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A study is made of the temperature and density dependence of beta-decay rates as they are affected by
electron capture from continuum orbits, the absence of atomic binding energies, screening, and the exclusion
principle. The rate of allowed electron capture from continuum orbits in a Fermi gas is calculated using the
V-A law; Coulomb corrections are included and nuclear matrix elements occur as parameters that can
frequently be determined from terrestrial experiments. There is no atomic binding-energy contribution to
the total beta-decay energy for completely ionized atoms and this causes a decrease in decay rates for low-
energy electron emitters in stars relative to their terrestrial values. Screening will usually not acct beta-
decay rates signi6cantly. The exclusion principle inhibits beta decay in stellar interiors because many of the
low-momentum states are occupied prior to the decay; the amount by which a decay rate is decreased can
be calculated in terms of the known beta spectrum and the temperature and density of the medium sur-
rounding the radioactive nucleus. Beta decay for some normally radioactive nuclei is almost impossible in
the interior of very dense stars, such as white dwarfs, since the Fermi energy can equal or exceed the maxi-
mum beta-decay energy available. Some applications to the theory of element formation in stars are
suggested.

I. INTRODUCTION

~

~

E discuss four effects that cause beta-decay
half-lives in stellar interiors to differ from their

terrestrial values. Our results are useful for studies of
heavy element production in stellar interiors, since
accurate calculations of element abundances must take
account of variations in beta-decay half-lives. More-
over, changes in the decay rates depend upon the
temperature and density of stellar matter and therefore
vary with stellar class and with position in a given star.
This variation of decay rates with stellar class may
help to explain some of the anomalous abundances that
have been observed. ' The temperature and density
dependence of beta-decay rates must also be considered
in discussing equilibrium configurations of stars.

The possibility that electron emission rates in stars
differ significantly from their values on earth was
apparently first suggested by Daudel and his associates'
in 1947. Daudel et al. suggested that a nucleus could
beta decay by creating an electron in a bound atomic
orbit instead of in a continuum state and pointed out
that this process would be most important in stars.
Allowed bound-state beta decay was subsequently
discussed by several authors' and the subject has
recently been re-examined by the present author. '
The possible significance of bound-state beta decay for
the theory of atomic abundances was pointed out by
the present author4 and several nuclei were listed which,
if completely ionized, are more likely to decay by

* Supported by the National Science Foundation.
'See, for example, E. M. Burbidge, G. R. Burbidge, W. A.

Fowler, and F. Hoyle, Revs. Modern Phys. 29, 547 (1957); A. G.
W. Cameron, Ann. Rev. Nuclear Sci. 8, 299 (1958); A. G. W.
Cameron, Atomic Energy of Canada Limited Report CRL 41,
1957 (unpublished), 2nd ed.' R. Daudel, M. Jean, and M. Lecoin, J. phys. radium 8, 238
(1947); Compt. rend. 225, 290 (1948); R. Daudel, P. Benoist,
R. Jacques, and M. Jean, ibid 224, 1427 (1947). .

3P. M. Sherk, Phys. Rev. ?5, 789 (1949); E. Galzenati, M.
Marianaro, and S. Okubu, Nuovo cimento 15, 934 (1960).' J. N. Bahcall, Phys. Rev. 124, 495 (1961).

creating an electron in a bound instead of a continuum
state. In connection with this work on bound-state
decay in stars, Cox and Eilers' of the Los Alamos
Scientific Laboratory have computed the probability
of finding an electron in the E shell of several heavy
elements at temperatures of 10+' and 10+''K and
densities ot 10+' and 10+' g/cm'. The preliminary
results of Cox and Eilers are shown in Tables I and II
and indicate a high degree of ionization of heavy
elements in stellar interiors. These results are important
in our discussion of electron capture rates; they also
imply that internal conversion coefBcients are decreased
in stellar interiors.

There is a small probability that excited states of
nuclei in stellar interiors are occupied and these excited
states can undergo beta decay with half-lives that are
Inuch di6erent from the terrestrially measured half-
lives of the ground states. Cameron' has discussed the

TABLE I.' Probable occupation of the E shell for a density of
10+' g/cm' at 10+' and 10+' 'K. A heavy element abundance of
1)&10 was assumed with the remainder He.

