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Elliptical Polarization of Fe" Gamma Rays~
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The Mossbauer effect provides a tool to investigate the angular dependence and the polarization of
individual components emitted in the nuclear Zeeman effect. A discussion of the physical picture of the
photon polarization in Fe~ is followed by the general theory of elliptical polarization in the Mossbauer effect.
The experimental arrangement to measure this polarization is described and some relevant results are given,

1. INTRODUCTION

~ 'HE observation of splitting and polarization of light
emitted in the Zeeman effect has been extremely

important in the development of the understanding of
atomic structure. In nuclear physics, prior to the dis-
covery of the Mossbauer effect, similar experiments were
impossible. It is true that many polarization experi-
ments have been performed with nuclear gamma rays,
but these experiments have been dificult and cumber-
some. Moreover, they always had to be performed on
components unresolved in energy, and the information
gathered about the polarization of individual compo-
nents was rather indirect.

The Mossbauer effect has changed this situation.
Particularly with the 14.4-kev gamma ray emitted by
Fe'~, the nuclear Zeeman effect can be observed easily
and in detail. ' ' The individual components of the
emitted gamma-ray lines are widely separated and show
the natural linewidth. The 93-kev gamma ray in Zn"
displays a Zeeman splitting of many linewidths in fields
as small as 100 gauss. 4

Once the Zeeman components are separated clearly,
the determination of their state of polarization becomes
the next step. Experiments with the plane polarization
of the Fe' gamma rays were 6rst performed by the
Argonne group in order to completely und. erstand the
Mossbauer spectrum of Fe" imbedded in iron. ' The
gamma-ray polarization has also been taken into
account by Wegener and Obenshain in order to explain
the shape of the lines observed in Ni". The elliptical
polarization was first used to simplify the investigation
of the complicated spectra which appear when Fe" is
imbedded in CoPd. '

These latter experiments led to the present investiga-
tion of the production and the measurement of ellipti-

2. THE PHYSICAL PICTURE

Before treating the general theory of the polarization
of gamma rays in the Mossbauer effect, a few simple
remarks about the case of Fe" will make the physical
ideas clearer. Figure 1(a) shows the relevant levels of
Fe'~ imbedded in ferromagnetic iron metal and placed
in an external magnetic field. The labeling of the mag-
netic sublevels corresponds to the convention that the
external field is directed along the +s axis and the
experimental findings that the 6eld at the Fe" nuclei is
opposite to the external. 6eld, and that the moment of
the 14-kev level is negativer t Fig. 1(b)j. The 14.4-1cev
gamma ray, emitted to the transition from the first-
excited to the ground state, is a magnetic dipole
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cally polarized gamma rays. Only after the relevant
experimental problems are well understood and after the
theory has been worked out can the determination of the
polarization of gamma rays emitted and absorbed in the
Mossbauer effect be used as an effective tool.

Some applications of this tool are obvious. Complex
spectra may be unraveled. The number of lines observed
in complicated spectra can be reduced and the remaining
lines will be more intense. Information about the net
direction of magnetization inside magnetic domains in
ferromagnets, antiferromagnets, and possibly super-
conducting ferromagnets can be obtained.

The present paper contains in Sec. 2 a simple descrip-
tion of the polarization effects to be expected in Fe".In
Sec. 3, the general theory is developed. The experimental
arrangements and results used to verify the predictions
of the theory are treated in Sec. 4. The results are dis-
cussed in Sec. 5.
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FIG. 1. (a) Zeeman levels of the ground state and the fIrst-
excited state of Fe". (b) Orientation of quantization axis, external
and internal magnetic Geld, and emitted gamma ray in ferro-
magnetic iron. (c) Zeeman components of Fe'I gamma ray.

n, S. S. Hanna, J.Heberle, G. J.Perlow, R. S.Preston, and Q. H.
Vincent, Phys. Rev. Letters 4, 513 (1960).
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FIG. 2. Relative intensities of the
components of the emission or ab-
sorption lines of Fe'~ in a mag-
netic Geld as a function of the
angle 8 between 6eld and direction
of propagation. Only three compo-
nents are shown.
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G. T. Ewan, R. L. Graham, and J.S. Geiger, Nuclear Phys. 19,
22i (1960).

