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Perturbation Theory for the Fock-Dirac Density Matrix*
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In Hartree-Pock theory and its various generalizations, it is customary to solve an eigenvalue problem
involving an effective one-body Hamiltonian. The eigenvectors determine the Pock-Dirac density matrix,
which also appears in the effective Hamiltonian, and solution proceeds iteratively until self-consistency is
achieved.

An alternative (necessary and sufhcient) condition for a solution is that the density matrix (9) is idem-
potent and commutes with the Harniltonian (h). The change in 9, accompanying a change 4 in h, can then
be expressed as a perturbation series. Formulas for the perturbation, to all orders, are obtained in terms of
the unperturbed Hamiltonian and density matrix. It is also shown that the whole perturbation may be
obtained directly, without separating the orders, and that the approach is related to earlier steepest-descent
methods.

I. INTRODUCTION of p&(1; 1') itself: this 1-body quantity is the "Fock-

T is well known that the energy of a system with
~ ~ Hamiltonian

p(1 1')=pi(1 1')=Z A(1)A*(1'),
1x=g xi(i)+—g'xs(i, j)

1
+—p x,(i,j,k)+",

3t i, ~., a

can be written in the form

1
E=Tr Xipi(1; 1')+—Tr Xsps(1,2; 1',2')

2I

+—Tr Xsps(1,2,3; 1',2',3')+
3t

(1 2)

where the "e6ective 1-body Hamiltonian" for a
particle at point 1 may be written'

f)(1)=x (1)

and may be regarded4 as describing an ensemble of Ã
noninteracting particles, each with unit probability of

(1.1) being found in one of the states lt'r, fs,
In self-consistent field theories we determine optimum

orbitals by seeking the stationary values of K The
optimum orbitals Pr, Ps, . f~ then appear as solutions
of a 1-body problem,

(1.5)

A(1) A(2) " A(&)
1

Ps(1) Ps(2) ~ ~ Ps(lV) (1 3)
~ ~ ~

~ (1) ~ (2) ~ P)
C(1,2 7)=

v'P i)

where p„(1,2, . rs; 1',2', rs') is the reduced density
matrix for e particles and is normalized so that
p„(1,2 n; 1,2 . I)dx&dxs dx„ is the probability of
finding n particles simultaneously in (space-spin)
volume elements dxldx2 . dx„at points 1, 2, e of
configuration space. It is also known' ' that when the
wave function has the 1-determinant form

+ Xs(112)(1—(P,s)pi(2i 2') ~s „,dx,+, (1.6)

and e is an "orbital energy. "The function 4 is then the
exact wave function for a "model" in which N inter-
actionless particles each move in a common field
described by the potentials in f). It must be remembered
that the permutation operators in the integrands in
(1.6) also work on the operand. Thus, when only 2-body
Coulombic terms appear in (1.1) the 1-electron "model"
Hamiltonian is

1)(1)=x (1)+8(1)—x(1)
(each f; being a 1-electron function or "spin-orbital" ) where the rl and X operators are defined by
all the reduced density matrixes are expressible in terms

*This work erst appeared as Preprint No. 61 (15th March,
1961) from the Quantum Chemistry Group, Uppsala University,
Sweden.

$ On leave of absence (1960-61) from Departments of Mathe-
matics, Physics and Chemistry, University of Keele, Staffordshire,
England.' P. A. M. Dirac, Proc. Cambridge Phil. Soc. 27, 240 (1931).

2 J. K. Lennard-Jones, Proc. Cambridge Phil. Soc. 27, 469
(1931).' P.-O. Lowdin, Phys. Rev. 97, 1490 (1955).

g(1)tt(1)= Xs(1,2)pi(2; 2)dxs it(1),

(the "Coulomb" operator)

X(1)f(1)= Xs(1,2)pr(1;2)f(2)dxs,

(the "exchange" operator).

' R. McWeeny, Revs. Modern Phys. 32, 335 (1960).' P.-O, Lowdin, Phys. Rev. 97, 1509 (1955), Eq. (43).
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Since the potential in the 1-electron model depends
upon the density matrix (i.e., upon the orbitals which
appear as solutions), the equation (1.5) is usually
solved iteratively until self col-sisletscy is achieved.

