MICROWAVE ZEEMAN EFFECT OF

value by 0.89), almost four times the experimental
uncertainty in the latter. This discrepancy was noted
previously in R1 but, because of uncertainty about the
proper interpretation of the experiment, there remained
some doubt of its reality at that time.

There seems to be no compelling reason to prefer one
value over the other: The two experiments are quite
similar in technique and experimental precision, and
agreement is found at several points where direct
measurements can be compared; the two values of A
result from well-grounded theoretical analyses of the
spectra which, in both cases, show a high degree of in-
ternal consistency over several molecular levels. We can
only conclude that there remains a flaw, undetectable by
internal consistency checks, in the theoretical treatment
of either the Zeeman effect or the A-type doubling.
Table VI also shows that the two microwave values of A,
discordant themselves, also fail to agree with the
optically measured value. The uncertainty in the optical
number, however, is estimated! to be as much as 19;
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this covers adequately the paramagnetic resonance re-
sult, marginally the zero-field microwave result.

Apart from the numerical value of A and the question
of the correct value for the A-type doubling frequency
of the 21T, J=4 level, there are no remaining difficulties
in the interpretation of the OH paramagnetic resonance
spectra, at least to the precision attained in the present
experiments. This precision could perhaps be improved
by a factor of ten with moderate effort, but there is little
point in doing so without a detailed calculation of
relativistic corrections to the molecular Zeeman effect.
This is a difficult problem, made more difficult for OH
by the apparent seriousness of configuration interaction
effects. Although the sort of configuration interaction
discussed above does not affect the angular properties
of the molecular wavefunctions, and hence cannot per-
turb the nonrelativistic Zeeman effect, it can enter the
relativistic corrections through quantities such as elec-
tron kinetic energies which, like the hfs coupling con-
stants, depend on details of the electron distribution.
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The usual Debye-Waller factor, (exp[—i(k;—ko)-r]), which
when multiplying the fixed-scatterer amplitude gives the non-
resonant elastic-scattering amplitude from a bound scatterer, is
generally applicable only for fast collisions, i.e., if the “collision
time,” % (d/dE) (scattering phase shift), is much less than a char-
acteristic vibration time, w, ™!, of the bound scatterer about its
mean position. In the opposite extreme case, where the “collision
time” is very long compared to wn ! (slow collisions), there is
negligible correlation between the positions of absorption and
subsequence re-emission (for an atom bound in a crystal), and the
“Debye-Waller” factor becomes (exp(—zks-r)){exp(iko-r)). If
the scatterers’ surroundings exhibit cubic symmetry, the extremes
as well as all intermediate cases give the same factor for 90° scat-
tering angle. In the case of medium collisions, collision time =
vibration time, the elastic scattering amplitude becomes sensitive
to the detailed vibrational spectrum of the bound scatterer. For
nonresonant scattering the collision times are of the order of

I. INTRODUCTION

HE waves which are elastically scattered from
the various atoms of crystal interfere to give
the Laue or Bragg diffraction pattern, and it is from
this that their chief interest and usefulness derives.!

1The elastic scattering also generally has an incoherent part,
due to spin effects or crystal imperfections, which contributes a
diffuse background between the Bragg peaks. The inelastic
scattering, wherein phonons are created or absorbed in the crystal,
generally has a coherent component which, however, because of
the near continuum of the phonon momentum spectrum, appears
as a diffuse background around the Bragg peaks.

transit times (x ray across the atom for Thomson scattering,
neutron across the nucleus for neutron potential scattering) and
are thus fast collisions.

The inverse characteristic vibration times of atoms in crystals
are of the order of their Debye ® and are a few hundredths of an
ev. Slow neutron nuclear resonance widths vary from a few
hundredths to a few tenths ev; therefore slow neutron collisions
are medium to fast. Gamma-ray resonances for E,<100 kev
(Mgssbauer), on the other hand, have widths less than 1075 ev,
and therefore correspond to slow collisions.

A slight generalization of a formula due to Lamb gives the
resonant scattering, and our discussion of the formula is largely a
straightforward extension of those of Lamb and Singwi and
Sjolander in their discussion of resonance absorption. The total
absorption cross section and, in most cases of interest, the in-
elastic scattering cross section may be obtained from the elastic
scattering amplitude.

The studies of chemical and magnetic structures of
crystals by means of x ray and neutron diffraction
techniques are too numerous and well known to require
discussion here. It is sufficient to mention that the
x-ray scattering is usually mainly given by the Thomson
scattering from the atomic electrons, while the neutron
scattering is given by the nuclear (potential) scattering
and, in the case of magnetic materials, the magnetic
electron scattering.

Recently Moon and collaborators? have demonstrated

2P. J. Black and P. B. Moon, Nature 188, 481 (1960).



1046 G. T.
the Bragg reflection of the 14.4-kev Mdossbauers+
v rays from an enriched Fe® crystal, the main v-ray
scattering being nuclear resonance scattering, and
Peterson and Smith® have studied the neutron diffrac-
tion pattern of a single crystal of cadmium sulfide for
neutron energies in the neighborhood of the 0.18-ev
cadmium resonance. Earlier, Brockhouse® had deter-
mined the resonant neutron scattering cross sections
for a number of slow neutron resonances.

The chief interest in diffraction experiments with
resonant radiation comes from the usually larger cross
sections attainable at resonance, the more rapid energy
variation of cross sections (longer collision times), and
a negative imaginary component of the scattering
amplitude, as compared with the nonresonant inter-
actions.

One may estimate” that for the 14-kev v ray being
scattered by an iron crystal containing Fe’? the coherent
nuclear cross section per crystal site at resonance is
do/dQ=F*X3X10® b/sr, where F is the fractional
abundance of Fe®, whereas Thomson scattering by the
atomic electrons is do/dQ2~40 b/sr in the forward
direction, and 4 b/sr at 60° scattering angle. The total
cross section per site at resonance is or=~1XF X108 b,
and so one is limited to the study of superficial (about
10® A) aspects of crystal in this case.’

The slow neutron nuclear resonance widths are of the
order of 0.1 ev, the low-energy (less than 100 kev)
nuclear y-ray resonance widths are less than about
10-% ev. The Debye temperatures of crystalline materials
are commonly of the order 0.01-0.03 ev. During the
““collision time” [measured by (width)™] in the case
of a slow neutron resonance the nucleus will usually
execute only a small (but not very small) fraction of its
“crystalline vibration,” whereas in the case of the
low-energy -ray resonance it will execute very many
“vibrations” during the collision.

