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An unsuccessful attempt is made to interpret in terms of the induced pseudoscalar interaction the
(1+a/8') anomaly factors which have been found by Langer and co-workers in the shapes of all the allowed
Gamow-Teller beta spectra that they have measured. Tadic's recent observation that the Hamiltonian
of the induced pseudoscalar interaction in nuclear beta decay is radically different from that of the more
familiar "basic" pseudoscalar interaction is taken into account. The shape factors for the transitions in
question are derived and found to display an anomaly of the required form. In the case of pure Gamow-
Teller transitions arbitrarily large distortions are possible, provided that an appropriate destructive inter-
ference takes place between the axial vector and induced pseudoscalar terms. However, for a mixed Fermi-
Gamow-Teller transition there is a de6nite upper limit to the amount of distortion which the induced
pseudoscalar interaction can give rise to. This limit is greatly exceeded by the Zr'9 spectrum and hence the
anomaly must have some other origin. It is furthermore concluded that until the reason for these anomalies is
understood it would be unsafe to draw any conclusion concerning the strength of the induced pseudoscalar
interaction on the basis of low-energy spectrum shapes.

I. INTRODUCTION

TUDIES of allowed nuclear beta decays have shown
that of the Gve possible forms for the beta decay

interaction Hamiltonian, linear in the field operators,
the vector and axial vector are certainly present, while
the scalar and tensor are hardly present at all. ' On the
other hand very little is known about the existence of a
pseudoscalar interaction in nuclear beta decay.

In the case of bare fermions, the phenomenon of
muon beta decay' shows that the vector and axial
vector coupling constants, g& and gz respectively,
have equal magnitude, while the branching ratio of the
w —+ e+ v decay mode to the w —+ tc+ p mode shows that
the pseudoscalar interaction is effectively absent. ' All
this is in accordance with the theory of Feynman and
Gell-Mann. 4 However, for nuclear beta decay and
muon capture the pion dressing of the fermions has to
be taken into account and Goldberger and Treiman'
have shown that this actually leads to the generation
of a further weak interaction term, the so-called
induced pseudoscalar interaction, of which the coupling
constant, bz, is a function of (pq —std)', where (pq —rtq)

is the nucleon four-momentum transfer in the transition.
These workers were able to show that for muon capture
bp=8g&, whence for a beta decay in which the same
momentum transfer takes place the result bp =8g~m, /m„
=8gz/207 follows quite readily in their theory. Exten-
sive investigations have been made of muon capture'
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but without any definite conclusion being reached
concerning the induced pseudoscalar interaction.

However, the four-momentum transfer never can be
the same in beta decay and in muon capture; in fact
for the latter it is space-like, since (pq —nq)'=m„',
while for beta decay it is always time-like, it being
simple to show that

(p),—std)'= —
t 1+2' (W' —p cosft) j. (1)

Here p is the electron momentum; W = (p'+1)& is the
electron energy, g is the energy of the emitted neutrino,
and 0 is the angle between the directions of emission
of the electron and the neutrino. Actually, in the theory
of Goldberger and Treiman bp is only a slowly varying
function of (pq —rsvp)' so that radical departures from
a value of 8/207 would not be anticipated. However,
the point of view which we adopt in this paper is to
regard bI as an unknown parameter to be determined
phenomenologically, if possible. Throughout this work
we make the assumption that br/g~ is constant over
a particular spectrum, whence it will be seen from Eq.
(1) that this effective value of bI/gz can really be
expected to be the same only for decays having the
same energy and angular distribution of ]eptons.
However, the only alternative, to write bI as an un-
known function of q, 8" and 0 and then to attempt to
determine the functional form phenomenologically,
would introduce impossible complications.

The Hamiltonian B~' of the "basic" pseudoscalar
interaction, introduced a priori as one of the five
possible types of weak coupling acting between bare
fermions, is, in the usual notation

g (4'f O'YA )(O' PVA ) '(2)
Here, we have written g~ in place of bp to indicate the
different origin of this coupling form; f; and fr are
respectively the initial and final nuclear states, while

lb, and |P„are the electron and neutrino states. Until
recently, it had been assumed that the Hamiltonian

00



INDUCED PSEUDOSCALAR INTERACTION iiOi

of the induced pseudoscalar interaction, B~~"ti, had the
same form. Then the effects of the induced pseudoscalar
interaction arising in all nuclear beta decays would be
identical to those which would have arisen from a basic
"a priori" pseudoscalar interaction, had not the
existence of the latter been disproven, as already
mentioned.