Recently, the original self-consistent field (SCF)
theory has been generalized in various ways, formal
m-body interactions have acquired considerable im-

portance, and it seems opportune to re-examine the
basic problem of obtaining a self-consistent Fock-Dirac
density matrix. In the generalizations due to Brueckner
and others (see also Lowdin'), the exact wave function
for the actual system is related to those of the model by
means of a projection operator 0 (which depends upon
both the ground state and a complete set of excited
states of the model): thus we write

where C is a one-determinant solution for the model. The
exact energy of the actual system is then

E= (eC)*ae(ee)Cx= C*etXeeCx= C*Xedx;

where BC= GtK8 is a forma/ Hamiltonian of type (1.1),
containing m-body terms. The same device has been
used extensively by Lowdin' in discussing systems with
definite spin in terms of a one-determinant function C:
In this case 8 is a spin operator which projects from an
arbitrary C a given eigenfunction of S' and S,,

The basic SCF procedure is as follows. Given an
estimated effective Hamiltonian f)s with eigenfunctions
l//i lfls ' ', we compute a Fock-Dirac density matrix pp

and hence a revised effective Hamiltonian,

f) = f)p+6.

After revising the Hamiltonian, we recalculate the
eigenfunctions and obtain a new density p. The process
is then continued until revision is no longer necessary,
density and Hamiltonian being self-consistent. In any
one step, we start from l)s and ps and must proceed to
the revised quantities, 'f)=f)a+6 and p=pp+8p. We
wish to obtain Sp directly, without having to solve the
eigenvalue problem (1.5) for the individual eigen-
functions —which in themselves have no significance
until self-consistency has actually been achieved. This
problem will be solved by a perturbation method, not for
the eigenfunctions but for the Fock-Dirac density
matrix itself.

II. PERTURBATION THEORY

We shall introduce an arbitrary complete set of
1-electron functions since the theory may then be
formulated in a convenient matrix language. 47 The
matrices are in principle infinite (giving, for example,

P.-o. Lowdin, Quantum Chemistry Group, Uppsala Uni-
versity Technical Note No. 48, 1960 (unpublished).' C. C. J. Roothaan, Revs. Modern Phys. 2B, 69 (1951).

(2.2)

The array of coefficients, y= Lp,,f, is the density matrix
referred to the discrete basis and is given by

(2.3)

A sufhcient condition for stationary energy is that the
columns of T a,re eigenvectors of

hc= cc, (2.4)

where h is the Hamiltonian matrix with elements
h;;= J'g;*f)P,dx. This is the matrix counterpart of (1.5).
These results may also be written

hT= Ta) a=diag(eies .e„) (2.5)

and it readily follows that

(2.6)

Because the m orbitals are assumed orthonormal, g has
the projection operator property of idempotency:

(2.7)

Conversely, (2.6) and (2.7) are the necessary and
sufficient conditions that E Lgiven by (1.2)] is station-
ary against variation of the f's, subject to preservation
of orthonormality (see, for example, reference 4). The
dependence of jtI upon g will be expressed by writing
h=h(y) but the precise form of this dependence is
irrelevant. We shall suppose that a first approximation

exact Hartree-Fock functions) but truncation is equiva-
lent merely to the application of constraints and does
not affect the formulation: the resultant solutions are
then "best approximations" of truncated form.

In the present context the perturbation 4 is purely
formal, and the perturbation approach is merely a
device for solving the nonlinear equations of SCF
theory. But the same formulation applies, of course,
when 6 represents an actual perturbation. Thus, $s and
pp may describe a model system of noninteracting
electrons (as in simplified molecular and solid-state
theories) while 6 may represent the effect of applied
electric or magnetic fields. Again, the advantage of a
density matrix approach is that the d'hote systems of
electrons is dealt with and it is unnecessary to consider
separately the perturbation of each one-electron energy
level.

SuPPose there are ts occuPied orbitals in C, Pi, lt s,
and that these are constructed from m orthonormal basis
functions pi, Ps, P, where its may be assumed arbi-
trarily large. Collecting the functions into row matrices,
we may write

(2.1)

where T is a rectangular nz)&e matrix, and the Fock-
Dirac density becomes
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is available and satisfies symmetry requires

We then calculate

liogo= goho,

go =go

~1()—g1 ()

This means that gp+g(') is idempotent to first order
provided g&'& is of the form

h=h(go) =ho+&, (2.9) g
(1)—

g
(1)+g (1) (2.13)

and wish to find a corresponding g satisfying (2.6) and
(2 7).

