
PH YSI CAL REVI KW VOLUMI& 126, NUMBER 3 MA Y 1, 1V62

Quasi-Classical Treatment of Neutron Scattering*
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The classical limit of the neutron-scattering cross section for a general system is investigated. It is shown
that the exact limit for the "self-function" is that for an ideal gas. An improved prescription, which utilizes
classical quantities and which has been suggested earlier, is justified.

I. INTRODUCTION

' 'T has been shown by Glauber and Van Hove' that
~ ~ the neutron-scattering cross section for an arbitrary
system may be expressed in terms of a function S(p,E)
(p,E=momentum, energy transfer, respectively).
Explicitly,

sV
dr dt exp (p r Et—) G(r—,t),

and
dp ip r~.

G(r, t) = — exp
(2srlt)' h, I

The observation that S for an ideal gas is (in terms
of the significant variables p and E) actually independent
of h suggests that a well-defined classical limit for 5
exists which (1) does not suffer from the same diK-
culties as Vineyard's approximation, and (2) serves
as a satisfactory zeroth approximation from which
quantum corrections can be obtained by expansion in a
power series in A.

II. DERIVATION

This sequence of approximation has been obtained
by introducing a signer representation. ' Let

)&Tr —P p exp ——p r, (0)g i, j=l

&&exp -p r,(t), (2)

p=exp( —PH) jTr exp( —PH),

where r, (t) is the Heisenberg position operator of
scatterer j at time t and p is the density matrix of the
scattering system (which contains X scatterers).

Vineyard' has suggested a "classical" approximation
obtained from Eq. (2) by replacing the operators by
corresponding classical variables. This approximation
has, however, two unsatisfactory. features:

(a) Recoil effects are inadequately treated in that
the average energy loss is set equal to zero rather than
the exact value p'/2M (&=scatterer mass).

(b) As shown by Schofield, s detailed balance is not
satisfied. Schofield has suggested a recipe to remedy
this defect which Turner' has attempted to justify.
This we feel is inadequate, however, since it uses
"Weyl's rule" for Heisenberg operators —for which it
does not generally hold —and because it attempts to
expand a function in powers of A about an essential
singularity.

iHt / p triHt= exp l

——expl i r, (0) expl——
E tr

Then Eq. (2) becomes

G(r, t) =

Using a coordinate representation with

l
R)=—

l
Ri,Rs, ,Rtr),

we see that

Tr exp
ip r, (0)

U,.

(2 s)' ( s )N'
ip r.,(0)-

Tr exp Ut (p, t) . (5)

* Supported by the Once of Naval Research, U. S. Navy, and
the United States Atomic Energy Commission.

' L. Van Hove, Phys. Rev. 95, 249 (1954); R. J. Glauber, ibid.
98, 1692 (1955).' G. H. Vineyard, Phys. Rev. 110, 999 (1958).' P. Schofield, Phys. Rev. Letters 4, 239 (1960).' R. E. Turner, Physica 27, 260 (1961).

dR exp —p'R' l(RI fftl R) (7)
it

'See, e.g., J. H. Irving and R. W. Zwanzig, J. Chem. Phys.
19, 1173 (1951).
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lim G(r, t) =—P (8[r+Rt(0)—R, (t)])To. (16)
4-+0

iP R')
d~s' exp(—

h
f, (P,R, t; y) =

(2srh)s~
From Eqs. (1) and (13) we find

X(R+-,'R'i Ut(lt, t) i
R——,'R'), (8)

l Co

where the symbols P and R represent the set of classica
momenta and position vectors (P,), {R,);i= 1, 2, , E .

'
2trh

Then

CI, exp — exp

The Wigner representation is introduced by Fourier The limit of this formula as A —+0 is the Vineyard
transformation. Thus, let result, i.e.,

G(r, t) = dp ip'r) 1
exp —

~

—P d~R dtvp
(2~h)s h iX', ~

trip
Xexp~ f, (P,R,t; p). (9)

h

N zp
X—g exp —L(R, (t) —R, (0))

p
Xexp P;(0) . (17)

2M
As

ihBU;/Bt= [H, U,j,
it readily follows that the f; satisfy the equations

(10) Connection with Schofield's conjecture' is made by
noting that through terms which vanish with A the
argument of the exponential to be averaged in (17) is

ct 2 -htv tr ct c)———sin —P — H(P, R)
clt h 2 =i (8P,y BR rr r)R;y BP,tr

Xf, (P,R,t; p) =0, (11)
with the initial conditions

f, (P,R,O; p) =exp( —ip R,/h)
Xexp( —p V'p, /2)p (P,R). (12)

Here p„ is the Wigner distribution function and the
subscripts H and f indicate which functions are to be
differentiated.