Smith and Peterson have illustrated the use of the
imaginary component of the scattering amplitude
(resonance) in determining the structure of a non-
centrosymmetric unit cell.

3R. L. Mossbauer, Z. Physik 151, 124 (1958); Naturwissen-
schaften 45, 538 (1958); Z. Naturforsch. 14a, 211 (1959).

4 The literature concerning the Mdssbauer effect has become
very large. An excellent review of experimental and theoretical
work, with bibliography, is provided by E. Cotton, J. phys.
radium 21, 263 (1960).

( 5S.)W. Peterson and H. G. Smith, Phys. Rev. Letters 6, 7
1961).

6 B. N. Brockhouse, Can. J. Phys. 31, 432 (1953).

7The author, in a paper to appear in the Proceedings of the
International Atomic Energy Agency, Symposium on The Chemical
Lffects of Nuclear Transformation, October, 1960 considers some
theoretical aspects of y-ray diffraction by resonant nuclei with
numerical results estimated for the diffraction of the 14-kev v ray
by Fe?.

8 Unfortunately, the resonant absorption cross section is usually
considerably larger than the scattering cross section. The large
absorption cross sections present special problems in the perform-
ance and analysis of resonance scattering experiments (see
reference 6).
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Lamb® has presented the theory of the resonant
absorption of particles by nuclei bound in crystals, and
only a slight modification of his theory is necessary to
discuss the resonant elastic scattering. We find it useful
to transform Lamb’s resonance formula from the energy
to a time-dependent representation after the mode of
procedure utilized by Singwi and Sjolander in their
discussion of resonance absorption.”! This allows us to
utilize the elegant methods and results developed by
Van Hove'? in his treatment of the (nonresonant)
scattering of neutrons by crystals.

In the following sections formulas governing the
elastic scattering of waves from atoms bound in crystals
are obtained and discussed.

II. DEVELOPMENT OF PRINCIPAL FORMULAS

In the expression giving the amplitude of the non-
resonant elastically scattered waves (of slow neutrons,
x rays, etc.) from scatterers which are bound in crystals,
the effect of the zero point and temperature motion of
the scatterer is contained in a factor which multiplies
the fixed scatterer amplitude,'®

(exp[—i(k;—ko)-r])=exp[— K[ (ky—ko)-r )], (1)

where k; and k¢ are the wave vectors of the scattered
and incident waves, respectively, r is the position of the
nucleus of the scatterer relative to its mean position,
and the angular brackets indicate the expected value for
the crystalline state involved. The equality expressed
in Eq. (1) comes from the fact that in the crystal the
displacement of a given atom is a result of many small
independent displacements (normal modes)."*'5 The
left-hand side of Eq. (1) comes immediately upon
making the Born approximation in the case of Thomson
scattering or the magnetic scattering of neutrons, and,
by making use of the Fermi pseudopotential, in the
case of nuclear potential scattering of neutrons as well.
The elastically scattered waves from the wvarious
crystalline sites interfere to give the Bragg reflection,
and the factor in Eq. (1) when averaged over a Gibbs

9 W. E. Lamb, Phys. Rev. 55, 190 (1939).

K. S. Singwi and A. Sjslander, Phys. Rev. 120, 1093 (1960).

1 Effectively this transformation was also made by Lamb® but
at a later stage in the calculation, and in a manner to somewhat
obscure the fact that it was a transformation to a time dependent
representation (mainly because he used u as an integration variable
rather than #).

21,. Van Hove, Phys. Rev. 95, 249 (1954); 95, 1374 (1954).

13 P. Debye, Ann. phys. 43, 49 (1914); 1. Waller, Z. Physik 17,
398 (1923); 51, 213 (1928).

4 Near crystal imperfections (dislocations, impurity atoms,
etc.) the displacement of a given atom may be largely due to a
few localized vibration modes. Equation (1) will still be true
according to Bloch’s theorem [F. Bloch, Z. Physik 74, 295
(1932)7] and its discussion by Van Hove,? if the angular brackets
are interpreted as temperature averages. It is the temperature
averaged scattering amplitude which is our principal interest
since it determines the coherent elastic scattering from a real
crystal.

15 We consider crystals in thermal equilibrium, excluding cases,
e.g., in which the crystal is driven by an ultrasonic generator.
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ensemble and squared governs the intensities of the
reflections (Debye-Waller factor).

A result of this and succeeding sections will be that
Eq. (1) represents an extreme case for which the
collision time is very short compared to the time
required for the struck scatterer to move an appreciable
fraction of a wavelength (of the scattered particle), and
that for slow neutron resonant scattering from most
crystals at not too elevated temperatures this condition
is satisfied to a good approximation. Secondly, that the
corresponding factor in case the collision time is very
long compared to the “vibration time” of the scatterer
in the crystal is

(e o) =exp[—H{((kr D+ (ko)) (2)

and that for the resonant scattering of low-energy
v rays from nuclei bound in crystals this condition is
satisfied.

According to a formula of Lamb? if a wave is incident
upon a nucleus with an energy near a resonant energy
of the nucleus then the amplitude of the elastically
scattered wave is given by!'®

(no | €757 [ X )Xo | €70 Xo)

Eyy—Er— (en— €ng)+1iI'/2

Jr=(T's/2ko) 2. , (3

times a factor depending on polarizations, multi-
polarity, etc. In (3) the x’s are the crystal wave func-
tions, the €’s are their energy eigenvalues, Er—1I'/2 is
the resonance ‘“‘energy,” and T'; is the partial width for
the incident particle.