Atomic
number

6
14
28
41
44
46
47
62
63
76

Element

C
Si
Ni
Nb
Ru
Pd
Ag
Sm
Eu
Os

Occupation
at 10+' 'K

0.0126
0.0156
0.0374
0.140
0.200
0.256
0.290
1.33
1.42
1.95

Occupation
at 10+' 'K

0.0004
0.0004
0.0004
0.0005
0.0005
0.0005
0.0005
0.0007
0.0007
0.0010

a Los Alamos Scientific Laboratory data obtained from A. N. Cox and
D. D. E1lers.

5 The results in Tables I and II have been obtained privately
from Dr. A. N. Cox and Dr. D. D. Eilers of Los Alamos Scientific
Laboratory. I am grateful to Dr. Cox for permission to quote
these results and for informative communications concerning the
method by which they were obtained.' A. G. W. Cameron, Astrophys. J. 130, 452 (1959).



ii44 JOHN N. BAH CALL

astrophysical importance of such decays, which he calls
photo-beta reactions.

In this paper, we consider the effect on beta-decay
rates of electron capture from continuum orbits, the
absence of atomic binding energies, screening, and the
exclusion principle. We calculate the rate of allowed
electron capture from continuum orbits in a Fermi gas
using the V—A law and derive equations from which
many electron capture rates in stars can be computed
from their terrestrially observed rates. These equations
are independent of nuclear matrix elements but depend
upon the temperature and density of the stellar matter.
The absence, for completely ionized atoms, of the
atomic binding energy contribution to the total decay
energy causes a decrease in decay rates for very-low-
energy electron emitters. Screening effects in beta decay
are usually too small to be of astrophysical importance.
The exclusion principle inhibits beta decay in stellar
interiors because many of the low-momentum states
are occupied prior to the decay. We derive equations
from which the decrease in beta-decay rates due to the
exclusion principle can be calculated if the temperature
and density of the stellar matter are known; these
equations are independent of nuclear matrix elements
for many interesting cases. We list a large number of
nuclei whose decay rates in dense stellar interiors can
be significantly decreased by the exclusion principle.

II. ELECTRON CAPTURE

a. Capture of an Individual Electron

The capture of electrons from continuum orbits in
stars has been investigated by Dumezil-Curien and
Schatzman'; they studied the reactions

H'+e —+ I+v,
He'+e ~H'+v,
Be'+e —+ Li'+ v,

(1a)

(1b)

(1c)

7P. Dumezil-Curien and E. Schatzman, Ann. astrophys. 13,
80 (1950); P. Dumezil-Curien, ibid. 14, 40 (1951); P. Dumezil-
Curien and E. Schatzman, ibid. 14, 46 (1951);and E. Schatzman,
ibid. 16, 162 {1953).Electron capture in stellar interiors had
been previously considered by H. A. Bethe, Phys. Rev. 55, 434
(1939) and C. L. Critchfield, Astrophys J. 96, 1 (194.2).

s E. Schatzman, White Dwarfs (Interscience Publishers, Inc. ,
New York, 1958), Chap. 6. The results in this chapter should be
modified by including the effects of the nuclear Coulomb 6eld
and the empirical evaluation of nuclear matrix elements. These
effects are most significant for reaction (1c).

'The rate for reaction (1c) has been estimated by A. G. W.
Cameron, Atomic Energy of Canada Limited Report CRL 41,
1957 (unpublished), 2nd ed. Cameron replaced, in the usual
formula for electron capture, the bound electron wave function
at the nucleus by an approximate form of the continuum electron
wave function at the nucleus Pour Eq. (7)].

as a function of temperature and density. Reactions
(1b) and (1c) are especially interesting since at high
densities they can occur in the modified proton-proton
and helium-helium reactions, respectively. ' '

The calculations of Dumezil-Curien and Schatzman'
were performed using the original Fermi (pure vector)

TABLE II.' Probable occupation of the E shell for a density of
10+4 g/erne at 10+s and 10~ 'K. A heavy element abundance of
1X10 was assumed with the remainder He.