Now, Tadic7 has shown that this assumption is not
correct, but that rather a supplementary term,
dependent upon the Coulomb field of the nucleus, must
be included. In place of (2), the relevant Hamiltonian
becomes'

~"-'=b.(~,~ .~.)
&&(Q.'Pest") ~.(4"—'Vs%.)) (3)

Here V, is the Coulomb energy of the decay electron or
positron and we shall take for it an average value
determined at the nuclear radius, R, i.e., V.=~nZ/R,
respectively. For muon capture the first term, which
just has the form of Il~', has to be weighted by the
muon mass, and it is therefore unlikely that Tadic's
considerations would have an appreciable effect on any
of the calculations that have been made. On the other
hand, the extra term will actually be dominant in the
case of nuclear beta decay, and thus the various spectral
analyses which have hitherto been undertaken in the
(inconclusive) search for a pseudoscalar interaction
must now be regarded as irrelevant, since they can
refer only to the nonexistent "basic" pseudoscalar
interaction.

In the conventional terminology the lowest degree
of forbiddenness in which a pseudoscalar interaction
can contribute is the first, this being in the first for-
bidden AI=0 (yes) transitions. The pseudoscalar
contribution to allowed transitions is said to be second
forbidden, except for the pure Fermi transitions, where
there can be no pseudoscalar contribution at all. Thus it
is frequently said that the former transitions offer the
best chance of revealing any pseudoscalar interaction
that may exist and for this reason the search has been
confined almost entirely to such transitions, especially
the 0 —+ 0+ decay of Pr'44. The most recent and
elaborate analysis of this decay in terms of a "basic"
pseudoscalar interaction is that of Bhalla and Rose, '
while Tadicv has made a similar analysis in terms of an
induced pseudoscalar interaction. This latter work
shows bed=0 to be consistent with experiment, but some
ambiguity is introduced by the appearance of a nuclear
matrix element ratio whose value is rendered uncertain
by its dependence on nuclear radial wave functions.

Now the conventional degree of forbiddenness
terminology overlooks the peculiarities" arising from

~ D. Tadic, Nuclear Phys. 26, 338 {1961).
Since we are concerned only with spectrum shapes we do not
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the Pys mlclear operator, which occurs in both forms
of pseudoscalar interaction. For this reason we are
able to argue (in the next section) that the degree of
forbiddenness nomenclature should be modified for a
contribution from a pseudoscalar interaction of either
kind and that the allowed (except pure Fermi) transi-
tions would be the more fruitful source of evidence for
any pseudoscalar interaction that may exist. Not only
that, but for these transitions the single matrix element
ratio that is involved is independent of radial functions
and can therefore be calculated fairly reliably in the
region of pure j-j coupling. There will thus be a
minimum of ambiguity in the interpretation of these
transitions.

We now take notice of the fact that the Langer group
has observed anomalous spectrum shapes for precisely
these spectra, the distortion being a low energy one of
the form (1+a/W)."These distortions are remarkable
in that a has the same sign for both electron and
positron emitters, thereby eliminating an explanation
in terms of a Fierz interference between the scalar
and vector or tensor and axial vector interactions. For
the same reason electron screening effects cannot be
held responsible. That these anomalies have their origin
in an induced pseudoscalar interaction is made even
more plausible by the fact that the only undistorted
allowed spectrum which this group has observed is a
pure Fermi one."This paper, then, is concerned with
an attempt at such an interpretation of the anomalies. "

2. NONRELATIVISTIC LIMIT OF THE
PSEUDOSCALAR INTERACTION

Since B& and BJ, " differ only in their lepton
covariants, it is possiMe to write both (2) and (3) in the
nuclear matrix element form

where I. is the appropriate lepton covariant and the
coupling constants have been omitted. The difficulties
which arise from this essentially relativistic matrix
element having to be evaluated in terms of non-
relativistic nuclear wave functions are well-known. The
problem is one of reducing the odd nuclear operator,
Pys, to even form; clearly, the same difliculties will be
equally present for either kind of pseudoscalar inter-
action and in the following remarks we shall not have
to distinguish between the two forms. There is no
unique way of proceeding to the nonrelativistic limit
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serious error in the calculation.
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Then

where

n= —(p/2M)o pu

( W—M—V)-r V—W+M
V=

I
1+ =1+

2M I 2M
(6)

Rose and Osborn" made the approximation q=i;
whereupon they found that B& vanished if the tradi-
tional procedure of regarding the lepton covariant as
constant over the nucleus was followed. Hence, th
lepton covariant must be kept inside the matrix
element of (4), the nonrelativistic limit of which we
write as ( NrtXp~ I) In the. approximation of these
authors, then, we have

Xp= {rr.yI.)/2M= Xpz, —(7)

for ys ——inrnso. s. The important feature of (7) is that
cr p is essentially a gradient operator acting on the
lepton covariant alone.