The quantity,

(Pl/Zko) (Elco—ER_ €n+ €n0+’iF/2)_1, (4)

appearing in (3), is the free-particle resonant scattering
length corresponding to an energy (in the c.m. system)
Eo.m.=Ery— (€,— €,). If there is also a nonresonant
term, ®, in the free-particle scattering length (e.g.,
potential scattering term for slow neutron resonances)
then it should be added to the resonant term (4),
which will result in the addition of

fN .R.™— G{<Xno | e~—i(kf—k9) -rl XTLQ); (5)

to fr, given by (3) for the scattered amplitude.
Now if |Ex,— Er+1i'/2| is very large compared to

16 That the effect of chemical binding is given by Eq. (3) in the
case of a y-ray resonance may be verified by a Wigner-Weisskopf-
type treatment or by summing a class of graphs of the .S matrix.
In the case of a slow neutron resonance, the right-hand side of
Eq. (3) should be multiplied by the ratio of the mass of the
compound nucleus to that of the target nucleus, the X, should be
replaced by crystal wave functions in which the mass of the target
nucleus is replaced by that of the compound nucleus, and the
width, I', appearing in the denominator of Eq. (3) should be that of
the free particles with a c.m. energy, Fx— (en— €xy). Since the
slow neutron resonances occur for medium or heavy nuclei and
furthermore have relatively small neutron partial widths, Eq. (3)
with constant I' should be sufficiently accurate for practical
purposes. The justification of these remarks will be given in a
forthcoming letter to The Physical Review.
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the effective intermediate energy transfers, e,— en,,
then a good approximation to Eq. (3) is (upon the
application of closure)

(Xng| e720er =00 5[ X )

Eyy—Eg+1iI/2

fr= (Ti/2ko) ; (fast collisions) (6)

whereas, if some average spread of intermediate energy
transfer is very large compared to |Ex,— Er+il'/2],
only n=m, contributes appreciably to the sum in (3)
and one obtains

<X”0] e—iksr [ Xno><xno | eiko-r I xn0>
Frg— En-HiT/2

fr=(Li/2ko)

(slow collisions) (7)

The discussion of the region of validity of Egs. (6)
and (7) is facilitated, and a general more lively form is
obtained, by transforming the expression (3) for fg into
a time-dependent representation,!®!?

Sr=(Ty/2ike) | dt ¥ FrmERItg=TU2

X (Xo| €77 T Weo x| X), - (3)
where r(?) is the nuclear c.m. position operator in the
Heisenberg representation. Expressions (6) and (7) now
follow from (3') if in r(¢) we put =0 and {= , respec-
tively, and make use of'?

(g——ikj -r(oo)eiko ~r(0)>= <e—-ik/‘ -r><ezk0 -r>’ (8)
which is valid for an atom in a crystal.

Equation (3') is already anschaulich, but it leads
to the following interesting result. If the incident wave
at =0 and time ¢ is S o(Ex,) exp(—iFit, )dEy,
thenthe scattered wave is /" o(Fx,) R7le™#0R f(Ey ks ko)
Xexp(—iEyl)dEy, a distance Rk; away from the
origin. Now if we suppose that over the range in which
of is appreciable the variation of the phase factors (kr)
with energy is negligible (the time required for the
particle to go from the origin to the scatterer and to R
is small compared to the lifetime of the compound
nucleus and to the time required for the nucleus to move
appreciably), then letting ¢=1, we obtain, f(¥)
= (aT4/2kg)e i FRI=TV (X, | g~ +(1)giko | X, )~ ag
the scattered wave amplitude a time ¢’ after the incident
particle arrived at the scatterer. Putting #=0 leads to
a sum rule on fg.

Again, as in the argument leading to the equalities
(1) and (2),

<X"0 i 6—ik/-r(t)eiko~r(0) [ Xno>
= exp[— (e 1()— 2k 1()) (ko x(0)
+ (ko xO))], ©)
in a crystal.

The ordered product in Eq. (9), (ks -r(¢))(ke-1(0)),
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may be written as the average of the anticommutator,
which is real, and the commutator, which is purely
imaginary. As Van Hove!? remarks in a similar context,
it is the term containing the commutator which gives
rise to specifically quantum effects. The E’s and I's
appearing in (3') should be divided by #% (if ¢ is a time
interval), giving frequencies, then (3’) does not involve
# explicitly. Equation (3’) then gives the amplitude of
the non-frequency-shifted wave scattered from a
moving classical resonator if the replacement,

<Xngl e is -1 (8) giko -1 (0) ] xno) —
{g=ths -x(++T)giko RS

(10)

is made, where the average over T is implied on the
right-hand side of (10). Classical waves (of sufficiently
small intensity) do not disturb the c.m. motion of a
scatterer, therefore the quantum part of Eq. (9) will
contain the effect of an impulse %% imparted to the
scatterer during the collision. As is shown below the
quantum part of the expression (9) vanishes for {— oo,
Then if the major contributions to the integral in Eq.
(3') are from large “I’s” (slow collisions), a classical
calculation with the replacement (10) will give the
correct scattering law.!”

To evaluate (9) one has from the usual normal mode
analysis of the crystal vibrations'$:*?

7i(0)= 2 €aq1t/2M Nwaq |F[@ qe~i@ Ri—waqt)
aq

Fageia Tt (1)
where r;(f) is the displacement of the ith atom from
its equilibrium value, R;, q is a vector in the first
Brillouin zone of reciprocal space, €.q is a unit polari-
zation vector, a=1, 2, 3, M is the atomic mass, IV is the
number of atoms in the crystal, w.q is the angular
frequency of the (aq) mode, @ and a are the usual
phonon creation and destruction operators. Making
use of Eq. (11), we now obtain

(Ko Ky 1 (ko 1(0) | Xn)
= (h/MN) > Waq (kf‘ eaq) (kO : eaq)
aq

X[ (Maq+%) COSwagl— 37 Sinwagl ], (12)

where 7, is the phonon occupation number of the
(eq) mode. The other two terms in the exponent of the

17 The procedure is ‘“‘semiclassical” rather than classical in that
quantum oscillators are replaced by classical oscillators with the
same energy (including zero-point contributions), and the disturb-
ance of the scatterers motion by the waves is neglected. Singwi
and Sjolander (reference 10) have shown that the intensity of
the emitted radiation from a ‘“Mgssbauer emitter” is given by an
expression similar to that of Eq. (3') with k; replaced by ko. In
this case the “non-Doppler-shifted”” component is given correctly
by semiclassical considerations, the asymmetry in intensity of the
“Doppler-shifted” components of quantum origin.

18 See, for example, M. Born and K. Huang, Dynamical Theory
of Crystal Lattices (Oxford University Press, New York, 1954).

19 We assume for simplicity that there is only one atom per unit
crystal cell.
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right-hand side of Eq. (9) are obtained from Eq. (12)
upon putting {=0 and replacing ko by k; or k; by k.