Atomic
number

6
14
28
41
44
46
47
62
63
76

Element

C
Si
Ni
Nb
Ru
Pd
Ag
Sm
Eu
Os

Occupation
at 10+' 'K

0.00
0.00
1.21
1.67
1.75
1.80
1.82
1.98
1.98
2.00

Occupation
at 10+' 'K

0.0000
0.0000
0.0416
0.0470
0,0488
0.0500
0.0507
0.0641
0.0653
0.0848

Los Alamos Scientific Laboratory data obtained from A. N. Cox and
D. D. Eilers.

form of the P-interaction and plane waves for the state
vectors of the captured electrons. Nuclear matrix
elements were set equal to one. In this section, we
reinvestigate electron capture from continuum orbits
using the now established U—A interaction; nuclear
matrix elements are presented explicitly since they can
often be determined from terrestrial experiments. We
shall find that the nuclear Coulomb field, which modi6es
the wave function of an incident electron, has a large
influence on the magnitude of the capture rates and
on their temperature dependence.

We make the usual assumptions of allowed beta
decay: (1) Nuclei are treated nonrelativistically; (2)
the lepton current is evaluated at the nuclear surface.
The beta-decay interaction is

He= G2 '*LA.v. (1+~ )&:I&-~.(C C~ )&—,7
+H.c., (2)

where all symbols have their usual meaning. ' We
calculate the rate for electron capture from a continuum
orbit by a nucleus of arbitrary charge Z. In calculating
this rate, it is necessary to use for the initial state a
Coulomb distorted plane wave with an outgoing
spherical wave; in ordinary beta decay, a Coulomb
distorted plane wave with an ingoing spherical wave is
required for the final state. "It is shown in the Appendix
that the value of

~
Ib,

~
„,t,„,' is the same for both cases.

The allowed capture rate for a single nucleus of
charge Z, nuclear energy release, 8'0, for one electron
with total energy 8' in a volume V is"

X=G'(Ws+W)'LCv'(1)'+Ca'(o)'jF(Z, W)/27rA'c'V. (3)

Equation (3) yields t:he result of Dumezil-Curien and
Schatzman if we set C~ ——0, F(Z,W) F(O,W)= 1, and—

's E. J. Konopinski, Ann. IKev. of Nuclear Sci. 9, 99 (1959).
"See, for example, G, Breit and H. A. Bethe, Phys. Rev. 9B,

888 (1954).
"We use a definition of reduced matrix elements suggested by

E. J. Konopinski

(I'(3d')Is, » Il()tI)) (I'(3d')J(m=)lI(~))(»)
This definition simplifies a number of formulas in the theory of
beta decay.
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where
F(Z, W)=2rrrt/(1 —e ' r) (4)

st= (nZ)c/v, (5)

and v is the velocity of the electron that is captured.
Thus Ii, and hence X, depends on the temperature T
through the quantity

(1)=1.The function F(Z,W) is the well-known ratio
of the electron density at the nucleus calculated with a
Coulomb distorted plane wave to the density calculated
with a plane wave. If 0.'Z'&(1 and the electron velocity
is not relativistic, " then

where b is the binding energy of the electron captured
in the terrestrial decay and ~p. ~

«rths is the density of
bound electrons at the nuclear surface. The factor of
two arises from the sum over both spin directions in
the calculation of X„,t,&, the quantity X,&„was calcu-
lated by averaging over spins. The ratio in Eq. (9) is
independent of nuclear matrix elements. A similar
relation without the energy dependent factors, has
been used by Cameron to study photobeta reactions
in stellar interiors. "

In the usual notation, "
rt~otZ (rrtc'/3k T)1, Ikey'eerth —(4~) 'gt, -t' (10)

where we have inserted for n its average value according
to the equipartition theorem. F is a monotonically
decreasing function of Z and v '.

If 2m'))1, then

F(Z, W)=crZ(2~) (rrtc'/3k T) '. (7)

For Z=4, approximation (7) is valid for temperatures
&10 K. For larger Z, this approximation is valid for
somewhat higher temperatures. If n'Z' is not small or
very high electron velocities are considered, the relativ-
istic formula for F(Z,W) must be used; this formula is
given in the Appendix. If the nuclei are not completely
ionized, F(Z,W) must be modified slightly to take
account of electron screening.