Obviously, one must know the relative directions of internal
and external magnetic field in order to apply the formulas derived
in Sec. 3. In ferromagnets, the internal 6eld is opposite to the
external one in most cases investigated so far. In thin films, how-
ever, the Geld relations can be more complicated and the polariza-
tion measurements can serve as a tool to find the direction of the
Geld at the nucleus.

radiation with less than 10 ' intensity admixture of
electric quadrupole radiation. '

The radiation pattern emitted by an unmagnetized
Fe" source below its Curie temperature consists of six
lines as shown in Fig. 1(c).The intensity of each compo-
nent is a function of the angle 0 between the direction of
emission and the direction of the field H;„t, at the
nucleus, and it is given by the product of a transition
probability and an angular factor. ' The transition
probabilities are proportional to squares of Clebsch-
Gordan coefficients; relative values are given in Fig.
1(c). The angular factors for dipole radiation are
treated in texts on electrodynamics; they are

F'(8) = 2 sin'0 for Am=0,

F+'(0)=1+cos'8 for Am=&1.

The relative intensities of the six components of Fig. 1,

W(-,' —',) = W(——,
' ——,') =3(1+cos'8)/2,

W(s —s) = W( —
s s) = (1+co 'll)/2,

W (s ~ s) =W (——', —& —
is) = 2 sin'8

are shown in Fig. 2 as a function of the angle 0.
Before the discovery of recoilless gamma-ray proc-

esses, the various components could only be distin-
guished by their angular distribution and by their
polarization, properties which were extensively in-
vestigated in angular correlation and nuclear alignment
studies. The Mossbauer effect, however, makes it
possible to study each component separately and to
investigate its directional distribution F(8) and its
polarization.

The simplest pattern occurs when one is observing
along the axis of the external magnetic field. Figures 1
and 2 then show that the emission or absorption pattern

each consists of only four, instead of six lines. The
transition Am =0 is completely extinguished. To discuss
the polarization of these four components, we note that
a gamma ray is called right-circularly polarized if its
spin lies in the direction of motion. (This convention is
opposite to the one used in optical spectroscopy. ) We
consider first the highest energy component in Fig. 1,
namely the transition —

~ to —~. The s component of
angular momentum must be conserved, and any gamma
ray corresponding to this component hence must have
a s component of angular momentum —1.If this gamma
ray is emitted along the +z direction, its spin is anti-
parallel to its momentum and it is left circularly polar-
ized. If it is emitted in the —s direction, spin and
momentum are parallel and the photon is right-
circularly polarized. Similarly, one can see that the
other components are also circularly polarized.

For directions of emission other than along the
magnetic-field axis, the picture is no longer so simple,
but the intensities and polarizations of the components
can be calculated from the equations of the next section.
In particular, at right angles to the field direction, all
six components appear, with intensities 3:4:1:1:4:3,
and they are linearly polarized (transverse Zeeman
e8ect). At intermediate angles, the components are
elliptically polarized.

3. THEORY

3.1. Multipole Expansion of Emission
Matrix Element

Although some of the expressions we shall derive in
this section may be found in other places, '" for the
sake of completeness, we will start from the assumption
that the interaction II of the nucleus with the external
electromagnetic field is linear in the vector potential A;

A. j+Hermitian conjugate,
nucleons

where j is defined by Eq. (1) and depends only on the
nucleon variables. For our purposes, its form is irrele-
vant; only the fact that it is a vector will be needed.

The matrix element of II for the emission of a plane
wave in the direction k with polarization 8 (where
n k=0 and a caret denotes a unit vector) may be
written (suppressing the sum over nucleons)

+t'=(jfmrle'~'n jlj m )=8 Jt''
ol

Jf' + ft (j fmfl e'"j "Ij 'm:), '

where we have introduced spherical unit basis vectors
h„with ho in the direction of the axis of quantization.
Next, using the Legendre expansion for the exponential,

"M. E. Rose, 3lttltipole Fields (John Wiley 8i Sons, Inc. , New
York, 1955).
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TABLE I. Nomenclature for multipole radiation. E, M, D, and
Q stand for electric, magnetic, dipole, and quadrupole, respec-
tively. The other symbols are explained in the text.

The signer-Eckart theorem, "applied to the nuclear
matrix element of Eq. (5), says that

(j fmf Ij i(kr) t L I j,m;)

( 1)m; Ix(L,l), (6)
mf M —m)

one obtains

Jf;——4n. g h,„pi'
t=o

where x is a reduced matrix element independent of nsy,
and m, . Then Eq. (5) can be rewritten

t+t tfjf I. j, (l 1 L qJf'= 2 !
L=l M, y, mkmf M —m; Em p —Ml

xi„Y;*(k)~(L,i), (~)
l

(k)@(jfmf
I

Y&m(t") j&(k~)p I j,m, ) (3) where we have absorbed certain irrelevant factors into X.

