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cient), we obtain O.„h——3X104b, and O.r ——10'b at
resonance.

As a second example we consider the 77-kev level
in Au' ~ LI'/2=1. 1X10 ' ev, (I';/I') =0.22]. At zero
temperature we have ko'(x') = 1.6, at room temperature
it is some eight times larger, so appreciable scattering
will occur only for T&(164'. At these low temperatures
the corrections to Eq. (39) are still only of the order of
e"X10 '=10 ' of the resonant value of Eq. (39), and
thus may be neglected, near resonance, at low tem-
peratures. Assuming that the (2+) ~ (-', +) transition
is predominantly M1, Eqs. (41) and (42) will also apply
to this case. Inserting numbers into Eqs. (42) and (43)
we obtain 0-„h——200 b, and O.

y ——3X104b, at resonance.

Turning now to neutron resonances it is only neces-
sary to multiply fz, r by L(2j,+1)/2(2 jo+1)j to
obtain the coherent scattering amplitude (unpolarized
neutrons, unpolarized nuclei).

As a 6rst example we consider the 4.9-ev neutron
resonance in Au"'. These neutrons have a little shorter

(3/4) wavelength than the 77-kev y ray. We have"
I'/2=0. 07 ev, I'„/2=0.008 ev, jo——2, ji——2, and, from
the table, ko'(x') =2.9, at low temperatures. Now&

A~ =xO~ =0.014 ev, and so the conditions (short
collision time) leading to the validity of Eq. (24) are
met. We have $.=4.9/197=0.025 ev and (e)=-', Ace at
low temperatures (in the Debye approximation (e)

"Newton Cross Sections, completed by D. J. Hughes and R.
Schwartz, Brookhaven Natural Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing Offjce,
Washington, D. C. 1958), 2nd ed.

=F5~ =0.005 ev). Approximating Eq. (27) by Eq.
(32), we have

0.665

d, —0.025 cose+0.07i

0.167

6—0.025 cos0+0 07.i+0 02.7 (cosg) '

0.167
+ —,(44)

6—0.025 cos0+0.07i—0.027 (cose) '

The corrections to the resonance denominator of the
simple fixed-nucleus Breit-Wigner formula are small,
but not completely negligible. Equation (44) when
squared yields a maximum, do.„h/d0=200e ""b/sr,
for small 0.

As our last example we consider the 1-ev resonance
in Pu"'. This resonance is given as having the remark-
ably small width, I'/2=0. 017 ev, I'„/2=0.001 ev. '"
According to our estima, te of 0 for Pu, A~ =0.02 ev.
Consequently, the coherent scattering amplitude, and
therefore the total cross section, will be rather sensitive
to the details of the phonon spectrum (during the
scattering process the nucleus will execute a vibration
or so). According to the table the Debye-Wailer factor
is not small even at room temperature. The scattering
amplitude will, then, not be very small in the region
for which Eq. (25) is valid, and an experimental study
of the coherent scattering could give detailed in-
formation concerning the crystal vibrational spectrum.
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The semiclassical density-matrix theory if relaxation is employed to calculate the relaxation of the s
component of nuclear magnetization of molecules in a liquid for the case in which three identical nuclei of
spin ~ are arranged at the vertices of an isosceles triangle whose angles are 30', 30', and 120'. It is found
that, if the initial state of the spin systems is characterized by a spin temperature, the relaxation consists of
the sum of seven terms which decay exponentially with different time constants. It is also found that even
though the s component of the magnetization is a function of seven distinct time constants, a plot of
]n{~,—3l,~) can be approximated by a single straight line for regions of experimental interest. The time
constant for this straight line differs less than 1 jq from the average relaxation time calculated from the
formulas of Gutowsky and Woessner.

I. INTRODUCTION

HE semiclassical density-matrix theory of relaxa-
tion was employed by P. S. Hubbard' to calculate

the relaxation of the s component of nuclear magnetiza-
tion for a system of identical nuclei of spin —,

' arranged,
respectively, at the corners of an equilateral triangle or

*This work was supported by the U. S. Air Force Office of
Scientific Research.

I P. S. Hubbard, Phys. Rev, 109, 4 {1958).

a regular tetrahedron. Hubbard showed, for the former
case, that, although the s component of the magnetiza-
tion relaxed with two distinct relaxation times, the
relaxation was dominated by a single relaxation time.
This relaxation time differed less than 1% from the one
calculated using the method of Gutoe sky and Woessner'

'H. S. Gutowsky and D. E. Woessner, Phys. Rev. 104, 843
(1956).
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which assumes that each pair of nuclei relaxes inde-
pendently of the others.

The question immediately arises as to whether the
high degree of symmetry inQuenced the results of this
calculation. To examine this point we calculated the s
component of the magnetization for a less symmetric
system but still one of physical significance.

In this paper, we employed the general method
developed by Hubbard to calculate the s component of
the magnetization for a system of identical spin —, nuclei
at the corners of an isosceles triangle whose angles are
30, 30', and 120'. This configuration can be realized in
triply substituted ring compounds. The symbols and
definitions of quantities appearing in the sequel are the
same as those used by Huhbard.

