' and 8 we would have 8—+ E+y,
whereas for It.'+ and 8 and p we would have only
weak processes.

All the results concerning the hypothetical R and p
mesons are valid if our estimation of masses is not
completely wrong and, of course, if the extension of
the formalism to mesons is correct. Especially, if
Mg)Mx+2M, R is not stable in strong interactions
because of R~X+2~. The considerations about m.e,
E*,R~, and D* are reasonable onlyunder theadditional
assumption that I"I Tj, =1 excited mesons exist, and
that x* and E* correspond to the experimental m-m and
mE resonances, respectively. The existence of excited
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mesons is, from the theoretical point of view, a dynami-
cal problem depending on the symmetries of the strong
interactions. Note that the excited mesons z* and K~
would be precisely some of the vector mesons postulated
as elementary particles by certain recent theories. ' "
Excited mesons other than Pt Tp 1m——ay a priori also
exist, e.g. , vector mesons I'J, Tg=0. The elementary
meson J=0, T=0, denoted usually by m 0', is, on the
contrary, excluded by the present formalism.

IV. UNIVERSAL YUKAWA STRONG INTERACTION

In this section we should like to consider the
possibility that Yukawa strong interactions between
baryons and mesons m, E, R, and D follow from a
"universal Yukawa strong interaction" (UYSI), which
establishes a symmetry between four of those Yukawa
strong interactions. We will propose the UYSI in a
form which shall contain baryon-pion and baryon —E-
meson interactions given by (15) and (21). It will
relate the functions gp, q (X) and gp, ax()t).

To this end we introduce the notation

HBsI HBa+HBJr+HBR+HBD (42)

where Hn is given by (19) with gpa()t) =gp()%,) and

Hsn = siBysg p($ *$ )r;(1/V2)$, *$,*BM;, ,+H.c.
=-', igp(2). ys~X D+H.c. (43)

The interaction Hnx is here given by (21) with gp qx()t)
=gp, s()t). If gs(X) =0, we get the formula

Hnx+Hn~ = ,'iBysg p-(&a*pa) r;ga*BM;.+H.c., (44)

which demonstrates the GDS for interaction Hnx+HnR.
As it was mentioned in Sec. I. there is an experimental

support for gp()t) 3gq(X) rather than for gq(X) =0. If
the relation gp() ) =3gq(X) is true and gp(X) =const,
we obtain from (18) and (24) Lwhere, in the case of
(40), gp P.) =gp ()t) =gp()t), ga (X)=0, and gq ()t)
=gs()t)7 the following formulas:

Tp ——Tpn+Tp~= Tpn+T +Tpr~+Tpn+Tn.

The first part of statement (ii) follows from a,

calculation, which leads to the formula

M;
$()=' $ , M;(l ——» M;

(1/V2) $,t, M';, ,
(39) gNAK gNZK

i 2
g~ g

AX gg

+6 +6 (45)

and write tentatively the following interaction:

= s&B'ys{gp(ka $a)re/(a) +gs($a $a)

X Lp,*r;ps$s, $( )*j}BM'()+H c, (40)

where gp z()t) are arbitrary real functions. The sum-
mation index (rr) runs here over the three possibilities
indicated in (39).

This Yukawa strong interaction (without derivatives)
obeys the IEP given by (B) and (M), and has the
following symmetries higher than the charge independ-
ence (CI), i.e., an invariance under transformations
generated by T= Tn+T~.

/

g='x
f
))

/

g='x
f

Here gx —gNx —gY~ g" x

If the GDS were true for (40), i.e. , if gq(X) =0, then
the E and R interactions taken together, Hnx+Hn",
would not destroy the DS of x and D interactions, H~
and II . Hence, processes without real K and R
mesons would display the DS, provided the mass
differences between A and Z as well as E and R would
be neglected. On the other hand, processes with real E
or R mesons would violate the DS. Thus, we would
have in this case the situation desired for E mesons
by Pais. ' If gp()i) = const, we would have here

(i) The "strangeness independence" (SI) defined as
an invariance under rotations in the "intrinsic con-
figurational space. "This space is by definition a linear
space spanned on basis vectors:

gNhK gx

2+6
gN ZK gx

(46)

g
gAZ gx ggZX gm

2/6 2/6

where ~0) is the "vacuum" vector in the algebra
given by (3).