Equation (11) is, to terms of order h', the classical
Liouville equation. To the same order p„ is the Maxwell-
Boltzmann distribution. Then to lowest order we
obtain G in terms of the classical solutions of the
classical equations of motion as:

(i/h)p [R;(t)—R;(ihP/2)1. (18)

Utilizing time translational invariance we can then
write Eq. (17) as

iEtq ~ py'
S(p,E)=— dt exp~ —

~

exp~—
2srh „k h I k SM

ip ( ihp
exp —R,

~
t — —R, (0—) . (19)

h k 2

Except for the factor exp( —Pp'/SM), this is Schofield's
result.

Thus'
PE~ Pp'i

S(p,E)= exp
~

exp — — ~S(p,E)v, (19a)
2 3 SM)

G(r, t) =
dlt sit r) t pit')

exp —
/
exp(—

(2srh)s h f 4 SM1

zp
X —P exp —[R,(t) —R, (0)jS~,~

where S(p,E)v is rela. ted, through Eq. (1), to Vineyard's
approximation for G(r, t); i.e., S(p,E)v is X/2irh times
the four dimensional Fourier transform of Vineyard's
"classical" approximation to G(r, t), [Eq. (16)j.

III. DISCUSSION

-Pp P;(0)-
Xexp . (13)

2M

where ( )To denotes the classical thermal average. The
integral over p can be performed, yielding

G(r, t) =—p ((2M/srh'p)& exp( 2Ms'/ph—'))To, (14)

where
s= r+R, (O) —R;(t)+ihP, (0)p/2M.

6 H. Acyl, The Theory of Groups and Quantum 3fechanics
(Dover Publications, New York, 1950), p. 275; H. J. Groenwald,
Physica 12, 405 (1946).

The essential point here is that Eq. (19), which is in
practice as simple as Vineyard's approximation, does
not imply zero momentum transfer and does satisfy
the requirement of detailed balance. [It may be noted
that the rigorous classical limit here of the "self terms"
(i= j) is exactly the correct ideal gas result). The
difference with respect to Vineyard is just that we have
kept p and E finite and second passed to the limit A —+ 0
in Eq. (1)—not passing to the limit in Eq. (2) and then
inserting the result in Eq. (1).

7 This form has been suggested by K. S. Singwi and A. Sjolander,
Phys. Rev. 120, 1093 (1960); See also P. Schofield, Proceedings of
the Symposittm on Stow Xentron Scattering, Vienna, 1960 Dnter-
national Atomic Energy Agency (to be published)7.
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IV. ALTERNATE TREATMENT where the g„'(p) obey the recursion relations

Another derivation of the above result, more along
the lines of Turner's work, ' begins with the "inter- g,. g

.Ly g, .{IH}+
mediate" scattering function z 2

where

ip'r)
X(p,t) = exp ~G(r, t)drai

=X-' Tr{p P 4, ,},
I««

(2o)

Xexpfr'5&' rirp;((«)]{{L«H}«H}+ ' ' '+O(5') (28)

Here g(«'= 1, and { } are Poisson brackets.
It is readily verified that the series of Eq. (27) and

the recursion relations of Eq. (28) is just the expansion
of the classical function

Let

f«, = exp
iy r, (0)

exp
5

ip r, (t)
(21)

C,,'=exp ——p R, (0) exp
zp t

x= p/A. (23)

Wick has obtained the expansion

itp' )
C, , =exp — exp —ix r, 0 —r, 0 ... 22

2MB)
where

p z
Xexp —.~v'p, .

((«& exp —y R, (t) . (29)
2

Applying Weyl's rule again to obtain It'„' from C,,',
we find that

P;,'= exp ——p R, (0) exp —Vp;(pi)
2

Here the g„(p) satisfy the recursion relations
zp

Xexp —R, (t) +0(h'). (30)

where

g~+i= g~L+rtgn i LH,L]—
+s (e) (e 1)g~—sLH«LH«L]]+ ' ' ' (25) Thus, to terms of order 5,

L= p P, (0)/M and g(«
——1. (26)

1 2t
c' "= E —— g-"(p),

n=o ~C jz

s 6, C, Wick«Phys. Rev, 94, 1228 (1954).

(27)

LP, (t) =Heisenberg momentum operator conjugate to
r, (t).]

Having expressed C,, in the form of Eq. (24), we can
now apply Weyl's rule' term by term. The resulting
function 4,; is one which, averaged with respect to
the Wigner distribution function, yields a result equal
to the average of 4,; with respect to the canonical
distribution. In particular the average of 4,,' with
respect to the Maxwell distribution is equal to the
canonical average of 4;, up to terms of order 5'.

We find that

(31)

Integration by parts shows this result to be identical
with Eq. (19) for S(p,E).

Turner's result' can be obtained from Eq. (30) by
expanding the operator expLp Vp,.((«i/2] in a formal
Taylor series and retaining only the first two terms in
the expansion.

It is perhaps interesting to note that for the "self
case" (j=i) the Fourier tr(trtsform of the function de-
fined in Eq. (31) is just, the correlation function for a
particle to be at r at time t if it were at r =0 at t =0 and
received an impulse of p/2 then.
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