To this point we have been speaking of the scattering
from an atom of a crystal which is assumed to be in a
stationary quantum state X,, (specified by the numbers
7lag). We usually do not have so much information
concerning the state of a crystal (except at zero tem-
perature). In order to compute the expected elastic
scattering from a macroscopic crystal at a given
temperature one should add (with proper phase factors)
the contributions [Eq. (3')] from the various scattering
sites. The square of the absolute value of the resultant
amplitude should then be averaged (with the usual
Boltzman weighting factor) over the crystal states, X,,.
However, Egs. (3'), (9), and (12) express the scattering
amplitude as a functional of the sum of N small (< 1/N)
independent quantities, so that,

([ fr]%r=[{fr)r]|*+o(N7Y),

where the subscript T indicates the thermal average.
For a macroscopic perfect crystal, in other words,
there is a negligible thermal fluctuation in the elastic
scattering amplitude, the stationary states occurring
with appreciable probability in the thermal average all
yield the same scattered amplitude.?

In other words, we may replace stationary-state
expectation values in Egs. (3), (9), and (12) by
temperature averages, if we replace the “u.’s” in Eq.
(12) by their average values in accordance with,

i (w)= (e —1)71, (13)
where 8= («T).

To simplify the formulas somewhat, we specialize to
the case that the scattering atoms have a cubic environ-
ment. In this case (x.()xs(0))=20us(x(£)2(0)), where x,
is a Cartesian displacement coordinate of the atom
(e, 8=1, 2, 3), and we obtain,

ry

Jrr=——
2iko J o

dit eiA te—I‘t/Z

Xexp[ — ko¥(x®— cosfx (£)x(0))], (14)

where the subscript 7" and the angular brackets indicate
the thermal averaged values, A= Ey,— Eg, 0= < (k/ko),
and x is a Cartesian coordinate of the displacement of
the atom from its equilibrium position.

% This is manifestly not true for an Einstein model of a crystal,
in which the various atoms execute independent oscillations. In
this case (| fe1|2r=|{fer)r|[140(1)]. Unlike the real perfect
crystal, in this case there will be an elastic incoherent scattering
component due to (stationary) thermal fluctuations. A small
coupling between the oscillators will, however, make the thermal
fluctuations nonstationary, and their associated incoherent scatter-
ing inelastic. A sufficiently small coupling between the oscillators
cannot affect the observed scattering from a crystal in thermal
equilibrium; therefore, the formulas developed in the text for the
elastic scattering amplitudes from coupled oscillators apply also
to the cokerent elastic scattering amplitudes from uncoupled
oscillators. Similar remarks apply to atoms in the vicinity of an
imperfection contributing localized vibrational modes to the
crystal.
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III. DISCUSSION OF EQ. (14)

The imaginary part of fr,r for 8=0 serves to deter-
mine (as is discussed more fully in the next section) the
total cross section. The resultant formula obtained from
Eq. (14) is, for this special case, the same as that
derived and discussed by Singwi and Sjslander’® and
fundamentally the same as that in Lamb’s paper.’
Our discussion of Eq. (14) is mainly a straightforward
generalization of those contained in the two cited
papers.

The integral in Eq. (14) simplifies in certain regions
of the parameters involved.

In the first place for 6=90° (with our assumption of a
cubic crystal) f takes on the simple resonance form,

[T/ (2k)] exp(— ke?(x?))

(6=90°)=
S ) A+ir/2

(15)

For cosf ke2(x(t)x(0)) sufficiently small, an expansion
of f as a power series in cosf k¢ is useful, and in any
case such an expansion serves to bring out certain
general features of Eq. (14).

From Eq. (12) if we perform the temperature
average, and assume cubic symmetry, and take N
indefinitely large, we obtain

()2 (0))= 1M f doo »()es?

XL (#E(w)+%) coswi— (i/2) sinwt],

=/ g(w)e“tdw, (16)
where -
g@)=12Mo)w(w)[A(w)+1], if «>0 an
=h(2M |o|)v(lo)a(Je]), if «<O0.

dw v(w) is the fraction of crystal vibration modes with
frequencies in the range (w, w+dw), and 7i(w) is given
by Eq. (13). We might notice that g(w) is real and
positive. Then |Re{x($)x(0))| <{x2), |Re(E(#)x(0))]
< Re(@(0)2(0)], ete.; | Tm(x () (0))] < (32)(T=0), etc.
Thus the value and curvature of Re(x(¢)x(0)) are (not
surprisingly) maximum at {=0. Some information on
the magnitudes of the negative swings of Re{(x(#)x(0))
is given by:

Re/w(x(t)x(O))dt= 7g(0)=nCxT/2M,

where « is Boltzman’s constant, and C is the
constant such that v(w)=Cw? for small w. Therefore,
Re fo°(x(t)x (0))d¢ is linear in T, whereas (x?) remains
finite as T— 0 (and increases linearly with T for large
T’s). The proportionality constant C, in fact is given
by'® C=4r(27) ¥ ur3+us"*+us %), where v is the
atomic volume, the #’s are the sound velocities of the
three polarizations of sound waves propagating in a
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given direction in the crystal, and the average indicates
the average over all propagation directions in the
crystal. And this expression is well approximated by!®
C=3%3(k®)~3, where © is the empirical Debye tem-
perature of the crystal.

We may now expand fg,r, given by Eq. (14), making
use of Egs. (16) and (17), and obtain

12k0 X —'k02 2 Fz
(/2% exp( <x>>+<
A+iT/2

) exp(—k2(a2)

0

w g ©  pa(w)dw

XX —, (18)
=t ) )y A—wil)/2
where §=k¢? cosf{x?), and
@)= [ 1) par(x—y)dy, (19)
with, -
pr(@)=((#2)7"g (). (20)

It follows from Egs. (16), (17), (19), and (20), that
Pn(w) is positive and S~ Ppa(w)dw=1.

In Eq. (18) the term « £* corresponds to # phonons
being virtually emitted or absorbed during the scatter-
ing process. This expression [Eq. (18)] could, of course,
have been obtained directly from Eq. (3) without a
transformation to the time representation. The first
term in Eq. (18) (no virtual phonons) has a simple pole
at A= —iI'/2, whereas the succeeding terms correspond
to a continuous distribution of poles on the line
A=—il'/2. Tf (0™)n=J P0™pr(w)dw is the mth
moment of the nth distribution, one easily obtains
from Egs. (17), (19), and (20) that

() n=1nh/(2M(x%)),
and
(@) a—[(@")aP=n[M @) ] [{) -7 (4M (+%)) ],

where (e) is the energy per degree of freedom of the
crystal. For large #, p.(w) becomes the normal distri-
bution function irrespective of the detailed shape of
p1(w), the details being smoothed out by reiterations.
We may write Eq. (18) as

frr= /_ s

) (18")
w A—w—+il'/2

where { () is the pole strength density. { is real, and for
cosf>0, ¢ is positive. We have for the “total pole
strength.”