0,7

0.8
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II. CALCULATIONS 0.2

For a system of l'lt molecules per unit volume, the s
component of the magnetization can be expressed as

where

2n

M, —M„=1Vy5 p $o.—orj, (I,) „
e=l

O.I 0.5 I.O

SEy t SE.q0-~= exp — exp
uzi - k zT i (2)

We therefore need to determine the time dependence
of the elements 0 of the density matrix. Redfield' has
shown that the matrix elements of the density operator
formed with the eigenfunctions of E are determined
by the equation

da ea'
&+aa'0 ae' ~ &&aa'pp' (0 pp' 0 pp'

T&

Ch pp'
(3)

where

dr[2P.p..p (r) b. p P P,p,.(—r)
—&-p Z Pv- vp (r)j (4)

and

P.p. p (G.p(t)G. p *(t+r)). ——

Since all the r; s are not the same and due to the
particular con6guration we are considering, irrational

' A. G. Redfield, IBM J. Research Develop. 1, 19 (1957).

The matrix elements 6 p are calculated by using the
perturbation Hamiltonian

aG= 'g'P (I'.I —3(I' a,,)(I a,,)).;,—'.

t
To

FIG. 1. Comparison of relaxation times for a three-spin asym-
metric molecule in a liquid, showing the small variation of the
exact calculations (curve I) from that of the Gutowsky and
Woesner approximation (curve II).

numbers appear in certain elements of our perturbation
matrix which do not appear in those of Hubbard's.

In the sum on the right-hand side of Eq. (4), the only
terms which are included are those for which E —Ep
=E —Ep since the nonsecular terms produce no
appreciable change in the density operator o. over a time
greater than 7-,.

A convenient check on the computation is afforded by
the invariance of the matrices under inversion of the
magnetic field. Under inversion ~1) becomes ~8), ~2)
becomes

~
5), etc. This implies, for example, that

612 685.
In the case considered by Hubbard, the fourteen

simultaneous differential equations determined by (3)
were reduced to a system of three simultaneous, first
order, linear, homogeneous differential equations due to
the fact that all fourteen equations were not linearly
independent. One of the roots of the cubic equation
appeared in factored form, and an analytic solution was
obtained without any numerical approximations. For
the system we considered, no such reduction was
possible. The system of fourteen simultaneous differen-
tial equations was solved using the I.B.M. 650 digital
computer. The program used provided both the eigen-
values and eigenvectors of the matrix of coeKcients of
the differential equations. A solution satisfying the
initial conditions for the magnetization was constructed
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from the eigenvectors and eigenvalues. The result is

/Vy252H0 (T T—,)
LP P24e—1.04t/2'0

32

+ l 8 18e—2.41t /TP+ PPP6e—0.998t/To

+p 3'3e—1.62t/Tp+1 7e 0.844t/—Fo

where

+0 7(e-2 02t/TP+. 3 15e—0.666t/TPj (7)

To ——r06/ytt842r.

and ro is the distance between the two closest nuclei in
the molecule.

III. DISCUSSION OF RESULTS

Although in our case there are seven different expo-
nents in the relaxation equation, only three are sufB-

ciently large to warrant consideration. The time rate
of change of the magnetization considering only these
three leading terms is plotted in Fig. 1 as curve I. It
can be seen that for times up to the order of 1~ relaxation
times curve I could be approximated by a straight line

and for times somewhat greater than this the curve
could be approximated by another straight line with a
slope about 20% smaller than that of the first. Curve I
is given by the following equation

This result can be compared with that obtained from a
simpler approximation in which the relaxation of each
nuclear pair is considered independently. In this case,
one Ands according to Gutowsky and Woessner

This equation gives two distinct relaxation times,

E
M —M =—L18 18e ""/ 0+3 15e ""'/Fp'

32
+1 7e 0 844t/Top —

(8.)
where

K =/Vy2O2H0(T T,)//kTT, . —

1 3

Tll To

1 1 554

T12 To
(10)

' R. W. Mitchell and M. Eisner, J. Chem Phys. 24, 86 (1960).

However, if there is appreciable cross relaxation, the
system will show a single relaxation time. Taking the
weighted average of the two relaxation times, the s
component of the magnetization becomes

M, M,—o 0 75——K(.e "4"") (11)

The important result is that curve I differed less than
1% from curve II up to the order of 1-,' relaxation times.
This result is in agreement with what has been observed
experimentally. 4 It was shown that for liquids possessing
the benzene ring structure, a single relaxation time
could be used to describe the relaxation and this
relaxation time was in close agreement with the average
relaxation time calculated from the Gutowsky and
Woessner formula. There was also some evidence that,
for times greater than 12 relaxation times, the mag-
netization no longer followed a single straight line but
appeared to deviate from it. This result is very dificult
to establish experimentally since in this region the
change in magnetization is quite small.

In the solution obtained by Hubbard, a single relaxa-
tion time dominated the relaxation for regions of experi-
mental interest. This single relaxation time differed less
than 1% from the one calculated using the Gutowsky
and Woessner formula. In the case we considered, the
z component of the magnetization was a function of.

seven exponentials each containing a different time
constant; however, the combined effect showed that
the system relaxed with effectively a single relaxation
time which was the one calculated using the Gutowsky
and Woessner formula. The method we have used in
the solution to this particular problem can be applied
to a completely asymmetric molecule, and it is antici-
pated that the s component of the magnetization will be
a function of eight exponentials each having a different
time constant.
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