First, we proceed in the Inanner of ordinary perturba-
tion theory, imagining A to contain a "perturbation
parameter" 7 (X ~ 1) and supposing

g= go+g"'+g"'+ (2.10)

where p'~) is the correction term containing X~. On
inserting (2.10) in (2.6) and (2.7), and separating the
orders, we obtain

hog)1 ' —gll ')ho=0,

lipg12 g12 ho +12

hog21 g21 lip+ +21

h()g„' —g22"'ho =0.

(A1)„
(A1) 12

(A1),1

(A1),2

containing intersection terms only.
On substituting (2.13) into (A1) and resolving cL

into its four components, we obtain

hogo goh0=0,

h()g(") —g(')hp+ Ag() —gpA =0,
~ ~ ~

g(k) g(k)h +~g(k—1) g(k—1)~—0

o =go,

(AO)

(A1)

(80)

The first and last equations are automatically satisfied
from (2.11) while (A1)12 and (A1)21 are Herrnitian
conjugate. We need determine, therefore, only p» "&. If
we assume hp nonsingula, r (which may always be ensured
by suitable choice of energy zero), the inverse exists a,nd
(A1)12 may be written

x= lip xllp+lip %12=f(x)) (x= g12( )). (2.14)
gpg(1)+g(1) gp

—g(1) (81)
~ ~ ~

g g(k)+g(l)g(k —1)+. . .+g(k—1)g(l)+g(k)g —g(k) (Bk)

A formal solution may then be obtained by iteration.
Thus if we take xp=0, xl ——f(xp) = hp 'cL)2 and in general

Equations (AO) and (80) are satisfied according to
(2.8). To obtain the kth order correction we must solve
(Ak) and (Bk), but since these equations contain the
preceding orders it is necessary to proceed step by step.

1st Order Correction

xk~i=f(xk) =ho 'xkho+ho 'a)2

then the limit of the sequence gives

g
(1)—P h —(n+1)/ li n

n=o

(2.15)

(2.16)

Since yo is a projection operator it defines a certain
22-dimensional subspace Sl in the space spanned by
the 2)2 basis function: I—gp ——gp' defines the comple-
mentary subspace S2 and we may use the identity,

M = gpMgp+ gpMgp'+ gp'Mgp+ gp'Mg()'

M 11+M 12+M 21+M 22

to resolve an operator into its projected components' in
Sl and S2 (Mli and M22) and in the "intersections"
(M12 and M21). It is readily seen that the components
are linearly independent and that A= 8 is equivalent to
A;;=B,; (i, j=1,2). If we resolve g(" into its compo-
nents, (81) yields four equations, one for each compo-
nent. Observing that A,,Bki ——0 (jNk), these are

(81)11 ~ 2gll gll j (81)12 g12 g12

(81)21 ~ g21 g21 i (81)22 ~ 0 g22 ~n

We examine the convergence of the process in detail in
Sec. 4. Here we note that for 22~ 00 hp tends to a
multiple of the projection operator for the eigenvector
with numerically largest eigenvalue; if this is included
among the occupied orbitals, which define gp, we shall
have

&12lio"= &12go'ho" ~ 0,

since yo' is the projection operator for the subspace
spanned by the unoccupied orbitals. Hence by choosing
the energy zero so that the occupied orbitals correspond
to numerically largest eigenvalues we can at least
ensure that the individual terms in (2.16) tend to
zero for m —+ ~.

2nd Order Correction

If we resolve (82) into its four components, we obtain

~11(1) y22 (1) (2.11)

while y12~'& and g21&" are arbitrary, though Hermitian

'The notation should not be confused with that for matrix
elements. M;; is still an m&&m matrix.

(82) il.
(82)i2.

(82)21.

(82)22.