Yr"(r)j I"= Q (LM
I
tm; 1p) pL~, (4)

in which I'~ is the normalized spherical harmonic, and
j& is the spherical Bessel function. Then, using the fact
that j& is a spherical component of a vector, hence
transforms like I"J&, a Clebsch-Gordan series for
Yt (r)j I' may be written:

3.2. Polarization and Absorption Probability

The complex polarization vector 8 of the emitted
radiation is that which maximizes !8 Jf;I', subject to
n k=0. It is straightforward to show that

J*—k(k J*)

I I
Jl' —Ik JI'1'

For the case of absorption, the analysis is changed
only by the replacement of the emission term in Eq. (1)
by its Hermitian conjugate. Therefore, the absorption
probability is proportional to

1 op l

E ~. Z(—)' 2 Yr"(k)*

in terms of a normalized set of tensors pi~ which trans- and that the relative intensity l of the emitted radiation

form under rotation like Fl, . If the Clebsch-Gordan
coefficient in Eq. (4) is replaced by a Wigner 3j symbol" I=la JI =lkxJI =IJI —lk JI. (9)
and the result substituted into Eq. (3), the resultant
equation

t/ 1 L~x 2(—1)"I
! (2L+1)i

Em p —Mj

x(j fmflj &(kr)pL I j;m;) (5)

is the basis for the multipole expansion. Since the
nuclear radius is small compared to the wavelength of a
& ray, kr((1, and since j& (kr)', the major contribution
to the sum over / in Eq. (5) will come from the smallest
value of l which can contribute. By Eq. (4), /= L, L+1,
and by Eq. (5), the minimum value of L is

I jf—j, I
or 1,

whichever is larger. (If one puts L=O into Eq. (5), the
resultant Jf, will be paraHel to k; hence n Jf H f;=0 )'— .
Therefore the smallest l is whichever of l=

I jf—j, l,
I I jf—j, l

—1! is allowed by parity conservation; ac-
cording to Eq. (3), this requires —(—1)'=mf;. Table I
gives the conventional nomenclature. Thus, for a given
value of l, two values of L can contribute unless
the sma'lier value is forbidden by the requirements
L&

Ij f j;I, L)0, which is t—he case about half the
time.

"A. R, Edmonds, Angular Momentum in Quantum Mechanics
(Princeton University Press, Princeton, New Jersey, 1957),
Chap. 3.

I'zo. 3. Euler angles, a, n'
and p, P', of the quantiza-
tion axes h0, h0' for the
emitter (unprimed} and ab-
sorber (primed). The third
Euler angle, y, y', is ignor-
able because it corresponds
to a rotation of each system
about its quantization axis.
k is the direction of propa-
gation of the y ray.

!1Z

~J
a

z= Ine Jf"''I' (10)

where Jf, ' ——Jf, (—k)= J, f *(k), and by using Eq. (8),
it follows that

»=IJ, f' Jf,*-(k J'f')(k Jf'*)I',

which gives the Mossbauer pattern for thin absorbers.
Since, in general, the magnetic fields have different

directions in the emitter and absorber, the convenient
quantization axes for the emitter h„and for the absorber
k„' are different. It is desirable in the evaluation of
Eqs. (9) and (11) to have all quantities expressed on the
same basis. The most natural choice for the universal
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basis is one in which thea axis (go) coincides with k. The
remaining two basis vectors p, g„may be chosen
arbitrarily, subject to the requirement that all three be
mutually perpendicular.

Figure 3 shows the Euler angles (o,,P,7)=—~ which are
necessary to rotate vg„ into k„. The connection between

g and h is, in terms of the matrix elements of 6nite
rotations S~i &~& (co) "

If the sums over IM and I.are written out, the magnetic
and electric components may be identified:

(i f ~+1
x(&2'+')

(mal M m, —

X (g1$1M (~)+'g —1+—1M (&))

4=2 &'."'(~)n.

Similarly, rotating I'& yields

(12) +I Ix(M2')
(mal M —m)

X(gi&m"'(~) —q i& x~"'(~)). (19)

(20)

P' m(k)@—P ~, (t)(~)F' m'( )@ Here some more irrelevant factors have been absorbed
into the reduced nuclear matrix elements g.

