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Theory of the Valence Band Splittings at k =0 in Zinc-Blende
and Wurtzite Structures
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A theory of the valence band splittings at k=0 in zinc-blende and wurtzite structures is proposed, in
which the wurtzite levels are treated as perturbations of those in zinc blende. Starting from one-electron
Hamiltonians for the two structures, the two-parameter formulas originally derived by Hopfield are ob-
tained, with a minimum of approximations, along with explicit expressions for the parameters in terms of
Hamiltonian matrix elements. The two-parameter formulas are compared with experimental data and
agreement is found to be good. A simple tight-binding (linear combination of atomic orbitals), 3p valence
band, point-ion lattice model is used to calculate an effective charge for ZnS from the known valence band
splittings in the wurtzite and zinc-blende dimorphs; a value of 2.3e is obtained.

1. INTRODUCTION

'HE object of this paper is to explore a theory of
the k =0 valence band energy splittings and wave

functions in zinc-blende and wurtzite structures. This is

of interest because recent experimental work on hex-

agonal (wurtzite) and cubic (zinc blende) ZnS, ' hex-

agonal CdS, ' CdSe, ' and ZnO, ' cubic ZnSe, 4 and other
II—VI semiconductors has made available data on their
valence band energy split tings and wave function
symmetries.

Previous theoretical work on wurtzite and zinc-blende
valence band splittings has been reported by Birman'
and by Hopfield. ' Birman's theory did not include the
spin-orbit interaction. Hopfield s work, based on a quasi-
cubic model of the wurtzite structure, gave useful
formulas for the wurtzite and zinc-blende valence band
splittings, which 6t experimental data obtained for ZnS
to within 10%.The theory presented below starts from
the rigorous one-electron Hamiltonians for wurtzite and
zinc blende and yields, with a minimum of approxima-
tions, the formulas proposed by Hopfield. In addition,
the crystal field and spin-orbit parameters are expressed
in terms of matrix elements of the wurtzite and zinc-
blende Hamiltonians.

Although the anion and cation are for the sake of
definiteness assumed to be S and Zn, this does not enter
into the derivation. The two-parameter formulas should
be valid in other substances than ZnS crystallizing in
zinc-blende and wurtzite dimorphs, provided that the
approximations made in the derivation still hold.

*Summer visitor, 1960; now at Physics Department, Princeton
University, Princeton, New Jersey.' J. L. Birman, H. Samelson, and A. Lempicki, GT8zE RRD J.
1, 1 (1961).' J. 0. Dimmock and R. G. Wheeler, J. Appl. Phys. 32, 2271S
(1961).' D. G. Thomas, J. Phys. Chem. Solids 15, 86 (1960).

4 M. Aven, D. T. F. Marple, and B. Segall, General Electric
Research Laboratory Report 61-RL-(2773G) (unpublished).' J. L. Birman, Phys. Rev. 115, 1493 (1959).

6 J. J. Hop6eld, J. Phys. Chem. Solids 15, 97 (1960).

2. THEORY

Some details of the zinc-blende and wurtzite ge-
ometries will be needed. ' In zinc blende there are two
atoms per unit ce1l, and in wurtzite, four. Call the two
sulfur atoms in the wurtzite basis sulfur 1 and 2, re-
spectively. The nearest-neighbor configurations in zinc
blende and ideal wurtzite are identical and the second-
nearest-neighbor (nearest like ion) configurations are
nearly so (Fig. 1).This local structural similarity will be
exploited by using axis systems for the two structures in
which the nearest neighbors of the sulfur 1 site in the
wurtzite basis and the sulfur site in the zinc blende basis
have identical coordinates. The axis systems which will
be used throughout the rest of this paper, unless ex-
plicitly stated otherwise, are illustrated in Fig. 2. Note
that the axes for zinc blende are not the usual Cartesian
axes employed for this structure. '

The Hamiltonians for band-theoretic treatment of
wurtzite and zinc blende, including in each the spin-
orbit interaction term, are