Equation (3) corresponds to a cross section for
electron capture that is

o =2VX/v. (8)

A typical cross section computed from Eq. (8) is of
the order of 10 4' or 10 44 cm', for H/"0=sec'. This cross
section is of the same order of magnitude as the neutrino
capture cross section, 3)&10 "cm', measured by Reines
and Cowan '4

Equations (3) and (8) are valid for any W satisfying

Wp+ W& 0.

If Wp( —trtc', as in reactions (1a) and (1b), Eq. (8)
gives the cross section for induced electron catpure.

The usual allowed selection rules are apparent in
Eq. (3); they are a nuclear spin change of 0 or 1 and
no parity change. If a nucleus decays terrestrially by
allowed~electron or positron emission or by allowed
electron capture, the only unknown quantities in Eq.
(3), Wp and LCv (1)'+C~'(o)'j can be determined
experimentally. If the nucleus (Z,A) decays terrestrially
by allowed electron capture, the allowed approximation
to the general result of Konopinski" for electron capture
from bound orbits leads to the relation

X,t.,(W) (Wp+W)' ~P.~.t.'
(9)

. )inearth 2 (Wp ~) ( 4'e
t earth

"K.J. Konopinski (manuscript on the theory oi beta decay to
be published by Oxford University Press)."F.Reines and C. Cowan, Phys. Rev. 113, 2'/2 (1959).

Accurate values for ~f.~„,th' have been computed by
Brysk and Rose'7; these authors include effects due to
electron screening, finite nuclear size, and an average
of electron density over nuclear volume. A crude
approximation that is sufFicient for many purposes is

gi,—r =4Z /ttp ~

This approximation greatly underestimates g' for heavy
nuclei (by about a factor of 7 for Z=90) but gives a
fair approximation for Z &40."

2sr'(5/mc) 'rrt'c'
(12)

where i represents the nuclear matrix element combi-
nation |=LCv'(1)'+C~'(o )'j, (13)

rt A. G. W. Cameron, Astrophys. J. 130, 452 (1959). See also
reference 9. A relation of the same form as that given by Cameron
has been used independently by W. A. Fowler (private communi-
cation).

"M. E. Rose, Relativistic Electron Theory (John Wiley tir Sons,
inc. , New York, 1961).

"H. Brysk and M. E. Rose, Revs. Modern Phys. N, 1169
(195g).

"Reference 8, Chapter 4.

b. Capture in a Fermi Gas

Formulas (3) and (8) are valid for an electron with
a fixed energy 8'. We now assume that the electrons
in a stellar interior constitute a perfect Fermi gas;
Schatzman" has reviewed the arguments favoring this
assumption. We note in addition that the average
electrostatic interaction energy is of the order of (4rt, ) le'

(where n, is the number of electrons per unit volume);
this energy is usually less than 1 kev, while the average
kinetic energy is of the order of 10 or 100 kev. This
fact suggests that the Coulomb interactions will perturb
the location of single-particle levels but will not change
greatly their location or relative probability of being
occupied.

The electron capture rate in a perfect Fermi gas is
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and the dimensionless quantity E is given by"

F(Z,W) (Wp+ W)'
K=m-sc-' dP P' . (14)

exp( —t +W/kT)+1

This result follows from an integration of Eq. (3) over
electron momenta using Fermi-Dirac statistics. The
quantity e " can be determined from the temperature
and density of the electron gas. For a degenerate Fermi
gas, e " is defined to be zero; its value for Boltzmann
statistics is given in Eq. (16) below. The definition in

Eq (14. ) for K assumes that Wp& —mc'. If Wp( —mc',
the lower limit in Eq. (14) must be replaced by

Pp =—c '(Wo' —m'c4)**.

Any departures from a perfect Fermi gas can be
readily incorporated into Eq. (14) by modifying
appropriately the statistical factor occurring in the
integrand.

i. Boltsmaee Statistics

If Boltzmann statistics apply, we can write

Kts m sc re+r —d-P Poe wtorF (Z W) (W-p+ W)o (15)

If 2m'.„v«1, o,'Z'«1, and kT«mc', then"

E~—m'lVO'e, .

dp p'F (Z, W) (Wp+W)',

where
Pp= (3w'rt, )', (2o)

is the Fermi momentum. The Fermi energy, Ep, can
be comparable to or larger than 8'o in very dense stars.