In contrast to this, Konopinski" regarded the lepton
covariant as a constant, to be evaluated at some mean
effective nuclear radius r=R, but did not put p=i.
Neglecting small terms, we are left with a potential
gradient term

Xp I.(rr pv)/4M'= X——pv. —

Let us now take for V the harmonic oscillator potential

V= —Vp+ ,'MuPr', -

'4 E. J. Konopinsiri, Phys. Rev. 94, 492 (1954).

of (4) and so different authors have proposed different
approximations with the result that there are no clear
predictions as to what the observed effects of a given
pseudoscalar interaction would be. To analyze the
observed spectra in terms of these different possibilities
would probably be inconclusive. Rather, we make the
following crude examination of the different non-
relativistic limits of (4) and try to esta, blish the domain
of validity of each.

In the absence of any knowledge of relativistic
nuclear wave functions, the simplest procedure is to
regard the nucleons as Dirac particles moving in-
dependently in a shell model potential V(r) and express
the small components e in terms of the large com-
ponents N. %e write the Dirac equation for the nucleon
as

p —OM+v() jr=&a,
where we have used the usual notation with

where a&=75/Ai. r' Then Konopinski's treatment gives

Xpv ———(i/4M)co'Lrr r

If the variations of both I.and p are considered, then,
after neglecting further small terms, we have simply

Xp ——Xp'+X p'.

We first compare the role of these two terms in different
transitions; essentially, we shall make a degree of
forbiddenness analysis. This involves in the usual way,
a multipole expansion of the lepton covariant, the
various terms of which have the familiar form
Fq (r) Yq& (0, &p), where Fq varies as r"{1+0(r') ) for
small r. The only important term will be the one having
the lowest possible value of X consistent with a non-
vanishing matrix element. This will be given by X =AI
or DI+1, where DI= ~I; Ir~ is th—e nuclear spin
change in the transition. The actual choice of A, will be
determined by the nuclear parity change according to
7rprf ——(—)"+'. In the case of either I; or Ir being zero )I.

can take only the value hl whence there can be no
pseudoscalar contribution at all if m,sr= (—)nr.
Otherwise the pseudoscalar contribution is con-
ventionally designated as having degree of forbidden-
ness v=X+1, while for the same transition the axial
vector (and possibly the vector) interaction will give
an (m —2)th forbidden correction. The only exception
is the AI=O (yes) transitions, for which both the axial
vector and pseudoscalar interactions give first forbidden
contributions.

For a given X the term K~ varies as r"+', because of
the 0 r factor, while because of the gradient operation
X& varies as r~ '. The only exception to this latter
statement is the case of X=0 for which K&~ must vary
as r, the first term in the derivative of Fo vanishing.
However, the A. =O term can only give a nonvanishing
contribution in the AI=O (yes) decays; these form a
special case to be discussed later. In general, we have
the result that for a pseudoscalar contribution that is
conventionally designated as eth forbidden K~~ varies
as r" while I varies as r" '. Although 3C~~ is weighted
by a factor of ru'/2, this is not sufhcient to prevent it
being dominated by the lepton gradient term, so that
Xg varies essentially as r" '.

For the AI=O (yes) transitions both Xp~ and Xpv
vary as r, so that the radial behavior is appropriate
to the conventional statement that 3'.~ gives a first
forbidden contribution. But then by the same token
all the other so-called nth forbidden pseudoscalar
contributions to (I—2)th forbidden transitions should
themselves be regarded as (e—2)th forbidden. Of
course, a considerable retardation is introduced by the
nuclear mass factor 1/M but this occurs in the AI=O
(yes) case also, so if the pseudoscalar contribution
there is called first forbidden it would be misleading to

"See S. A. Moszkowski, Hamdbuch der Physik, edited by S.
Fliigge (Springer-Verlag, Berlin, 1957), yolr 39,
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call the pseudoscalar contribution (if it exists at all)
to any other eth forbidden transition as anything but
eth forbidden itself. Thus, it appears that the relative
role of the pseudoscalar interaction will be the same in
all transitions to which it can give any contribution
at all.