IIzn= p'/'2m+ Vzn(r)+ (A/4m'c') (V VznX p) o,

Hw p'/2m+ Vw (r)+ (A——/4m'c') (V Vw Xp) o',

where Vz& and V&& are the respective crystal potentials
in the two substances. A modification of the linear com-
bination of atomic orbitals (LCAO) procedure will be
used to 6nd expressions for the valence band energy
splittings and wave functions at k=0 in the Brillouin
zone. In the usual LCAO formalism, ' the Hamiltonian
at k=0 is diagonalized in a space spanned by the cell
periodic functions 4„t'=X '*P;P„(r—R;&). Here P is
a free-ion orbital, e denotes a complete set of quantum
numbers and R,& is the position of the Pth basis atom
in the jth unit cell. In the modification used in this
paper, the rigorous zinc-blende (ZB) Bloch functions
at k=0 are expanded in Wannier functions,

e„zn=S-4 p, x„(r—R,'),
where R,' is the coordinate of the sulfur atom in the

' J. L. Birman, Phys. Rev. 109, 810 (1958}.' J. C. Sister and G. F. Koster, Phys. Rev. 94, 1498 (1954).
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FIG. 1. First and second neighbors in zinc blende and wurtzite.
Large circles are S atoms, small ones Zn. Open circles are in the
same plane. Comparing the two structures, we note that only
three of the twelve second neighbors differ, and even these are
disposed symmetrically. These are shown as the 3 atoms "above"
and are rotated by s/3 in zinc blende with respect to their
positions in wurtzite.

X

Fio. 2. Axes for zinc blende and wurtzite. The axes x, y, s are
the ones used in this paper. These are the axes usually employed
for the wurtzite structure. The axes x', y', s' are the conventional
axes for the zinc-blende structure. The open and blackened circles
represent sulfur and zinc sites, respectively.

jth cell in zinc blende. These functions form an ortho-
normal set ((4'„n

I
4„z )=8„„)and are a complete

cell-periodic set in zinc blende. In wurtzite (W), the
Hamiltonian matrix at k=0 will be computed using as
basis functions the linear combinations of zinc-blende
Wannier functions,

@„w+=(2N)
—i p, Lx„(r—R') +x (r—R s)j,

where R,' and R,' are the coordinates of the two sulfur
atoms in the cell in wurtzite. We remark that
(4„w+I+„.w )=(0'„w+IHwI%' )=0;inother words,
the wurtzite Hamiltonian matrix breaks up into two
submatrices spanned, respectively, by the functions
4„w+ and 0'„w . This is proved by noting that the
symmetry operation C2, the twofold screw axis in wurt-
zite, which interchanges type-1 and type-2 sites, leaves
Hw and the 4 + functions invariant while changing
the sign of the 0 „w functions. Furthermore, the func-
tions 0' w+ and N„w are similar in form, respectively,
to the zinc-blende valence band wave functions
+ j,z =IV 'g, exp(ik R;)X (r—R;) at the points
k= (0,0,0) and k= (0,0,2z-/c) in the zinc-blende Bril-
louin zone. Consequently, the wurtzite energy eigen-
values determined by the submatrix (4'~w+

I
Hw

I
4~ w+)

correspond to levels at k= (0,0,0) in zinc blende, while
those determined by the submatrix (+„w

I
Hw

I
+ w )

correspond to levels at k= (0,0,2z./c), which is the point
A at the Brillouin zone edge in zinc blende. Only the
wurtzite levels corresponding to those at k= (0,0,0) in
zinc blende will be considered.

To a good approximation, the functions%'„w+ are an
orthonormal set. The reason is that the nearest like ioe
(second-nearest neighbor) configurations in wurtzite and
zinc blende are almost identical, and consequently
nearest-like-ion overlaps can be expected to give roughly

equal contributions to (4 zn I@„zn)and (4'~w+I+~ +).
Assuming higher overlaps can be neglected, we have
(0'„w+I+„w+)=(4 I4 n)=8„„. Thus, by means
of a linear combination of zinc-blende Wannier functions
one can construct a nearly orthonormal set of basis
functions for the wurtzite structure, suitable for a com-
parison of the energy levels in the two structures at
k= (0,0,0).