If 2~gg))1, and o.'Z~&(1,

2srnZ 5 5
ED= Er '+ WoEp'+ Wp—oEt" ~—

5 2 3 )

t' 5 5—
i
1+—Wp+ —Wpo i, (21)

2 3 )

ii. Degenerate Statistics

Electron capture from continuum orbits is most
important for extremely high densities such as may be
found in white dwarfs. To a good approximation, the
electrons in these very dense stars can be treated as a
degenerate Fermi gas."The appropriate E is

where and if 2m' p(&1,

( y s/kT) ~~ 1+. ~~ (16)
KD @Ps' +s ( p + )+4 pL

) g m.')' Pt&EF ln(—Pal+Et—)j (22)

15
Kts Zornn, (2 )&s(rkT—) **Wp' 1——kT—

~

2l(1+x /Wp)'x 'e-&t*"&

X (1+2tto+2tto')+
(3nZko T&) i

"x x':
1+erf —,(17a)

2

x =2 &L7rnZkT)'*,

f(x)= (x/kT)+srnZ(2/x) '

(17b)

(17c)

where ttp
——kT/Wp. A crude approximation to Eqs. (12)

and (17) can be obtained by substituting W=-,'kT in

Eq. (3) and multiplying the result by the average
number of electrons in a volume V. This approximation
underestimates the capture probability.

' We use the notation of D. ter Haar, Elements of Statistical
Mechanics (Rinehard and Company, Inc. , New York, 1954).
Appendix VI of this book describes relativistic statistics and is
particularly relevant to our discussion."We set k =m =c= 1 in the rest of this section.

and e, is the number of electrons per unit of volume.
If 2xg,v&(1) e'Z'&(1, and kT(&mc', the integral in

Eq. (15) can be evaluated by the method of steepest
descent and"

rt,F(Z, ',kT)—
E=

(2/~) (Z/np)'
(24)

For rt, =10"/cm' and T=10' 'K

E~200Z—' (25)

for Z 20. Equations (3) and (24), in combination with
Tables I and II show that electron capture rates in
stars can be orders of magnitude smaller than terres-
trially measured capture rates. Moreover, electron
capture rates depend sensitively on temperature and

"We also assume that 8'0((kT.
"S. Chandrasekhar, An Introduction to the Study of Stellar

Structure (Dover Publications, Inc. , New York, 1957), Chap. XI.

c. Astrophysical Applications

The total rate for allowed electron capture in a star
can be expressed in terms of the terrestrially measured
rate for allowed electron capture by the relation

X.~„/X...ii, 1Vrr+F.,
—— (23)

where E~ is the probable number of electrons in the E;
shell of the stellar atom and E is the ratio of the capture
rate from a continuum orbit to the capture rate from a
bound orbit. The ratio E can be computed from Eqs.
(3), (9), (12), and (14); an order-of-magnitude estimate
can be obtained from Eq. (12) alone:
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density, since both Xz and R are sensitive functions
of temperature and density. Electron capture may
occur with only a small probability in the interior of
giant stars and supernovae, while even induced electron
capture may be of some importance in white dwarfs.

Terrestrially measured electron capture rates have
been used for a number of purposes in the literature on
nucleogenesis. " For example, the half-life of Co' has
been used to discuss the equilibrium associated with
the iron peak in the atomic abundance curve; the
half-life of Eu'" has been used as an indicator of the
s-process time scale; and the half-life of Ti4' has been
used to estimate the time scale for the n-process. These
considerations must be revised if further calculations
on the ionization of heavy elements in stellar interiors
definitely establish that even the heaviest elements are
completely ionized. '4