2gll +g12 g21 gll i

f12 f12

1021 $21 j

y2]. $12 $22
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and, hence,
gll( ) — P12( ) ~21( )

$22 $21 y»
(2.17)

M12 (t)ll +11+f12 +22 +lit)12
—a)2().2("&J, (2.22)

and obtain by iteration

hpgll gll hp+ +12/21 t)12 +21

h0$12 $12 hp++ ii/12 f12 +22

h0$21 f21 hp++22g21 f21 +11

(A2)11

(A2) 12

(A2) 21

hpg22 f22 hp++21g12 f21 +12 0 ~ (A2) 22

It is readily veri6ed that the 6rst and last equations are
satisfied when yll& ) and g22(') are chosen according to
(2.17). Thus (A2)11 becomes

hpg12 f21 +f12 f21 hp+ +12/21 f12 +21

Lh, &„( )

f12 h0$21 + f12 hpy21 '

where we use the fact that g»"' and y»&') satisfy the
first order equations (A1)» and (A1)». Equation (A2)»
then completely determines the second order correc-
tion. If we introduce

M12 f12 +22 +llgl2

(A2) 12 may be written

while y»(2) and g21(2) are undetermined. The (11) and
(22) components of the second-order correction are thus
completely determined by the @rsvp-order correction, and
it is only necessary to obtain y»"). This follows from
(A2) which gives

(2) —P Q
—(n+1)M (k—1)h n

n=p
(2.23)

From (2.21—23), the perturbation of the density matrix
may be obtained to any desired order.

III. ENERGY FORMULAS

The conventional Rayleigh-Schrodinger perturbation
theory applies to the individual eigenvectors and eigen-
values of (2.4). The preceding discussion reduces to this
special case when there is just one occupied orbital and
T in (2.5) is a single column c: we then have 0= cthe
=Trhy and may obtain the perturbed energy accord-
ingly. In the present context, however, the orbitals in
(1.3) have no individual significance, since the wave
function is invariant under unitary mixing. Thus, new
orbitals

give exactly the same Pock-Dirac density,

y= TU(TU)'= TT'= t).

From (2.5), the only invariant energy is then the sum of
the 22 orbital energies,

x=hp 'xhp+hp 'M» "', (x=y)2" ) (2.19) (3.1)

which is of the same form as (2.14). The second-order
Since this quantity is of considerable importance in the

correction is accordingly
independent-particle model, it is of interest to obtain
the perturbation series

(2) —Q h —(n+1)M(1) h n

n=p

0th Order Correction

(2.20)
h = hp+ h(1)+ g (2)+. . .

From (3.1) it follows that

(3.2)

If we resolve (Bk) into its components, it becomes
clear that y»&~' and y»&~' are again determined entirely
by the lower order corrections. Thus we 6nd

k-l Ip—l
/11 2 = —g /11(' /11(2 "—P y)2(')$21(2 '&

~=Tr (hp+&)(~0+v")+e(2)+ )
= hp+Tr ckyp+Tr 4p(')+Trhpp(')+ ., (3.3)

where we use the fact that Tr hpt)") =0 since y") con-
tains only intersection terms and, for example

Tr hpypy(')yp' ——Tr yp'hpt)py(') =Tr gp'gphpy(') =0.

II(,—l I('-I
(2) = Q t) (1)~ (2—i)+g t) (Ot) (2 1)—(2 21) The first term in (3.3) is the unperturbed energy, the

second involves the unperturbed wave function and
corresponds to the usual first order energy perturbation:

while y»'~) and y»&~) are undetermined. It may be
verified by induction that, when the lower order
equations are satisfied, the equations (Ak)» and (Ak)22
are also satisfied. It then remains to determine y12&~)

from (Ak)12. Again we introduce M)2(2) as the (12)-
component of the commutator (y(")cL—cLy(2)]:

8&') =Tr Ago. (3.4)

The third term depends on the first-order change in
wave function, but does not give the second order
energy change unless the wave function is rerIonnatised
to second order: we shall see presently that the effect
of renormalization is embodied in the fourth term.
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First we consider Tr Ay('):

Tr &t&(') = Tr &t)12")+Tr &t)21(')

=Tr g Xho-("+')412ho"
n=o

+Tr Q coho"A2&ho
—'"+'&.

n=o

If we make a cyclic permutation of the factors in each
term, and use the projection operator properties of gp

and pp' (which both commute with hp), the two terms
are seen to be identical and

TrLy")=2TrAt)12 '&=2 g Tr&2&ho "+')&12ho" (3 3)
n=o

form. The contribution from g") is

b(2) = Tr+(t&11(2)+g 2(2))

Tr + (f21 t&12 t)12 t&21 ')) (3.8)

and it is easily seen that this is the e0222P/ete third-order
term. For the remaining contributions are

TrA(t&12"'+t)21" )+Trho(t&ii ' +t&22 ' ),

and by using (2.21) this may be reduced to

»(&12—hop)2 + t&12 ho) t&21

+Tr(+21 f21 ho+hot&21 ) f12

which vanishes by virtue of (A1)12 and (A1)21. Since the
odd orders of perturbation theory give upper bounds to
the eigenvalues, this is a particularly useful result.