Zinc Blende

Let us consider in more detail the zinc-blende Bloch
functions at the top of the valence band. If we omit the
spin-orbit interaction term in the zinc-blende Hamil-
tonian, the top of the valence band will be sixfold de-
generate, with state vectors (IX),IF), IZ)) (I+), I

—))
where IX), I », IZ) are Bloch states transforming like

x, y, s under the operations of the zinc-blende symmetry
group Tq. The zinc-blende Hamiltonian with the spin-
orbit interaction term is diagonal in the manifold
spanned by

1)= III)I+),
2)=(1/+6)I v2 II) —)—2 Z) +)],
3)=(1/V'6)b~ 11) +)+2 Z) —)j,

p, ~)=(1/~~)L~») —)+ Z) +)j,
6)= (1/~~)b~ 11) +)—Z) —)j,

III)=(1/v2)(I»+ I»), Ill)=(1/~~)(l» —I»).
The first group of states transforms as a basis for the
irreducible representation j. 8 of the double group of Tg,
the second set is a basis for I'~. Use of the finite basis,
Eq. (1), to diagonalize the Hamiltonian is equivalent
to treating the spin-orbit term by 6rst-order perturba-
tion theory. Thus, the error in the energies made by the
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neglect of admixtures of wave functions from other
bands is of the order P/E„where 8 is the zinc-blende
spin-orbit splitting and E, is the band gap. Since
5'/E, =0.0675/3. 6, the fractional error made in the
valence band splitting is small. The prediction that the
zinc-blende valence band is split into a F8 level and a
r, level agrees with experiment. '

Wurtzite

The basis functions in wurtzite are taken as sums of
zinc-blende Kannier functions. Consider in particular
those constructed from the zinc-blende valence band
wave functions, using for these the approximate forms

Eqs. (1).Since the threefold rotation operation and the
reRection plane parallel to its axis are symmetry opera-
tions in both zinc blende and wurtzite, the behavior of
the sets of states I1), , 6); I1+), , 6+) under
these operations will be identical. It is thus possible to
show, by using characters of the double group of C3„
that the states

I
1+), , I

6+) transform according to
representations of the double group of C3„as follows'

A4 (1/v2)[ 1+)+ 4+)j 2+) 5+)
(1/~&) L 1')—4+)j ' 3') ' 6')

(r,) (1',) (r,)

where 8, as before, is the zinc-blende spin-orbit splitting,
and 6„„ is the Kronecker delta. The near degeneracy of
the valence band in zinc blende has been made a com-

plete degeneracy in Ho by subtraction of »„(Pp=~'5 q);
this term has been included in the perturbation Bi. In
this way we have defined a problem in degenerate
perturbation theory. If the degenerate manifold is

treated exactly, neglect of the admixture of other wave
functions of the basis is equivalent to neglecting second-

and higher order terms in a perturbation expansion, and
results in an error = I(IH&l)l'/Eu Here I(IH&l)I is

the magnitude characteristic of matrix elements of the
perturbation, which can be expected to be of the order
of the valence band splittings in wurtzite =0.05 ev.
Thus, the fractional error made in the valence band
splitting =0.05/3. 6, which is small.

Two-Parameter Formulas

Because B~ factors completely into 2)& 2 submatrices,
exact solution of the eigenvalue problem within the
degenerate manifold is easy. The results for the wurtzite
and zinc-blende valence band energy splittings and the
wurtzite valence band eigenstates are:

This permits a simplification of the submatrix of the
wurtzite Hamiltonian spanned by I

1+), , I
6+), to

$+ 4+ 2+ $+ 3+ 6+

E,—Eg=
2 2 I 3

(2)
1+
4+
2+
5+
3+
6+

a 0 0
0 a 0
0 0 b

0 0 c*
0 0 0
0 0 0

0 0 0
0 0 0
c 0 0
d 0 0
0 b c
0 c* d

The prediction that the wurtzite valence band consists
of a r9 level and two F7 levels agrees with experiment.

Just as in zinc blende, the admixture of other wave

functions forming the basis will be neglected. Let us
write

Eg—Ec= 2
3

&2n 5 n (n+p P 2n6
I5 )+ ——

I

l~)= I1+),

v2n 5 n t'n+5 l' 2nb
I5+)+ —-+

I
I2+),

(3)

(el Hg le')= (e„w+IHw le„w+)

-(~ "IH-l~ ")+» (E~.)
' The designation in parentheses refers to the representation of

the double group of C6„according to which the functions approxi-
mately transform. The basis functions for wurtzite would trans-
form exactly according to irreducible representations of C6, if we
took the zinc-blende valence band Bloch functions to be linear
combinations of ionic 3p orbitals. We have instead used the exact
zinc-blende Bloch functions. Because the wurtzite Hamiltonian is
diagonalized with respect to only a finite basis, and because the
functions in the basis transform only approximately according to
irreducible representations of C~„ the wurtzite valence band wave
functions obtained have only approximately the correct symmetry
properties. Nevertheless, in the remainder of this paper the wurt-
zite functions will be labeled by the indicated representations
of C6,.