III. ATOMIC BINDING ENERGIES

The total energy available for beta decay on earth is
the sum of the nuclear-energy release, 8'0, and the
difference between initial and final atomic-binding
energies. If 8"0(mc', the terrestrial beta decay is
possible only because the absolute value of the electron
binding energies increases when the nuclear charge
increases from Z to Z+1. The quantity Ws —mes is
probably less than" —5 kev for the isotope Re" and
hence Re" cannot decay in a stellar interior if the
temperature is high enough for the nucleus to be
completely stripped of atomic electrons. We assume
that the electrostatic energy of the free particles
surrounding the Re"' nucleus would not decrease by
5 kev or more if the nuclear charge were increased by
one unit; crude estimates indicate that this assumption
is valid for densities less than 10' g/cm'. For Pu'4' and
the 85% branch of Pbs', Ws —mc' may also be nega-
tive." In order to determine definitely the sign of
8'0—mc' for the latter two nuclei, more accurate
measurements of the maximum electron kinetic energy
in the terrestrial decays are necessary and -a more
accurate theoretical estimate of the change in atomic
binding energies is also required. ' The decay of Pb'"

"E.M. Burbidge, G. R. Burbidge, W. A. Fowler, and F.Hoyle,
Revs. Modern Phys. 29, 547 (1957).

I am grateful to Professor W. A. Fowler for describing
(private communication) how the conclusions expressed in
reference 23 must be modified if electron capture does occur with
only a negligible probability.

~'The measurement of the maximum electron kinetic energy
has been performed by A. D. Suttle, Jr., and W. F. Libby, Phys.
Rev. 95, 866 (1954). The change in s.tomic binding energies can
be estimated from the work of L. Foldy, ibid. 83, 397 (1951);
see also reference 26.

The fact that a completely ionized Pu" nucleus might not
be able to beta decay was first pointed out by M. S. Freedman,
F. Wagner, Jr., and D. W. Engelkemeir, Phys. Rev. 88, 1155
(1951).These authors performed the most accurate measurement
of the electron end point energy in Pu~' decay.

'7The experimental measurements of the maximum electron
kinetic energy and the~theoretical estimates of the change in
atomic binding energies are both subject at present to appreciable
uncertainties. The results oi Foldy (reference 25) on electron

and Pu'4' is at least greatly inhibited if they are com-
pletely ionized, since a large part of the terrestrially
available phase space is inaccessible to electrons emitted
by the stripped nuclei.

The decrease in the decay rate of an electron emitting
nucleus due to its ionization can easily be calculated.
The change in the decay rate is

X(W)dW, (26)

where 'A(W) is the beta spectrum function and Ab is the
absolute value of the change in atomic binding energy
when the charge of the terrestrial atom changes from
Z to Z+1. The function X(W) is known theoretically
for all degrees of forbiddenness. The ratio AX/Xe of the
change in the decay rate to the unperturbed rate is
independent of nuclear matrix elements for allowed,
erst-forbidden nonunique, and all unique decays. This
independence of nuclear matrix elements exists because,
for the cases mentioned, X(W) contains the nuclear
matrix elements only as an energy independent factor.
The ratio AX/V is negligible if db/(Wp tnc )((1.

IV. SCREENING

The main screening eGect of the free electrons,
protons, alpha particles, and other ions surrounding a
heavy nucleus can be approximated by adding a
spherically symmetric potential to the Dirac equation
that describes the electron created in the beta decay
process. "The screening potential will change the radial
dependence of the wave function for the created electron
and hence will alter the beta-decay rate.

Reitz29 has treated the effect of electron screening on
terrestrial beta-decay rates by adding a spherically
symmetric potential, derived mainly from the Thomas-
Fermi model of the atom, to the Dirac equation. He
found that screening changed the total decay rates by
at most 10 to 15% and was negligible for large decay
energies. The results of Reitz show that positron-
emission rates are increased and electron-emission rates
are decreased by screening in a terrestrial atom. He
also found that screening is more important for positron
decays than for electron decays.
$ The ratio, R, of the free electron density at the
nucleus in a star compared to the bound-electron
density at the nucleus for a terrestrial atom has been
previously considered in Eq. (24). Except for the
densest stars, the quantity E. is less than 1 and this

binding energies are based upon a number of Hartree-Fock
calculations, many of which do not include relativistic effects.
Hence, Foldy's results are not very accurate when applied to an
atom of large atomic number.