/ ¢ (w)dw= (Ek_) exp[ —ko¥(x?)(1—cosf) ], (21)
—o 0
and if we define

<wn>=[ ) ;(@dw]_l /_ w w@)de,  (22)

—00
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then we have for the mean pole position and the mean
square ‘“width” of the distribution

{w)=® cosb/#, (23)
and

() — ()2 =2® cosb(e)/72, (24)

where & is the so-called recoil energy, #2k¢*/2M, and {e)
is the mean energy per degree of freedom, /v (w)% (w)
X[7i(w)+3Jdw. If |A+iD/2] is sufficiently large com-
pared to the region of the w axis where { () is appreci-
able, then one may expand (18’) in terms of w, keep
only a few terms, and using the above results obtain
fr,rin a form depending only on a few simple properties
({x2),(e)) of the vibrating nucleus; the scattering being
in this case independent of the details of the crystal
vibrational spectrum. Also, if ¢ is large, the major
contributions will be from the large “»” terms in Eq.
(18) (n=2t) where the p,(w)’s are Gaussian, and again
(18), or (18"), can be evaluated and depends only on
the above simple properties of the vibrating nucleus.
Each of these cases may be discussed in a more
“anschaulich’” manner working directly from Eq. (14)
(short-collision-time approximation) and we defer their
discussion until later.

If £is not large, so that just a few terms of Eq. (18)
are important (just a few phonons emitted or absorbed),
then fr,r may become sensitive to the details of the
vibrational spectrum, and this constitutes a method for
the experimental investigation of crystal vibrations.

For small £ retaining for simplicity only the one-
phonon term in Eq. (18), we have

_ (T'i/ 2k0) exp(—ko*(a?))

R,T +k?(x2) cost(T';/2kg)
A+iT/2
.00 d
Xexp(— k02<x2>)/ —?i(—cﬂ—w—— (25)
w0 A—w+il'/2

Now, p1(w)=0, if |0|>wn» (maximum crystal vibra-
tionfrequency). If I'/2>>w,, then again we have the short
collision time case, but if I'/2 <w,, then more detailed
knowledge of p;(w) may be obtained by determining
experimentally the A dependence of the cosf term in
fr,r. If T'/2 becomes small compared to the region in
which p1(w) changes appreciably then we obtain

_ (T's/ 2ko) exp(—ki¥(x?))
o A+iT/2

+ k¥ (x2) cosf exp(— ke*(x?)) [ —imp1(A)

+P.P. / i Pl(w)dw], (25)

e A—w

but now, aside from the term k¢(x%) cosf, the second
term in Eq. (21') is of order |A4iI'/2|w, " relative to
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the first term. To obtain a measurable effect, then, it
would be necessary that I'/2 not be very small compared
to wm. In other words, the optimum conditions for
determining the vibrational spectrum by means of
resonant elastic scattering would be when the life time
of the excited state is neither very long nor very short
compared to the maximum crystal vibrational fre-
quency. Incidentally, we see from this discussion that
if T'/2 is sufficiently small the variation of fr,» with A
for |A|<<wy is due almost entirely to the first, simple
resonance, term in Eq. (25). This is, of course, also
true if £ is not small and we keep higher phonon terms
in Eq. (18), since the successive p,(w) become broader
and smoother. Strictly speaking these estimates assume
that pi(w) is a smooth function, if it should have a
“spike” with width ew,, then it would be only when
I'/2«< ew,, that the variation of fr,r with A would be
independent of the vibrational spectrum for small A’s.
(ewm)™ determines the time required for the oscillation
of (x(£)x(0)) to decrease appreciably in amplitude. If
| A4iI'/2| <K ewn then the first term in Eq. (21) or Eqg.
(18) represents the contribution to fg,r coming from
Vs >(ewm)™, whereas the phonon terms represent
the contributions from smaller #’s (which, in-
cidentally, vanish relative to the no phonon term as
| A44l'/2| (ewm)™).

The other cases in which Eq. (14) simplifies and
becomes independent of the details of the vibration
spectrum are when the major contributions to the
integral in Eq. (14) come from (a) such small values of ¢
that the first few terms in its Taylor series suffices to
approximate (x(#)x(0)), or (b), such large values of ¢
that we may set (x(£)x(0)) zero.

In order to estimate fgr » in cases where kg(x%) cosf is
not necessarily small, we note from Eq. (16) that
Re(x(t)x(0)) is maximum at ¢=0, it goes negative at ¢
of the order of w,! (where w,, is the maximum vibra-
tional frequency of the crystal), usually positive again,
etc.; its amplitudes of oscillations, according to Van
Hove, eventually going to zero as (3.

If |A+4i0/2] is of the order of w, one will obtain
appreciable contributions to the integral [Eq. (14)]
from #'s such that nucleus has undergone, perhaps,
several oscillations, and fgr,r will be sensitive to the
details of the crystal vibration spectrum. An exception
to this occurs, however, if k¢*(x?) cosf is sufficiently large
and positive, in which case only #’s such that <<w,!
need be considered as contributing appreciably to the
value of fgr,7.

If |A+i1/2|>w, then only s <Kw, ! contribute
appreciably. An exception to this, however, occurs if
for given |A+4iI'/2|, k(x?) cosf is sufficiently large
and negative, in which case the major contributions to f
may come from #'s =w, .

If (<t:<Kwnt then (x(#)x(0)) may be well approxi-
mated by the first few terms of its Taylor series;
retaining only terms up to # we obtain as an approxi-
mation to fr,r,%%
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Sr.r= (Ti/2tko) exp[[—ke?(x2)(1—cosb)]

t1
X / exp[Z(A—® cosf)t Je T2
0

Xexp[ — (®{e) cosd)$2]dt, (26)
where ® and (e) are defined after Eq. (24).2

It is interesting to note that according to Eq. (26)
the elastic scattering resonance is shifted to lower
energies if cosf#<0, as if the nucleus were moving
toward the incident particle before the collision, which
is not surprising.