In order to renormalize to second order we must admit
those parts of g(" which are determined purely by the
first order correction. These are given by (2.17) and the
remaining terms, y»") and y»('), are in any case
irrelevant in second order because when taken with
hp each gives zero trace. The renormalization terms are
thus

IV. CONVERGENCE. CONNECTION WITH ORTHODOX
PERTURBATION THEORY

We must now determine under what conditions the
iterative solution converges. This may be done by
writing ho in "normal form" in terms of its eigenvalues
and the projection operators for the eigenvectors. Thus

Trhpt& ('&= —Tr p hp o~ h chp~~2 hp (~+')
n, m=O

hp ——Q o,y;,
i=1

(4.1)

+12ho(o+~)+ h (o+tc+—1) where t),=c,c, is the projection operator for eigenvector
n, m=p c;. In general, we can then write

Trhot)22(2) = Tr p h + ~2)ho—(m+1)h( —(n+1)~ 2hoo
n, m=O f(ho)=P f(e;)t&;.

i=1
(4.2)

&12ho "+ +' &12ho "+ +" On using this form in (2.16), remembering that
n, m=O

If we use s, to denote the general term in the first sum,
it follows that

Trhpt)(2)= —
t g s„„—Q P s„]=—g s„,p.

we obtain

t&o= Q g, and t)p'= Q t);,
i(occ) i(unocc)

Hence
m, n=O m=O n=i m=o

(1) g h —(c+1)~ h c
n=o

m=p
h —(m+1)~

= —Tr&t. »(').

Trhpy(2)= —Tr g 412ho"42&ho ("+')
m=o

(3.6)

=2 Z Z e) ("+"e&e~""
n 0 j(occ) k(unocc)

00

~&;2C,C2&;
c=o 2'(occ) k(unocc) etc+1)

Renormalization thus exactly halves the leading
contribution (3.5) to the second-order energy, and we
obtain

8(2)=Tr Ay)2 ('&= p Tr 4»ho —("+')cL»ho". (3.7)
n=o

It is also possible to obtain the third order term in simple

A, g=c, &cI.~
— .t

This expression is a geometric series with respect to e
and converges absolutely so long as e2(e; (all un-

occupied k, all occupied j). This condition can always
be met by suitably placing the energy zero (i.e., adding
a multiple of the unit matrix to hp). We can then sum to
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in6nity and obtain the closed form,

f12 ' = Q CLjkcjck .
i(«c) eZ

—t.'p
k (unocc)

since by» and by» are determined by the solution x. Ke
shall see, however, that M» is only weakly dependent
on x: in this case, neglecting at first the variation of
M12, we can use an iterative procedure based on (5.3)
which is formally similar to (2.19). Thus

It is easy to see how, in the case of a single eigenvector,
this result gives the usual Rayleigh-Schrodinger series.
For with just ole occupied state (j) the j summation
disappears and we obtain from (3.7)

0.(2) = h(2) = Tr $12(1)/=
&(&~) e~

—eI,

-~~1~I~,

—Tl' Q Q +j lcjcl~+jk eke ~4
l(/i) k(Ai) (0)—01) (0,—pk)

1.e.)

~jAkl~lj' A, )Ag,
0.(2) =

L, k(/)) (0) ok) (8—1.—01) 1 (Wt)(0) '0))—

which again agrees with the Rayleigh-Schrodinger
result.

V. PERTURBATION THEORY WITHOUT
SEPARATION OF THE ORDERS

For many purposes it is not necessary to determine
separately each order in the perturbation series

gy
—p(1)+g(2)+. . .