"A clear physical picture of the average arrangement of
electrons and ions surrounding a heavy nucleus has been given by
G. Keller and R. E. Meyerott, Argonne National Laboratory
Report —4771, 1952 (unpublished).

s9 J. R. Reitz, Phys. Rev. 77, 10 (1950). See also M. E. Rose,
ibid 49, 727 (1936) and .other references cited in Reitz s paper.
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indicates that screening effects are usually smaller in
stellar interiors than on earth. " Thus, positron rates
will usually be decreased in stars and electron rates
will usually be increased, if the only change considered
is due to screening. The magnitude of the correction
can be estimated from the work of Reitz' and Rose, '
but it will usually be unimportant for astrophysical
problems.

V. THE EXCLUSION PRINCIPLE

The total decay rate for electron emission from
unoriented nuclei is usually expressed as an integral of
the form

Pp

Since the theoretical spectrum X(p) is known for beta
transitions of all degrees of forbiddenness, ) or L& can
in principle be calculated for all cases of interest.
However, even Xp cannot be evaluated analytically for
the simplest case of allowed decays except with simpli-
fying assumptions. The difhculty in performing the
integration analytically is due to the appearance in the
allowed spectrum of the complicated Coulomb density
ratio, F(Z,W) We. shall illustrate the effect of the
exclusion principle by considering some simple but
important special cases.

a. Boltzmann Statistics

Boltzmann statistics is valid if
Xo

——2 dn li(p), (27)
expPv —(kT) 'j«1. (32)

where 2' is the number of electron states with mo-
mentum between p and p+dp, X(p) is the decay
probability per unit of time for a fixed momentum p,
and

Po ——c '(W02 —m'c4) '*. (2g)

The free-electron concentrations that exist in stellar
interiors are sometimes large enough that the number
of states available to the decay electron is significantly
decreased in accordance with the exclusion principle. "
The effect of the exclusion principle may be taken into
account by replacing de in Eq. (27) by

DXs/le &exp/a —(kT) ']«1.

b. Degenerate Statistics

For a degenerate Fermi gas,

Po

(33)

AXD/Xp= dP P'~(P) 4 P'~(p) (34)

If the inequality (32) is satisfied, the electron concen-
tration is not large enough to change the beta-decay
rate significantly, since~it follows from Eqs. (30), (31),
and (32) that

dm(1 S)= (—p'dp/2~') (1—5), If I'p&I'I;, then(29)

where S is the probability that the free-electron state
with momentum p is occupied. Assuming the beta
decay takes place in the presence of a perfect Fermi

gas of electrons,

Pg

dp p'(1 —Lexp( —v+W/kT)+1( ') (30)

is the appropriate generalization of Eq. (27). For
accurate calculations pertaining to very dense stars, it
may be necessary to take account of the departure of
S from the value appropriate to a perfect Fermi gas";
this possibility has been discussed briefly in Sec. II(b).
It is convenient to consider separately the change, hA. ,
in the decay rate, where

Po

dp p'X(P))exp( —i +W/kT)+1j —'. (31)

'0 This assumes that the temperature is high enough that the
decaying nucleus is largely stripped of bound electrons.

"A. G. %. Cameron, reference 9, page 123, pointed out that
the 2.8-Mev decay of Mn" is slowed down at high densities
because there is no phase space available into which low-energy
electrons can be emitted. Cameron concluded that the effect of
the exclusion principle is less important than the occupation of
excited states of Mn", for the case considered.

)&i)/Xo ——1 (35)

and no beta decay is possible. This corresponds physi-
cally to the prior occupation of all states into which the
decay electron could be emitted without violating
conservation of energy.

For all cases of allowed and first-forbidden nonunique
decays,

l~(p) ~ (Wp —W)'F(Z, W). (36)

If 2vrgF))1 and n'Z'«1, then Eqs. (34) and (36) lead
to the following result for all cases in which the nuclear
spin changes by 0 or 1 unit:

rDD/lio =Di(EF,WO)/Di(WO, Wo),
where

(37)

D2(~,WO) = (x'/5)+ (WoP+1)x'/3
—(Wo/4) (2x (1+x')i—x(1+x'):

—x 1nt x+ (1+x')-'*]). (40)

Di(x, Wo) —=x' —(5/2) Wow'+ (5/3) Wp'x'
—(1—5pW/2+5 WO2/3). (38)

If 2m-gp«1 and n'Z'«1, then for all cases in which the
nuclear spin changes by 0 or 1 unit

l&g)/lI p= D2(P p, Wo)/D2(Pp, Wp),
where
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Equations (37) and (39) have an importa, nt feature
in common: the ratio AX/V is independent of nuclear
matrix elements. This feature is a general property of
allowed, 6rst-forbidden nonunique, and all unique
transitions; it exists because for the cases mentioned
X(p) involves nuclear matrix elements only as an energy
independent factor. Thus one can calculate, for the
cases mentioned, stellar decay rates from the terrestrial
rates, if the temperature and density of the electron
gas are known.