If |A4+iT/2|wst is not small, and, |{A+T/2|w.?
+®(e) cosbw,,~2>1, then Eq. (26) is a good approxi-
mation to fr,r. Under these conditions we may re-
express Eq. (26) in the standard form.

fr,r= (Ti/2k0) exp[ —ke*(x?)(1—cosh) ]
if cos#>0, and

00

fr.r= (Ti/2ko) exp[ — ko*(x2) (1 —cosf) ]

-

if cosf<O.

Equation (30) exhibits the familiar form (except for
the cosf factor) expressing the effect on the resonance
of the distribution of velocities of the scatterer as simple
Doppler shifting of the resonance frequencies, this
generally has the effect of lowering the maximum
scattering amplitude. Equation (31) indicates (for
cosf#<0) a spread of widths, resulting in a larger
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Jr,r= (Ti/ 2iko) exp[ — ko*(x*)(1—cosb) ]

XY;(G’L(Q cost)~hw(f), (27)

where {=%(A—® cosf+iI'/2) (R{e) cosh)~%, and

w(w)= (2i/r/7) exp(—2?) / Coy @)

w(x) may be expanded for large and small |x| and is
tabulated? for middle size |x|’s. Using?

1 = exp(—2)dt
w(x)=— / p—-— (29)
TJ x—1
Eq. (27) may be put into the forms,
© (4r®{e) cosf)* exp(—x2/4®R{e) cosh)
dx, (30)
—o A—® cosf—x+il'/2
(4r®{e)| cosh| )% exp(—x2/4R{e)| cosh]| ) 31
A—@® cosf+i(T'/2—x) x, 1)
Eq. (14) in the form
T/ 2ko) exp(—ko*(2%)
e A+iT)/2
+(T's/ 2iko) / et TH2 exp (— ko?(x?))
0
X [exp[ko? cost{x()x(0))]—11dt. (33)

maximum scattering amplitude than the zero-velocity
case. For cos8>0 the effective lifetime is decreased due
to the scatterer’s motion; for cos§ <0 it is increased.

For large { we may approximate Eq. (27) for fr,z
by22

fr,r== (T'i/2ko) exp[ — k?(x2)(1— cosb) ]
0.665 0.167
J .
A—@® cosf+1T'/2 A—Q® cosf+il'/2+4«

0.167
| | e
A—@® cosf+il'/2—x

where x=2.44[G{e) cosf}. If either (A—Q® cosb)
X[®{e) cosd T2, or (I'/2)[R{e) cosf# is greater than
4, then Eq. (32) represents Eq. (27) with less than 19,
€rror.

Turning now to the long-collision-time case, it is
convenient to follow Singwi and Sjdlander and rewrite

21 G, H. Vineyard, Phys. Rev. 110, 999 (1958).

Now {x(#)x(0)) goes to zero as {~% as { — .2 Let {, be
such that for ¢>fs, |k cost{x(f)x(0))|<K1l. Now if
| A4iT/2|#:K1 the first, simple resonance, term in Eq.
(33) represents the contribution to Eq. (14) of #'s>1,
whereas the second term represents the contribution
of #’s<t,. In the second term |A-+iI'/2| may be set
zero (neglecting term of relative order |A+4-4I'/2]|t),

2V. N. Faddeyeva and N. M. Terentev, M athematical Table
Series (Pergamon Press, New York, 1960), Vol. II.

2 We have ignored the effect of anharmonic terms in the crystal-
line potential energy on the crystal vibrations, as did Van Hove
in his derivation of the =% law (reference 12). The effect of these
terms, which lead to a “finite phonon lifetime, will be an eventual
exponential decay of the correlation function, (x(£)x(0))~e™.
A crude estimate of a is a= (atomic displacement--interatomic
distance)Xwn=~a few percent of w, at room temperature. Now
«a may be ignored if I">a, of course, or generally in the short-
collision-time case; but even if I" is comparable to or smaller than
« only the value of the integral in Egs. (33) and (34) is affected,
and for long collision times this integral is small compared to the
simple resonance term. In a crude approximation the effect on the
integral may be estimated by the replacement w — w—ina in the
denominators of Eq. (18), which gives a small effect so long as
pn(w) varies relatively little in Aw=~na.
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and we obtain,
(T's/ 2ko) exp (— ke*(x?))
A+iT/2

R, T

- (04/2ik) / exp(—kia2))

X [exp[ko? cost{x(H)x(0))]—1]dt, (34)
for |A+iI'/2|t:<<1. The second (nonresonant term) is
or order, | A+iI'/2|t, relative to the first term, and is
then negligible for sufficiently long collision times.*
If we keep (I'/2)¢:<1 but vary A, then as A becomes of
the order of ;! the variation with A of the second term
in Eq. (33) may become as important as that of the first,
fr,r in this region becoming a complicated function of
A depending on the details of the crystal vibrations. For
sufficiently large A, or sufficiently large k¢ cosf(x?),
such that the conditions leading to Eq. (27) (deleting
the condition |A+iI'/2|w,' not being small) are
satisfied, then Eq. (27) may be used to represent the
integral in Eq. (33).

For a simple monatomic crystal £, may be taken as a
few times w, '~[x®], but for a molecular crystal
there may be modes of vibration of a single molecule
which decrease in amplitude with a characteristic time
much longer than w,?, i.e., in »(w) there may be
“spikes” with widths much less than w,. We might
have a situation in which #;<<w., is satisfied. In order
to gain some insight into the effect of such spikes, we
evaluate Eq. (14) assuming »(w)=08(w—wo), i.e., we
take an Einstein model for the solid. In this case
we obtain

Jr,r= (Ui/2ko) exp(—ko*(x?))
© m[2 Im 2 3
" 5 <f) ((Pq)'s) ,
m=—w \q A—mwoy+iT'/2
where

p=[A(wo)+ 127 (w)+1]7, ¢=7n(w)[27(w)+1]7,
=k cosf{x?),

(35)

and

—l Y
EASRE vy

z2n

—emi2],(2i5)  (36)

is the modified Bessel function.