From Eq. (19), we can calculate I and IZ. Substitut-

I
&o-"'(~),

~ ~

(13) ing for S according to

4 i & ~"'(~Pe)=e'"™d~ "'(P)~'"'
and, upon substitution of Eqs. (12) and (13) into
Eq. (7), the latter becomes

k+1 Jy L J~ / 1 L

L lM, , 'LHly =M —tPt; 4$ ll —M)

X~. ~. „&'~( )n &'&( )x(L,&), (14)

which, by inserting the Clebsch-Gordan series for the
product of 5) functions,

& ~ "'(~)&o-'"(~)= 2 (2J+1)&~ ~""'*
su~m~~

t'l 1 Ji / 1 Ji
xI I I (»)

(0 p' M') m p M")

)~f l+1
I=I

I
Ix(&2'+') I'

Emf M —m, )
X((dm"+")'+(d ~m"+")'}

+I Ix(M2') I'
kmf M m, —

X((d '")'+(d- "')'}

+21
)if f+1

(mr M —m; Emg M —m;)

X«Lx(&2'+')x(M2') j
and performing the sum over p, in Eq. (14),

X(dm + dm d— d—m } (21)
1 I, t 1 J

(2J+1)Z
m p —M) Em p M") which is the general intensity distribution for a multi-

pole mixture, consisting of an electric term, a magnetic
term, plus an interference term. Equation (21) can be
reduced to a sum over Legendre polynomials and a
similar expression (albeit a much more complicated
function, not only of P, but also of P' and In n'I)—
written down for IZ.

For the sake of clarity and simplicity, we shall for the
moment restrict ourselves to pure multipole emission.
In that case, the formulas are simpler:

= 8~, ~81. ,y, (16)
gives finally

&+~ jy L j, )fl 1 L )
mg M —m;) EO p, —p)

X~.(—1)" &. '"( )x(L,l). (17)

(22)
I

(d+'+d-'}
(my M —m;)

Iz=
I

i' )'( J f'

(1g) 'Em, M —m„) & —mf' M m )ag, =Jf,—k(k Jg;),

A very similar expression obtains for Jf; if quantities
appropriate to the absorber are substituted into
Eq. (17).

If one defines a transverse matrix element of the
current operator (proportional to the radiated ele
6eld),

then Eqs. (9) and (11) simplify to

I=Is~ I&

X(d+'d+"+d 'd "+2 cos(n —n')d~d d+'d '}. (23)

.It is now relatively easy to evaluate the angular
9I

(11') dependence of the Mossbauer pattern. The d functions
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TABLE II. Reduced rotation matrix elements, d„M( ),
for dipole and quadrupole cases.

a1
&1
%1
~i

~2
a1

0
w1
W2

~ ~ ~

cos'(p/2)
+ (1/v2) sinp
sin'(p/2)

~ ~ ~

dpM

W (2 sinp+sin2p)/4
(cosp+cos2p)/2
& (3/8)& sin2p

(cosp —cos2p)/2
& (2 sinp —sin2p)/4

can be calculated from prescriptions given by Edmonds;
they are tabulated in Table II for the dipole and
quadrupole cases, and the angular distributions I are
given in Table III.

In the evaluation of IZ, it is convenient to use a
different approach. One can see from Eq. (11') that IZ
is the square of the magnitude of the inner product of
two complex vectors. It should therefore be possible to
express it in the form

where A, and A„are both real. Ke now define an
angle $;

A, =A cos]

A„=A sin],
(28)

where A'=A, '+A„'= )A)'. )tan&) is therefore the ratio
of the axes of the polarization ellipse. The spherical
components transform according to

e "a =e+'&a~'=a[(A, +A„)/&25e+'"
=TAe+'&(cos$&sinf)/V2.

(29)

tang=
e
—'bg+ —e'bu

(30)

Any two-dimensional complex vector is then specified
by four real numbers; its length A, its elliptical eccen-
tricity parameter $, the angle p by which the axes of the
ellipse differ from the x, y axes, and the over-all phase 8.
One can see from Eq. (29) that

e "a +e"a *

(24)IZ =II' cos'0~,
The inner product of two vectors A and B is

which can be shown to be

where 0+ is the "angle" between the two complex
vectors 8* and 8'. One could then factor out I and get A*(A, t,a, t')) &(&~I,&~&) =A&e" "(cos(a &) cos(k '0)

the cross section by itself, which is necessary for thick i sin(a —b) si—n($+p)), (31)
absorber calculations.

3.3. Complex Vector Parameterization A* S=AB cosOe'«+'-') (32)

A=a f+a„j=a+q++a q

si~= W (fbi j)/v2

ag ——W (a,Wia„)/&2,

(25)

and rotate it through an angle q, simultaneously
multiplying it by an over-all phase factor. Symbolically,

The vectors in which we are interested are the two-
dimensional complex vectors 8. To specify one of them,
four parameters are necessary; for example, the real and
imaginary parts of each of the components. It is the
purpose of this section to find a more convenient
parameterization.