However, the latter statement requires qualification
because of the unique property of the AI=O (yes)
transitions in having a significant, in fact dominant,
contribution from 3C&~. Since this term is essentially
X=O it will tend to give rise to an allowed spectrum
shape. Hence of all transitions these will be the least
likely to show pseudoscalar distortions of the spectrum
shape. Rather one should examine the allowed (other
than pure Fermi) and the unique spectrum shapes. The
nonunique eth forbidden spectra (other than those of
8——+e transitions) should also show the effects of a
pseudoscalar interaction, but an unambiguous interpre-
tation will be impossible because of the several nuclear
matrix elements that will be involved. All these transi-
tions may presumably be adequately treated by the
methods of Rose and Osborn. Only in the special case
of the AI =0 (yes) transitions would their methods seem
inappropriate.

The statement that the pseudoscalar interaction
gives an eth forbidden contribution in transitions with
DI=m (notn ~—+ 0) ore&1, and paritychange= (—)"
shows a strong similarity with Gamow-Teller inter-
actions. The only difference is that for the latter it is
only the 0 —+0 transitions that are completely pro-
hibited. It is interesting to make the comparison
between the pseudoscalar and Gamow-Teller inter-
actions in the familiar picture in which the leptons are
considered nonrelativistically. Then the degree of
forbiddenness becomes equal to the total orbital
angular momentum /I, carried off by the leptons and the
distinction between Fermi and Gamow-Teller inter-
actions is that the former sends the leptons off in a
singlet state, whereas the latter sends them o6 in a
triplet state. For the Gamow-Teller interaction, then,
the total lepton angular momentum Jl. can have three
values, l, l&1, except of course for l=0, i.e., allowed
transitions, where JL, must be 1. On the other hand, for
the pseudoscalar interaction, JJ. can only have the two
values l&1. It is as though the lepton pair sent off by a
pseudoscalar interaction has only two degrees of
orientation with respect to its orbital angular mo-
mentum, despite the intrinsic spin being 1.

3. SHAPE FACTOR

Following the method of Rose and Osborn" it is a
straightforward rnatter to derive the shape factor of
allowed transitions in which there is a contribution from
an induced pseudoscalar interaction. For a pure
Gamow-Teller transition, i.e., AI= 1 (no), only the
axial vector and pseudoscalar interactions can be
effective, and the shape factor, denoted by Czp", can

be expressed in terms of the parameter I'=br/Mg~
and the nuclear matrix element ratio

P=v2(ur
~

Tg2 (r",e) ~N, )/(er ~
T~0 (r,e)

~
I,). (12)

It is essential to note that the radial arguments appear-
ing here in the spherical tensor operators, which are
those of Rose and Osborn, " are unit ones. Thus, p
depends only on the nuclear coupling scheme and in
particular it is free from the ambiguities associated
with nuclear radial wave functions.

For the transitions of interest we have

$ —=nZ/2R&) W0,

the energy end-point, in which approximation the shape
factor can be written

r-
C»"=1—2(2+P)P~P~—

3 5"

r2
+—(2+P)Y~P(2+P) 8 , (1—3)

9 8'

where in the choice of signs the plus sign refers to
electron emission, and the minus sign to positron
emission. In this approximation the AP cross term,
i.e., the term linear in F, agrees with Eq. (A.SO) of
Tadic. ~ However, the term in F', which turns out to be
of critical importance, is not considered by this author.

Our shape factor displays the required energy
dependence, but it will be seen that in both the term in
I' and the one in r' there are constant terms whose
order of magnitude is $ times greater than tha, t of the
energy dependent terms. Thus the only way in which
any appreciable spectral distortion could occur would
be through an almost complete interference between
the constant terms of the pseudoscalar contribution and
that of the axial vector. This is certainly possible since
Eq. (13) can be rewritten as

r I'pp I' 1"= 1—(2+P)P ~ 1—(2+P)e —.(1&)
3 3 3 W'

Thus the magnitude of the constant term has no lower
limit and any observed (1+a/W) distortion of a pure
Gamow-Teller transition may be interpreted in terms
of an induced pseudoscalar interaction with an ap-
propriate value of j. , the distortion parameter a being
given by

r~P
Q=%

3—I'(2+p) P
Because of the dependence of a on both P and $ we
should expect very different distortions' in the different
pure Gamow-Teller transitions, and in particular both
signs of a should be possible.