IV. TOTAL CROSS SECTION,
INELASTIC SCATTERING

Our discussion to this point has been concentrated
upon the elastic scattering amplitude, but of course the
amplitude of the elastically scattered wave (more
exactly the coherent part of it) in the forward direction

% A rough overestimate of its relative magnitude is
| A+3T /2| wm™ exp (ke[ cosB| (x2)).
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determines the total cross section, in accordance with
op= —4‘7T'k0_1 Il’nf(kf—:ko) (37)

Inserting the expression obtained in the preceding
sections for fg,r into Eq. (37), one finds the expressions
for or obtained by Lamb® and Singwi and Sj6lander.!
Along with Lamb we have neglected the dependence of
the lifetime of the compound nucleus on the crystal
binding, and the dependence of the resonance width
on the energy of the incident particle. Furthermore, in
the preceding sections we have computed fr,r for a
single scatterer. Inserting such a value of f into Eq.
(37) cannot properly represent the effect of interference
of the waves from the various scatterers on the total
effective cross section. If ko is not at a Bragg angle of a
single crystal there is no coherent elastic scattering,
and then inserting fr,r into Eq. (37) will overestimate
the total cross section; whereas if ko is at a Bragg angle
we would get an underestimate of the total cross
section. For a powdered crystal these effects tend to
compensate each other. In addition, since at a non-
Bragg angle there is no coherent elastic scattering the
effective width of the resonance is decreased, at a Bragg
angle, increased. So long as I';/T'<1 these effects are of
little importance and may be neglected.?® In order to
take them properly into account one must consider
multiple scattering of the waves. :

In addition to the total cross section one may obtain
the total differential inelastic scattering from the elastic
differential cross section in most cases of practical
interest (the velocity of the incident particle large
compared to that of the target nucleus).

One has for the differential scattering cross section,

2 Pz 2
n Eko_ER—' (én"‘ 6n0)+ir/2 (Zko)

(Xu| €780 %[ X o) 2rT:\?
: il ()
n Eko‘_ER_' (En_ e,m)—I—zI‘/Z Zk()

= (o7/4m)(T;/T),

where in the second line we have assumed that we
could neglect the variation of &; in the sum over states.
Thus, in this case, the elastic plus inelastic differential
scattering cross section is independent of scattering
angle, and knowledge of the total cross section and the
differential elastic cross section allows us to obtain the
total differential inelastic cross section.

do

daQ s

(X"f | &= 7 7| X ) (Xp | 80 'r! Xno)

~
=

(38)

V. CONCLUSION AND EXAMPLES

If the collision time, |A4-4I'/2|~!, is very short
compared to the time required for the struck nucleus
to move appreciably [for (k;-r(f)ko-r(0)) to change

25 Such coherence effects are dealt with by the author in refer-
ence 7 and M. I. Podgonetskii and I. I. Raizen, J. Exptl. Theoret.

Phys. (U.S.S.R.) 39, 1473 (1960) [translation: Soviet Phys.—
JETP 12, 1023 (1961)7].
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TaBLE I. Mean square atomic displacements.

4 (S] (27X 108)2(x2)o (2 X 10%)%(x2)300
Fe 57 355 0.07 0.25
Cd 112 165 0.078 0.51
Au 197 164 0.04 0.32
Pu 240 200 0.027 0.13

appreciably from (k;-rko-r)], then the elastic scattering
amplitude near resonance is just the usual Breit-
Wigner expression multiplied by, exp[—3((k; 1)
+ (ko-1)2—2(k; 1) (ko-1))]. If the collision time is long
compared to the time required for (ks -r(f)ko-r(0)) to
become negligible, the multiplying factor is got from
the above by leaving out the (k;-rko-r) term, there
being no correlation between the places of absorption
and subsequent re-emission. Assuming, for simplicity,
that the nuclear vibrations in three perpendicular
directions are independent and equal in amplitude
(cubic symmetry) the multiplying factors simplify,
becoming exp[ —k(x?)(1—cosh)], for fast collisions,
and, exp(—Fke¥(x?)), for slow collisions.

In the slow-collision case the elastic cross section
becomes negligible rapidly as, k¢*(x?), becomes larger
than one. In the fast-collision case, on the other hand,
the multiplying factor is always one in the forward
direction, and the total elastic scattering cross section
decreases just as [k¢*(x2) ] as k¢*(x?) becomes large.

In Table 126 we give the values of (x2?), estimated using
the Debye model?” of a solid, for a few metals. We give
(27X 108)%(x%); to obtain k¢(x?), one must multiply by
[E(kev)/12.3* in the case of y-ray scattering, and
[E(ev)/0.07], for neutron scattering. It is seen that for
1 A radiation the Debye-Waller factor is near one even
at room temperature, whereas for 0.1 A radiation, even
at low temperatures the factor will be small.

The widths of nuclear levels less than about 100 kev
above the ground state are less than about 10~% ev.
Since the vibration frequencies in solids correspond to
a fiwp,=k®=a few hundredths of an ev, y-ray reso-
nances resulting in appreciable elastic scattering will
correspond to slow collisions. For the slow neutron
resonances, on the other hand, one has an excitation
energy of the compound nucleus of about 10 Mev and
level widths ranging from several hundredths to a few
tenths of an ev, corresponding to medium to short
collision times.

As a first numerical example we consider the scatter-
ing of 14.4-kev vy rays by Fe¥. I'/2=2.3X10"° (ev),
and, from the table, k¢Xx%)300~0.34. In Eq. (25) the
second term is only about 107 as large as the first term
if A is of the order of I'/2, and may be ignored. If the

26 The values of the Debye © are taken from the American
Institute of Physics Handbook (McGraw-Hill Book Company, Inc.,
New York, 1957) except that the value for Pu was taken to be
lti}slfefiame as that listed for U, a value of © for Pu not being found

27 For a review together with curves to aid in the computation
of (x?) see, for example, E. Cotton, reference (4).
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Fe® is in a magnetically-ordered crystal, then the
Zeeman splittings of the ground and excited states are
somewhat larger than I'. Taking account of the fact
that the transition is a magnetic dipole transition,
we have