We consider a vector A:

where

p = —arctan(tan (a—b) sin($+l))/cos (f—r)) ), (33)

and where 20~ is the angle between (2$,2a) and (2)),2b)
when they are polar and azimuthal angles as shown in
Fig. 4. This accomplishes the aim expressed in Eq. (24).

FIG. 4. Relation between
the angle O~ between two
complex vectors and their
eccentricity angles P, g and
their azimuths a, P.

A=@A', (26)

where E is the rotation operator times e".By the proper
choice of p and 8, it is always possible to obtain, for
any A,

A'= A:s+ iA„j, (27) 3.4. Application to Pure Multipole Case

TABLE III. Angular distribution for dipole arid quadrupole

radiation. 8 ~=—I
mf M —m;

The electric vectors 8 for pure multipole fields can
be seen from Eq. (19) and Eq. (20) to have p=n and
8=3fy plus the phase of the reduced nuclear matrix
element y. To wit, for ~2',

a2

0

~ ~ a

(1+cos'p)/2
sin'P

(4 sin'p+sin'2p)/8
(cos'p+ cos'2p)/2

4 sin22P
mg M —m~)

E—elsf 7(++clad ~ (l) (p) g e lad &&
(l)(P))—

(34)
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5r
2

IZ =
rzI (P)I'(P') {1+sin2$ sin2$'

+cos2$ cos2(' cos2 (n —n') )
= —',I(P)I'(P'){1+cos20~}=I(P)I'(P') cos'O~. (35)

To facilitate the use of Eq. (35), we have plotted $ as
a function of P for the cases given in Table IV. These
graphical solutions are shown on Fig. 5. Sy use of

Eq. (35) and Table IV, we can also calculate cos'0. This
is given in Table V, which is valid for both magnetic and
electric radiation. The missing entries can be filled
in by using the symmetry property cos'O(p, p')~~
=cos'0 (p',p) ~ ~

In summary, then, the intensity of a given line is
proportional to

(36)

where d~n(P) is given in Table III for L=1, 2. The
absorption cross section is proportional to

X=I'(p') cos'0

For E2'+', one replaces / by /+1 and changes the sign
of g

By inspection of Eq. (34), Table II, and Eq. (30),
tan) may be deduced. It is given in Table IV. The other
entries in Table IV, cos2$ and sin2$, are there because
IZ, Eq. (11') is of the form

TABLE IV. Elliptical eccentricity parameter P for magnetic
dipole and electric quadrupole radiation.

tang cos2$ sin2$

Fzo. 5. Eccentricity angle ( plotted as a function of polar angle
P for 3f1 and E2 radiation. Circular polarization corresponds to an
odd multiple of ~/4, linear polarization to a multiple of ~/2,
and intermediate values to elliptical polarization of varying
eccentricity.

3.5. Multipole Mixtures

More complicated is the situation when both E2'+'
and 3f2' radiations contribute to the same transition.
Then the electric field vector has the form

&r =«~'+'+&e"E~' (38)

where a and be' & are products of the appropriate Wigner
3j symbols and reduced matrix elements x (L,/). We can
choose a, b to be real; the relative phase of the nuclear
matrix elements is then p. The intensity I can easily
be calculated from Eq. (38); it is

f ir'
der i(P') cos'0 (37)

& —re, ' m' rrr,
'

where cos'O~ can be obtained either exactly from Table V
or approximately from Figs. 4 and 5. The 3j symbols
must be calculated for each case; for Fe5r(jf ———',,
j;= za, L= 1), they are given in Table VI.

cosP

(b) Electric quadrupole

sin'P

1+cos'p

cosP

cos2p

cos'2P —cos2P

cos'2p+cos'p

(a) Magnetic dipole

sin~P
&cosP

1+cos'p

&2 cosP

1+cos'P

~2 cosl8

1+cos'P

&2 cosP cos2P

cos'2P+cos'P

~= )&r, ['=~'&~' ++&'&~'

+2ab(rf~'+'rfzr')*' cosy cos(f~' —$~'+') (39).
Not so easily found, however, is IZ in this case. In

order to accomplish our aim of factoring out the
incident intensity from IZ to get the absorption cross
section, we must consider the problem of obtaining the
polarization parameters of the sum of two complex
vectors.