The electrons in the interior of white dwarf stars are
well described by the degenerate Fermi statistics. "An
electron concentration of e,= 7)&10+"cm ', which is a
reasonable estimate of the concentration in some white
dwarfs, " corresponds to a Fermi energy of 200 kev.
The following nuclei decay on earth by emitting
electrons with maximum kinetic energy &200 kev:
H', Si", S", Ni", Ni", Se", Zr", Nb", Pd"', I"', Sm'",
Tm171 R e187 Os191 Ho 203 Pb210 Ac227 R a228 Pu241 Pu246

) N 7 ) 7 ) )

and Bk249.

The nuclei listed above may not be able to beta decay
inside white dwarf stars. Moreover, many additional
nuclei have maximum beta decay energies not much
greater than 200 kev and would have their beta decay
rates greatly reduced in a Fermi sea of electrons with
8+=200 kev. The exclusion principle may also be
important in inhibiting beta decay in the interior of
dense red giant stars.

VI. CONCLUSION

We have investigated four effects that cause beta-
decay half-lives to vary with temperature and density
and have shown that the difference between terrestrial
and stellar decay rates is large for many nuclei. If the
temperature and density of the stellar matter are
known, the altered decay rates can often be calculated
from their terrestrially measured values.

ACKNOWLEDGMENTS

I am grateful to Professor E. J. Konopinski for
stimulating conversations and for permission to use
extensively his unpublished manuscript on the theory
of beta decay. It is a pleasure to acknowledge many
valuable discussions with Professor R. B. Curtis,
Professor M. H. Ross, and Professor R. G. Newton.
I am indebted to Professor M. H. Wrubel for much
help in the astrophysical aspects of this problem and
to Professor W. A. Fowler for informative correspond-

ence. I appreciate valuable correspondence with Dr. A.
N. Cox and am grateful for his permission to quote the
results of the I.os Alamos Group on the degree of
ionization of heavy elements.

APPENDIX

where 1t, is asympt;otically an incoming plane wave
plus an outgoing spherical wave, tp„,„ is a Coulomb
spherical wave, and 8„ is the difference between the
Coulomb phase shift exclusive of the logarithmic term
and the Z =0 phase shift. The index p denotes the spin
projection of the incident wave. For beta emission,

f, includes an incoming spherical wave, and 8„ in
Eq. (A2) must be replaced by —8„.

Evaluating f„at the nuclear surface and omitting
parity-changing terms proportional to 0, r, we find
after some calculation that

4.(r ~ O)

g—1 Xp=e+"-' . (A2)
(f+~/a ~)e""" ' "~ I»

where X, is a two-component Pauli spinor. The form
of the e I' terms and the reason for omitting them is
discussed briefiy in the Appendix of reference 4. It is
easy to show from Eq. (A2) that P,~(1+&&)P, depends
only on the cosine of the difference 5+&—5 1 and hence
is unchanged by the transformation b„~ —6„. Thus
the electron density at the nucleus is the same for
allowed electron capture from continuum orbits and
allowed electron emission, as asserted in the main text.
Using the known forms of f and g, the relativistic
expression for F(Z,W) can be calculated from Eq.
(A2); it is":

(2pR) 'o» ~r(y+iq)~'
Z(Z, W) = 4~

~

e+-
[r(2~+ I)]'

y= (1 n'Z') l-
q =uZW/cp.

(A3)

The relativistic definition of g has been used in Eqs.
(21) and (38) of the text.

The appropriate wave function for electron capture
from continuum orbits is, in the usual notation, "

4,=r. "(1( —) l ( ) l i( ))I',.—.*(P)"""4",. (A1)
K) Jll