(ii) The interactions Hna and HnD following from
(40) have the DS, i.e., an invariance under trans-
formations generated by Tpn+T +TD. If ga(X) =0, the
whole interaction (40) has the GDS defined as an
invariance under transformations generated by

3 i 1
gee gNhX g gm gag gNZX P

+6 2+6 g6 2+6
(47)

If (gp()t) ] )3/g8(&) [,the second term in(40) violating
the GDS is smaller than the first one preserving the
GDS, and we may have here the former situation as an
approximation. If sgp(X))g8(X) &~0 and gp() ) =const,
gq(X) = const, we obtain

"J.J. Sakurai, Ann. Phys. ll, 1 (1960)."M. Gell-Mann, Phys. Rev. (to be published).
gm'p gRAK ) gm' P (gZZK (

+6 2+6 2+6
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The baryon —E-meson coupling constants are here
smaller than the baryon-pion coupling constant by
reasonable factors.

CONCLUDING REMARK

The formalism described in Secs. I and II is a quite
general concise formulation of the usual baryon-pion
and baryon-kaon interactions, provided the property
(8) is true.

One may say that the experimentally suggested prop-
erty (8) can be Nnderslood in terms of this formalism.
The extension of the formalism to mesons, discussed in

Secs. III and IV, leads to the property (M), which may
be verified only by experiment. If both (8) and (~)
were true, the formalism presented would be a general
tool to write down and discuss all baryon-meson inter-
actions. The assumption of equal parities and spins of
all elementary baryons and all elementary mesons plays
an essential role in the presented formulation of the
formalism.
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The connection between Regge poles, bound states and resonances, and asymptotic behavior in momentum
transfer is reviewed within the framework of the analytically continued Smatrix, and a convergent iteration
procedure is given for calculating the position and residue of a Regge pole in terms of a given (generalized)
potential. By examining the long-range potential in the xm system, it is inferred that Regge poles should
appear in the I=0 and 1= 1 states, and that the latter pole may be responsible for the p meson while the
former may well dominate high-energy behavior at low-momentum transfer in the crossed channels. The
connection of this possibility with forward coherent (diffraction) scattering in general is explored, and a
number of experimental predictions are emphasized. Finally it is shown that the short-range forces due to
exchange of 4, 6, ~ ~ ~ pions are likely to be repulsive and must be included in some form if a consistent
solution is to be achieved.

I. INTRODUCTION

' 'N the S-matrix theory of strong interactions, dy-
e ~ namical resonances and bound states have been
easily and naturally handled insofar as partial-wave
(one-variable) dispersion relations are concerned, but
they have been a source of confusion with respect to
double-dispersion relations. Froissart' showed that par-
tial waves with J& 1 are completely determined by the
double-spectral functions; at the same time, as empha-
sized in the original paper by Mandelstam, ' resonances
or bound states require subtractions in the double-
spectral integrals if the usual convergence criteria are
applied. The resolution of this dilemma was given by
Regge for nonrelativistic potential scattering, where in
fact all partial waves are determined by the double-

*Work done under the auspices of the U. S. Atomic Energy
Commission.

$ Present address: Laboratory of Nuclear Studies, Cornell
University, Ithaca, New York.

z M. Froissart, Phys. Rev. 123, 1053 (1961).
i S. Mandelstam, Phys. Rev. 112, 1344 (1958).

spectral function (even though in the absence of a
"crossed" channel, the considerations of I"roissart are
inapplicable). Regge's explanation is based on the oc-
currence of poles in the complex angular momentum
plane and the association of such poles with resonances
and bound states. '

The point at issue is essentially the asymptotic be-
havior of the scattering amplitude as cos8 approaches
infinity and the energy is kept fixed. This is a highly
unphysical region but, as it is here that the double
spectral function fails to vanish, the question is of
interest to us. The number of subtractions in cos9 which
it is necessary to perform depends on the asymptotic
behavior. As subtraction terms in cose are just poly-
nomials in this variable, they correspond to low partial
waves, so that the number of partial waves which are
undetermined by the double-spectral function depends
on the number of subtractions necessary.

' T. Regge, Nuovo cimento 14, 951 (1959); 18, 947 (1960). See
also A. Bottino, A. M Longoni, and T. Regge (to be published).