Our task is to find the length C, eccentricity angle p,
and polarization azimuth y of

C (C fr,y) e'& =A(A, &,n)+ e' &8 (B,ri n), (&0)

the sum of two vectors of the form of Eq. (38), where
the azimuth n is the same in both terms on the right.
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TABLE V. Fractional overlap cos'0 for dipole and quadrupole radiation.

2—2

a2
w2

cos2O

(a) Dipole radiation

(cosp+cosp')'+sin'p sin'p' cos'(u n—')

(1+cos'p) (1+cos'p')

1—sin'p cos'(u —n')

1+cos~P

cos'(n —n')

(b) Quadrupole radiation

Same as for dipole (1, &1)

(cos2p'&cosp cosp')' —cos'(n —u') sin'p(cos'2p' —cos'p')

(cos'2P'+cos'P')(1+cos'P)

Same as for dipole (+1,0)

(cosP' cos2Pa cosP cos2P')'+cos'(n —n') (cos'2P —cos'P) (cos'2P' —cos'P')

(cos'2p+cos'p) (cos'2p'+cos'p')

cos'p sin'(n —u')+cos'(n —u') cos'2p

(cos'2p+ cos'p)

Same as for dipole (0,0)

We have chosen the over-all phase (8, Sec. 3.3) to be
zero for A, y for B. Writing out the vectors in the form

which follow from Eq. (30), it is straightforward to
solve for y and p in Eq. (40). First we write

A=a~s1~e' +a s1 e-',

and using relations like

(41)

a +e""b

C+ u++e' "b+
~21', (y—u)

C
(43)

a+——A cos($—ss.),
a =A sin(& —-',7r),

then take real and imaginary parts of both sides,
yielding

2AB sing sin(( —ri)
cot(p —-', s-) sin2(y —n) =

A'(1 —sin2$)+8'(1 —sin2rl)+2AB cosp[cos($ —r)) —sin($+ri)]
—As cos2$—8' cos2ri —2AB cosio cos($+ri)

cot(p ——,'n-) cos2(y —n) =
A'(1 —sin2&)+8'(1 —sin2rl)+2AB cosy[cos($ —rl) —sin($+rl)]

Iu
—

$ = rcos &p sin ($—ri), —

7—u= —r[siny sin($ —ri)/cos2$],

(47)

(48)

The ratio of Eqs. (44) and (45) give y n, after which-
@ may be found with Eq. (44). The magnitude C is given
by [compare Eq. (39)]

C'= A'+8'+2AB cosy cos($—ri). (46)

Ke have not found a way to significantly simplify
Eqs. (44) and (45) for the case where A and 8 have
comparable magnitudes, but it is often true that one
multipole contribution is dominant, say A. Then, if
terms of order 8'/A' and higher are neglected, Eqs. (44)
and (45) can be manipulated to give

1
2
1
2

1
2

1

v'(1/6)
v'(1/12)

1
2-v'(1/12)

-v'(1/6)

3
2

where r=B/A. Equation (48) obviously breaks down
when $ =&~/4, &3~/4; this is because the polarization
angle of a circularly polarized wave is undefined.

The effect on the product,
~

A* A'~', of adding to A

a small Be'& and to A' a small B'e'&' can be broken up
into three parts, according to Eq. (32); A' and A" are

1 3

TABLE VI. signer 3j symbols for Fes
mf M —m;
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changed according to Eq. (46), and cos'O~ becomes

cos'O~ —& cos'0'+r sin(t —rl) {sing cos2$' sin2(u —n')
—cos&pLcos2$ sin2$' —sin2(cos2$' cos2(n —n')]}, (49)

plus another term with primed quantities exchanged for
unprimed ones, and vice versa. (Except for y, since we
are dealing with the same two nuclear states in the
emitter and absorber, the relative phases of multipoles
are the same. )

3.6. Application of the Formalism

t sins'~
P—e

—(1/4) sins q& cos
COSY I

—Q e "'I„(I/2) cos(Iiq)(cos —&y—cos~p), (53)
p,=l

where q&= arcsin(1+x') '*, and I„is the Bessel function
of order p and imaginary argument.

It can be shown, using either Eq. (53) or (52), that

limP(x, t) = e 'i'Is(t/2)
x—+0

(54)

In order to calculate shapes of Mossbauer lines, we
must know the proportionality factor E between the
actual cross section at resonance a„and Z, Eq. (37).