Here Xp and Q, are normalization constants and n is

a crystal field parameter defined by

=L(n+IH le+) —(nlH. , lrr)]
—L(z+ IH„Iz+)—(z IH„Iz)j.

In this expression B~and BzB signify the Hamiltonians
without the. spin-orbit interaction terms. '

Equations (2) are the two-parameter formulas origi-

nally derived by Hopfield. ' They have been obtained by
making only three approximations:

' It is easy to show that the fractional error resulting from
neglect of these terms is of the order

(
(1+

(
(5/4m'c')~ V~X p[ 1+)

)

]
(1+

) Vw [
1+)

[
m'c'(r')

where (r') is the mean square sulfur ion radius.
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3. APPLICATION TO ZnS, CdS, AND OTHER
II—VI COMPOUNDS

The two-parameter formulas describe three splittings
in terms of two parameters. They ht well the values
given by Birman et a/. for the spin-orbit splitting of the
zinc-blende form and the two valence band splittings of
the wurtzite form of ZnS. From the data (Table I) at
77'K, 8=0.068 ev and E, Es+—,'(Eb —E,)=—si(a+8)
=0.069 ev, giving o.=0.070 ev. The theory then gives
0.080 ev and 0.029 ev for the wurtzite splittings, within

10%of the experimental values of 0.084 ev and 0.027 ev.
The order of levels predicted is also correct.

A reasonable result is also obtained when Eqs. (2)
are applied to data for CdS. Crystals of cubic CdS have
not yet been grown. However, with data for hexagonal
CdS, the formulas can be used to predict the value of
the spin-orbit splitting which would be observed in
cubic CdS. Two values are obtained as a result of the

TABLE I. Valence band splittings in ZnS and CdS.

Tem erature
'K) S (ev) E, Es (ev)—Es—j', (ev)

(1) Assumption of approximate orthonormality of
the wurtzite basis, '

(2) Neglect of energy terms =o'/E„
(3) Neglect of energy terms = l(IHil)'/E, „.

Note that the equations for the splittings in wurtzite
are completely symmetric in n and 6. This means that
n and 8 cannot be determined uniquely from the wurtzite
splittings: if (o.,6) = (a,b) is one solution consistent with
the data, then (n, 8) = (b,a) is another. The ambiguity
just corresponds to the fact that solving (2) for n and 8

in terms of E —E&, E&—E, leads to a quadratic equa-
tion, both roots of which are allowable solutions. This
symmetry of the two-parameter formulas is not ex-

plicitly evident in the version of them given by Balkan-
ski and Cloizeux. "

Finally, it is to be emphasized that the anion and
cation have been assumed to be S and Zn in the above
derivation purely for the sake of convenience in referring
to them. The theory should be valid in other. semicon-
ductors with p-like valence bands and with spin-orbit
and crystal field splittings which are small relative to
the band gap.
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ambiguity discussed above: 8=0.065 ev or 5=0.029 ev
(at 77'K). The first of these is close to the ZnS splitting
and is probably the correct solution, since the valence
band spin-orbit splitting should be determined primarily
by the wave function and potential near the sulfur ion
and should depend only weakly on the nature of the
cation. Measurements on CdSe' and on ZnSe, ' which
show nearly the same spin-orbit splitting for both sub-,

stances, are evidence for the validity of this type of
argument.

From the formulas, Eqs. (3), the parentage of the
lines in wurtzite ZnS can be determined. Takin g
n=0.070 ev, one obtains

lf &=o.4sls+)+o. ssl2+),
c&=0.88I3+&—0 48I2+&.

These can also be written

l&&=0 90lli+) I
—

&
—044IZ+&I+&,

I

~&=0.44i 11+&I —&+0.90I Z+& I+&.
These expressions have a simple interpretation (see the
splitting diagram, Fig. 3). The states IS) and I2) trans-
form according to the irreducible representations Fq and
I'~, respectively, of the double group of the wave vector
at k= (0,0,0) in zinc blende. These states are zinc-blende
valence band eigenstates which differ in energy by 8, the
spin-orbit energy. Equations (3) indicate how these
zinc-blende levels mix when the crystal field perturba-
tion is "turned on. "The states

I
II+)I —) and IZ+)I+)

transform, respectively, according to the irreducible
representations F5 and I'~ of the single group C6„, the

77
14

77
14

Cubic ZnS
0.068
0.065

Hexagonal ZnS
0.027
0.026

Hexagonal CdS
0.016

"M. Balkanski and J. Cloizeux (to be published).