=X

“

e % (R 1,8) D (oo, E)C2 (ol 15 mows)

exp (— ko*(x2))
[ Exe— Er(mao, mo+-u)+iT/2]

where f is the amplitude of the elastically scattered
wave in the By direction with polarization m' (&1 for
right- or left-hand circularly polarized waves), if a
photon of energy Ej,, polarization , is incident in the
ko direction on a nucleus which has a magnetic quantum
number m along the z axis. joand j; are the spin of the
ground state and the excited state, respectively. The
notation for the rotation matrixes (D) and the vector
addition coefficients (C) are those of Rose.?8 y=-41
correspond to right- and left-hand “circular” oscillators,
p=0, to a linear oscillator along the z axis. The C?
factor gives the oscillator strength, the Eg(mo, mo+u)
the oscillator frequency, and the D’s the usual angle-
dependent excitation and emission factors for these
oscillators. The coherent amplitude is obtained from
Eq. (39) by averaging over the initial spin states, i,
and if we assume negligible nuclear polarization we

obtain
fen=(270+1)" 2 m, f, (40)

where f is the right-hand side of Eq. (39). Equation
(40) simplifies if the splittings are negligible compared
to I' (magnetically disordered state, e.g., Fe in stainless
steel) ; replacing all Eg(mq, mo+p) by Eg, we obtain?8

3 25+1 PR
coh='£3 2 ’1— mm’(l)(kj'ko)
iy I exp(— ki)

2k [ Exy— Ex+iT'/2]

X (T'i/ 2ko) (39)

(41)

If we square Eq. (41), integrate over angles, and sum
over m', we obtain,

2 12j141\?
o'coh':_“( )
3 \250+1

Also, from Eq. (41) and the optical theorem [Eq. (37)],
we have for the total cross section, ’

(Zjl—l—l\ INT exp(—ke(a?))
IT= .
"\ 2ok 1/ 4k | Bry— En+iT)2)?

I;exp(—ko(a?) |2
2k Exe— Ex+iT/2]1

(42)

(43)

Inserting numerical values for Fe® (jo=3%, ji=3%,
T;/T=(140a)'=15", a=interval conversion coeffi-

28 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957), pp. 32, 48.
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cient), we obtain o,n=3X10'b, and or=10°b at
resonance.

As a second example we consider the 77-kev level
in Au® [I/2=1.1X10"7 ev, (I';/T')=0.227. At zero
temperature we have k¢*(x?)=1.6, at room temperature
it is some eight times larger, so appreciable scattering
will occur only for 7<<164°. At these low temperatures
the corrections to Eq. (39) are still only of the order of
e16X10~5~10~* of the resonant value of Eq. (39), and
thus may be neglected, near resonance, at low tem-
peratures. Assuming that the (34)— (34) transition
is predominantly M1, Egs. (41) and (42) will also apply
to this case. Inserting numbers into Eqs. (42) and (43)
we obtain oen=200 b, and oc=3X10%b, at resonance.

Turning now to neutron resonances it is only neces-
sary to multiply fr,r by [(27:+1)/2(25+1)7] to
obtain the coherent scattering amplitude (unpolarized
neutrons, unpolarized nuclei).

As a first example we consider the 4.9-ev neutron
resonance in Au'’. These neutrons have a little shorter
(3/4) wavelength than the 77-kev vy ray. We have®
T/2=0.07 ev, T',,/2=0.008 ev, jo=%, j1=2, and, from
the table, k¥(x?)=2.9, at low temperatures. Now,
fwn~k®=0.014 ev, and so the conditions (short
collision time) leading to the validity of Eq. (24) are
met. We have ®=4.9/197=0.025 ev and () ~37wn at
low temperatures (in the Debye approximation {(e)

® Newton Cross Sections, completed by D. J. Hughes and R.
Schwartz, Brookhaven Natural Laboratory Report BNL-325
(Superintendent of Documents, U. S. Government Printing Office,
Washington, D. C. 1958), 2nd ed.
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=3%w,=0.005 ev). Approximating Eq. (27) by Eq.
(32), we have

5103
8—2‘9 (1—cosb) l:

0

0.665
A—0.025 cosf+-0.074
0.167
+
A—0.025 cosf+-0.07:40.027 (cosh)*

0.167
+ J (44)
A—0.025 cosf+0.07¢—0.027 (cosf)*

fcohz

The corrections to the resonance denominator of the
simple fixed-nucleus Breit-Wigner formula are small,
but not completely negligible. Equation (44) when
squared yields a maximum, doen/dQ=200e72%" b/sr,
for small 6.

As our last example we consider the 1-ev resonance
in Pu?®. This resonance is given as having the remark-
ably small width, T'/2=0.017 ev, I',/2=0.001 ev.?
According to our estimate of @ for Pu, fw,=~0.02 ev.
Consequently, the coherent scattering amplitude, and
therefore the total cross section, will be rather sensitive
to the details of the phonon spectrum (during the
scattering process the nucleus will execute a vibration
or s0). According to the table the Debye-Waller factor
is not small even at room temperature. The scattering
amplitude will, then, not be very small in the region
for which Eq. (25) is valid, and an experimental study
of the coherent scattering could give detailed in-
formation concerning the crystal vibrational spectrum.
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Nuclear Magnetic Relaxation of a Three-Spin Asymmetric Molecule in a Liquid*

G. W. KatTAwAR AND M. EISNER
Department of Physics, Texas A & M, College Station, Texas

(Re~eived December 26, 1961)

The semiclassical density-matrix theory

¢ relaxation is employed to calculate the relaxation of the z

component of nuclear magnetization of molecules in a liquid for the case in which three identical nuclei of
spin % are arranged at the vertices of an isosceles triangle whose angles are 30°, 30°, and 120°. It is found
that, if the initial state of the spin systems is characterized by a spin temperature, the relaxation consists of
the sum of seven terms which decay exponentially with different time constants. It is also found that even
though the z component of the magnetization is a function of seven distinct time constants, a plot of
In(M,—M,) can be approximated by a single straight line for regions of experimental interest. The time
constant for this straight line differs less than 19, from the average relaxation time calculated from the

formulas of Gutowsky and Woessner.

I. INTRODUCTION

HE semiclassical density-matrix theory of relaxa-

tion was employed by P. S. Hubbard! to calculate

the relaxation of the z component of nuclear magnetiza-
tion for a system of identical nuclei of spin § arranged,
respectively, at the corners of an equilateral triangle or

* This work was supported by the U. S. Air Force Office of

Scientific Research.
1 P. S. Hubbard, Phys. Rev. 109, 4 (1958).

a regular tetrahedron. Hubbard showed, for the former
case, that, although the z component of the magnetiza-
tion relaxed with two distinct relaxation times, the
relaxation was dominated by a single relaxation time.
This relaxation time differed less than 19 from the one
calculated using the method of Gutowsky and Woessner?

2H. S. Gutowsky and D. E. Woessner, Phys. Rev. 104, 843
(1956).