P(x, t) =1— + . . I«1.
1+x

o.„= Q EZ,
mg'my'

where the sum is over all pairs of substates which con-
tribute to the resonance. E is most easily evaluated by
considering the special case of no splitting in the
absorber. Then we know that whatever is the polariza-
tion of the incident beam,

where

I'/I'=1. 00+0.135t 0&t&5
= 1.01+0.145t—0.0025ts for 4&1&10. (56)

We have evaluated P(x, t) in the form given by
(50) Eq. (53) on the IBM 704. The result is that, to about

is%, it is given by

1—P(x t) = P1—P(0 1)]l'/(5'+I") (55)

2ji+1 f'
o p= 2x'A~

2j,+1 1+n

To a good approximation, then, the shape and inten-
sity of a Mossbauer absorption line is

~(~)=JI(p) (1—p(0,1))r/(~+r )
where rr is the internal conversion coe%cient and f is
the Debye-Wailer factor for the absorber. By putting
P =P'= 0 in the formulas for 8 and cos'O' LEqs. (22) and
(35)], one finds E= (2I.+1)os.

If a gamma-ray beam of Lorentzian energy distribu-
tion is incident on a resonant absorber, the transmitted
beam has a shape proportional to

where f is the Debye-Wailer factor for the source and
(is calculated from Eq. (50) without the sum, of course,
if the absorber lines are split more than their width;
with it if they are unsplit. In the intermediate case
(overlapping absorber lines), Eq. (52) is no longer
applicable.

As an example, we will evaluate Eq. (57) for the
10.65-mm/sec line in Fe". This line is formed by the
overlap of the —,

' —& ~ source line with the ——', —+ ——,
'

absorber line. We shall take an absorber thickness of
1.75 mg/cm' of Fe'r; for angles, we take P =30', P'= 60',
tr —ti'=90'. The effective absorber thickness is 1.75/
sin60'=2. 01 mg/cm' which corresponds to v=21.2
X10" atoms/cm'. os for Fe" is 1.48&&10' b. From
Table VI, we And that the square of the 3j symbol is ~
for both source and absorber, and Table III then says
I(30')= s's, I'(60') = s', . cos'0' may be evaluated from
Table V(a), in which M, M' are always the difference
between excited and ground state m's. The result is
cos'0"=8(2—W3)/35. Then Eq. (37) gives Z=—sss cos'O~

=9.57&&10 ', hence 1=0.0830 if we take f'=0.922. For
this line, then, we have a very thin absorber, and we can
use Eq. (54) to find 1—P(0,t) =0.0415. Equation (56)
gives I"=1.01I' which determines the eGective width of
the line, and finally Eq. (57), with f=0.916, yields
A(0)=0.0083. This should be the relative absorption
strength at the 10.65-mm/sec line.

An alternative way to determine O~ is first to find 2$
and 2$' either from Table IV or Fig. 5 and use the fact

00

P(x,t)=-
27r (E—Es+5)'+I'/4

r 2/4r
+exp~ t—(52)

(L zg)'+r'/4)—
where r is the natural width of both the incident beam
and the resonant absorber, Ep is the resonance energy,
and S is the Doppler shift of the incident beam. "The
normalization factor has been chosen so that I' is a
function only of x=5/I' and 1= isn't„.

By expanding the exponential in the integrand of P
and evaluating each term in the resultant sum by con-
tour integration, it is relatively straightforward to show
that, for Ep&)I'

'2If the source is thick and is resonant absorbing, the beam
incident on the absorber will not be Lorentzian with the nautral
width. Calculations of the transmission integral for that case as
well have been performed by S. Margulies and J. R. Ehrman,
gttclear Instruments and Methods 12, 131 (1961).
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AGNET

AMMA
AYS

ABSORBER
(MOUNTED
ON SPEAKER)

iDETEQTOR

FIG. 8. Arrangement to
measure the angular de-
pendence of the Zeeman
components of a "six-line
source. " (Experiment I in
text. )

the desired Mossbauer spectrum, '4 as shown in Figs. 7
to 9. Due to the sinusoidal drive and linear display, the
velocity"scale in these figures is sinusoidal. The slight
drop to the right in each spectrum is caused by the
dead-time effect in the 400-channel analyzer.

For experiment I, the source was fixed to a magnet,
as shown in Fig. 8. For experiment II, the absorber was
placed between two Styrofoam plates and mounted
between slender polepieces designed in such a way that
that the magnetic field was in the plane of the absorber,
and the gamma rays could pass through the absorber
at angles between 20' and 90' to the magnetic field. For
experiment III, both source and absorber were placed
in magnetic fields.

TAssE VII. Source-absorber combinations.