M. E. Rose and R. K. Osborn, Phys. Rev. 93, 1326 (1954).
' Actually, for p= 0, there will be no distortion at all.
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In the case of the mixed Fermi-G-amow- Teller
allowed transitions, i.e., AI=O (not 0-+ 0), there is a
contribution from the vector interaction and the shape
factor becomes

Cvg~"= {1+) E('CgJ")/{1+[I'~ ') (16)

where I'= (ssr [ o
(
I,)/(u~ (

1 [ I,), the ratio of the Gamow-
Teller to the Fermi matrix elements. "The distortion
parameter is now

«pL1 —ll (2+p) e1
Q=%

3{[1/I'(s+L1 ——'I'(2+p)Pj'}

Then for given values of I', p, and $ there will be an
upper limit on the magnitude of the distortion, since
a complete interference among the constant terms is no
longer possible. It is necessary to note that this con-
clusion depends upon the inclusion of the terms in F'.
Without these it is easy to see that with the appropriate
value of F any value of a is possible. The importance
of the terms in I' is due essentially to the fact that they
acquire a significant magnitude when I' is large enough
to cause appreciable interference among the constant
terms.

4. RESULTS AND CONCLUSION

The allowed pure Gamow-Teller spectra measured
by the Langer group" are those of Na22, P", and In"4,
while a single mixed Fermi-Gamow-Teller spectrum,
that of Zr", has been measured by this group. In all
four cases 0.2(a(0.4. However, because p can only be
calculated reliably in the region of pure j-j coupling
we have to con6ne our attention to the In"' and Zr
decays.

Using the methods of Rose and Osborn, "we calculate
p to have the value —1/2 and 8/11, respectively, while
for the latter case ~I'~s=11/(12s). We now 6nd that
the In'" spectrum shape can be fitted with I'=0.02,
i.e., bp=40gg. This interpretation of the observed
value of a depends very much on a heavy cancellation
taking place in the denominator of Eq. (15); otherwise
the distortion will be very small. In fact in the limit of
F —& ao we calculate a=0.03. On the other hand it is
found that the maximum possible distortion for the
Zr' case corresponds to a =0.002. Hence it is not at all
possible to interpret this anomaly in terms of an
induced pseudoscalar interaction. It is important to
note, however, that if the terms in F' had not been
included in the shape factor then a fit would have been
possible with I' =0.02 again.

One must therefore look for an alternative origin of
the Z", anomaly and it would be difhcult to escape the

» As a rough approximation we have assumed (gv[ = [g~t.

conclusion that this, rather than an induced pseudo-
scalar interaction, was at least partially responsible for
the In'" anomaly, and indeed for the other two, as
well. Because one cannot make a reliable calculation
of p for the Na" and P" cases one cannot rule out an
explanation in terms of the induced pseudoscalar
interaction, but it is a little surprising that these both
have the same value of g as do the Zr and In"' spectra, "
since this circumstance could only arise from a fortuitous
coincidence in the values of p and ].

Although we have shown that the induced pseudo-
scalar interaction cannot be completely responsible for
these anomalies there remains the problem of deter-
mining bI, or at least setting an upper limit on it. But
until such time as the alternative distorting mechanism
responsible for at least the Zr" anomaly is understood,
it will be very dificult to learn anything about bI from
the allowed spectra. Furthermore, in the absence of
knowledge to the contrary, one must assume that the
AI=O (yes) transitions are likewise affected in an
unknown way. Unfortunately, a recent investigation"
of alternative explanations of the allowed anomalies
was not successful. We therefore conclude that one
cannot obtain any reliable upper limit on bI from low-
energy spectrum shapes.

One interesting conclusion emerges from the sup-
position that all allowed transitions other than pure
Fermi ones are distorted. For, then, the standard f
functions, " involving an integration over the allowed
spectrum, will have to be modified. In particular, this
will call for a re-evaluation of gg, as determined from
various allowed transitions, while g~ will be unaffected,
since this is evaluated solely from pure Fermi transi-
tions. "If for the neutron decay a were to be 0.4 then
the value ~gg/gv~'=1 would lie within the limits of
experimental error.
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