0.084
0.082

0.062

FIG. 3. Splitting diagram indicating the mixings and splittings
of the valence band levels as the perturbations, the spin-orbit
interaction, and the crystal field, Vw —Vzp, are turned on in
opposite orders. As in the text, W means wurtzite and ZB means
zinc blende; SQ and XSQ mean, respectively, with and mritholt the
spin-orbit interaction. At the right of the figure, the lowest I'7
level in the W SO column is joined by a double line to the I'I level
and by a single line to the I'5 level. This signifies that the wave
function of the lowest 17 level is a mixture of functions which
transform according to F5 and FI of the single group C6„and that
the coefficient of the I"I wave function is larger than the coefficient
of the F5 wave function. The other single and double lines have
a similar significance.
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group of the wave vector at k= (0,0,0) in a wurtzite
structure in which there is no spin-orbit interaction.
According to Eqs. (3), when the spin-orbit interaction
in wurtzite is "turned off" by setting 8=0, the state

~

b)
becomes

~

II+)
~

—) (transforming according to I'o), the
state

~
c) becomes

~

Z+) ~+) (transforming according to
I'i), and the I'o state has the higher energy. The predic-
tion that the I'5 level would exceed the 1 ~ level in energy
in wurtzite ZnS if the spin-orbit interaction could be
eliminated agrees with the observations showing that
in hexagonal ZnO, in which the spin-orbit interaction is
extremely weak due to the low anion atomic number,
the Fq-like levels lie above a F~-like level. "

4. ESTIMATION OF THE EFFECTIVE CHARGE

An attempt was made to make an u pnori calculation
of n, and by this means to estimate an effective charge
for ZnS. The zinc-blende Bloch states ~X), ~

V), ~Z)
were assumed to be LCAO states constructed from sulfur

3p ioni'c orbitals. Only zeroth and first-neighbor inter-
action integrals were retained, and a point-ion model
of the zinc-blende and wurtzite lattices, with effective
ionic charges +Re and —Ae for zinc and sulfur ions, re-
spectively, was used. This model gives n= —(3E/5)
)& J'o"dr r'(Ro„)', where E is the coe%cient of r'Po (coso)
in the expansion of Vw about a sulfur ion site and Rap
is an ionic radial orbital. Evaluation of E by an Ewald
summation method" gives X=2.3, clearly too large.
Taking into account the effect of mixings of sulfur 3d
states into the zinc-blende valence band wave function
and the deviation of wurtzite ZnS from ideality was
found to produce little change in the value of X obtained.
(The expansions of Vw and Vza used are given in the
Appendix. ) Mixings of zinc 4p states into the zinc-blende
wave function may have an important effect on X, but
the overlap integrals necessary to estimate this were
not calculated.

"However, in ZnO, unlike ZnS, the order of levels is I'7 Fg F7,
this is discussed by Hopfield and by Thomas. '

"B.R. A. Nijboer and F. W. De Wette, Phyoica 23, 309 (1957).

APPENDIX

We give here the erst few terms of the expansion in
solid harmonics of the potentials in ideal wurtzite and
zinc-blende point-ion lattices. The nearest like-ion
distance is dye and the effective charge parameter is X.
The origin for the expansion is a sulfur site such as is at
the orgin in Fig. 2; in other words, a sulfur site with
nearest neighbors with direction cosines (0,0,1);
(0, —2@2/3, —1/3); (v2/K3, V2/3, —1/3); (—V2/%3,

K2/3, —1/3) on the unprimed axes. All sums were
evaluated by an Ewald method and were checked to the
number of places indicated by summing with two differ-
ent values of the. convergence parameter.

Zinc blende (conventional a,xes, i.e., primed axes in

Fig. 2):
UzB

e'X/dss

SQS=~o+&o +
d8S

8p
——76.8.

Kurtzite (unprimed axes in Fig. 2):

Uw

eo7/dss

s —,
' (2s' —x' —y')= &o+Do—+&o-

dss

—',$2s' —3 (x'+y')s j (3x'y —y')
+&o +Go +

Dp= —0.0397, Fp-——14.43,

Ep = 0.142, Gp ——10.1.

Note that 8= (—e9/dss')Zo.
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