Experiment

I. Six-line source,
single-line absorber

Source

10-mC Co», coplated
with Fese, disused
into a 20-mil natu-
ral iron foil

Absorber

0.56-mg/cm2 Fe, 75%
Fe» diffused into
3.5-mg/cm2 Ti

In order to get complete information, Mossbauer
spectra were recorded for various source and absorber
combinations and for a number of angles between
external magnetic field and source and/or absorber. The
source-absorber combinations which provided the essen-
tial information are shown in Table VII.
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For the measurement of the spectra, either source or
absorber was mounted on a Jensen 8-in. Flexair woofer
and moved sinusoidally at a frequency of 11 sec '. The
output pulses from a scintillation counter were energy
selected by a single-channel analyzer and modulated
with a saw tooth voltage, which was locked in with the
speaker drive. The modulated pulses were displayed on
a 400-channel RIDI analyzer and thus yielded directly

FIG. 10. Absorp tion of a single-line spectrum by a six-line
absorber as a function of the angle 0 between incoming gamma ray
and magnetic 6eld. (Experiment II.)

5. RESULTS AND DISCUSSION

5.1. Results

Typical results are shown in Figs. 9, 10, and 11.The
intensities in Fig. 9 and Fig. 10 can be compared
directly with the predictions displayed in Fig. 2. The
agreement is satisfactory. In particular, one can see that
the Am=0 lines disappear as one approaches the
longitudinal case, but that they are strongest in the
transverse Zeeman case.

Figure 11, which represents an experiment of type
III, should be compared with Fig. 12, the result of an
IBM 704 calculation. Here again one can see the
helicity of the various components rather directly.

The experimental problems encountered in the
present experiment are all rather straightforward with
one exception. Superficially, experiment I and experi-
ment II of Sec. 4 look very similar. Experimentally,

FxG. 9. Zeeman spectrum of six-line source, measured at three
angles 0 with a single-line absorber. (Experiment I in text. )

"S.L. Ruby, L. M. Epstein, and K. H. Sun, Rev. Sci. Instr. 31,
580 (1960).
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however, they are quite diGerent. It is easy to get the
correct intensity ratios in experiments of type I. Close
to the direction of the magnetic field, the intensities of
the six lines are 3:e. 1:1:e.3, where e is very small. No
matter how thick the absorber, the very weak line
cannot be enhanced relative to the other lines. In an
experiment of type II, all incoming components have the
same energy. If the absorber is very thick, the absorp-
tion component will saturate, and one will find an
appreciable absorption component Am=0 even close to
0=0'. Indeed, all the early experiments showed a ratio
of about 3:4:1rather than the expected 3:e. 1. Reduc-
ing the absorber thickness from 3 to 1.73 mg/cm' en-
riched iron did, however, not quench the 6m=0 lines.
It turned out that this foil, while still quite thick for the
gamma rays, was magnetically too thin. The typical
thicknesses for domains in iron are about 10 p, . The 2-p,

foil was apparently not magnetized in the plane of the
foil. In order to check this assumption, natural foils of
4.5 mg/cm' (about 6 p) thickness were used. The re-
sults with these foils show the expected behavior and the
expected decrease in the d m= 0 component as displayed
by Fig. 10.
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FIG. 11. Six-line source and six-line absorber. Emitted and
absorbed gamma rays each subtend angles of 30' with the mag-
netic fields at the source and the absorber, respectively. Parallel
and antiparallel labels on the curves refer to magnetic field direc-
tions in source and in absorber. The two curves in this figure should
be compared with the curves calculated from the theory in Sec. 3
and displayed in Fig. 12.
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5.2. Discussion

A comparison of the experimental results displayed in
Figs. 9 to 11 with the corresponding theoretical curves
(Fig. 2 and Fig. 12) shows good agreement. This is
certainly no surprise, since the only unknown factors
involved in the experiment are the magnetic properties
of source and absorber foils. There is no doubt that the
assumptions underlying the calculations in Sec. 3 are
correct. The main facts which can be learned from the
present experiment then are:

(1) The Mossbauer effect can be used to produce
and detect circularly polarized gamma-ray components.
The equipment required is quite simple.

(2) The techniques discussed can, hopefully, be used
to investigate the direction of magnetic fields in solids,
and their saturation properties.

(3) The use of polarized sources and absorbers can
facilitate the investigation of complicated Mossbauer
spectra by reducing the intensity or even extinguishing
selected lines.
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FxG. 12. Calculated absorption spectra for the parameters of
experiment III in text. The natural width I" is taken to be 0.3
mm/sec.