We therefore consider the direct determination of by

by an iterative method similar to that already used in
Sec. 3. From (2.6) we obtain

ho&p —
&who+ &(yo+~p) —(go+By) eh =0. (5.1)

Now we know that in every order y~~& & and y22&~& are
determined by the preceding orders, owing to the
idempotency condition (2.7), and that only the mixed
component y»' ' is free to be chosen so as to satisfy
(Ak). In general then ()yll and I)y22 must be determined

by l)y» which must be chosen so as to satisfy the (12)
projection of (5.1). This is found to be

(ho+ +11)()$12 ()$12(ho+ +22)+ +12()$22

f)pll+12 +12 0 (5 2)

or, if we put l)y)2 ——x and multiply by (ho+411) ',

x= (lip+LE)1) x(ho+422)+M)2= f(x)& (5.3)
where

the usual result. The third-order term (3.8) gives on
introducing (4.3),

1
h(2) =Tr Q Q — — — D, l*clc;th;kc;ck)cL

«~1»(~)) (0, 01)—(0;—ok)

x= p (ho+All) '"+"M12(hp+a22)".
n=0

(5.5)

Initially, we should take M» ——4». After estimating x,
the correction terms in (5.4) could then be added to
give an improved formula. It remains only to examine
the dependence of 8pll and ()y22 upon x (i.e. , upon ()y)2),
implied by the idempotency condition (2.7).

On putting y= pp+8g and. separating the four compo-
nents of (2.7), we obtain

f)gll +28gll+f)$12~$21 ~$11)

()pl 1()y12+8y128P22= 0,

8$21~$11+~g22I)$21

I)f22 +()$21~$12 ~$22 ~

{s.6)

(ldll+2 gp) =
2 /0(l —4xx ) 'yo,

(5y —-,'yo') = —-', yo'(I —4xrx) lyo'.
(5.7)

Since x is a small quantity, the roots may be expanded
to give

()pl, ———
t xxt+ (xxt)'+2(xxt)2+

(5.8)
fiy22

——Lxtx+ (xtx)2+2(xtx)'+ ],
and it is easily verified by substitution that these solu-
tions also satisfy the second and third equations of (5.6).
We also obtain a compact expression for M12 in (5.4):

M12 +12+~$11+12 +12()f22

(f)$11+2/0)+12 +12(~$22 2/0 ) j

1.e.)
M12 ——-'2)412(l —4xtx)**+(I—4xxt) &1k)2]. (5.9)

If we took account of the x dependence of M12 in the
iterative treatment of (5.3) we should obtain an exact
solution. But M» differs from 4» only by terms of the
third order in the perturbation parameter and if we put
M12 ——412 in (5.5) we should expect to obtain the first
two orders of perturbation theory exactly, together
with substantial parts of all higher orders. A more
refined iteration formula would result on estimating x
in this way and then recalculating M» by expansion:
neglecting terms of fifth and higher order we have

We can solve the 6rst and last equations formally by
completing the square:

(f)Pll+2$0) kgp ~P12~$21r

(()$22 2 go ) k Po ~$21~$12) (Po I gp) ~

Hence, putting by~2
——x and taking appropriate signs of

the square roots, we have

M12= 412+5$11412 A125$22= M(X)) (5 4) M12~412—4»x x—xx 412. (5.10)
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Finally, we note that in obtaining a self co-lsistelt
solution of (2.6) the dependence of h (and hence of
A =ll—hp) upon 9 would most conveniently be intro-
duced during the course of iteration. Instead of obtain-
ing an exact solution for the 4 calculated initially, and
subsequently repeating the @hole process, 4 would be
recalculated periodically and the iteration formula (5.3)
modified accordingly.

VI. CONNECTION WITH THE STEEPEST-
DESCENT METHOD

An alternative method of solving this problem has
already been given, 9 but does not permit the separation
of orders and is therefore unsuitable when a perturba-
tion development is required (e.g. in polarizability
calculations where the term of second order in the field
strength determines a susceptibility). In conclusion, we
shall investigate the relationship between the two
approaches.

Let us adopt a "mean-value" approximation in the
normal form (4.2), writing

~oy4 (s= &21)
2 Tr(sts —sst)h

(6.4)

This is the result obtained in an earlier paper. ' On the
other hand, it is possible to give an improved estimate
of 8p by including the remaining second order terms.
For on using the mean energy approximation in (2.20),
we obtain

which is the result obtained by the method of steepest
descents in the alternative approach. ' In some applica-
tions it is possible to make a reasonable estimate of d e,
but generally it would be more satisfactory to regard
X as a variational parameter.

The solution of the basic equations (2.5) and (2.7)
occurs' when h, defined in (3.1), has a stationary
minimum value. The third-order estimate based upon
(3.4), (3.7), (3.8) is an upper bound" and we may
therefore determine an optimum X value by minimiza-
tion. To third order we have

h= Tr llfgp X(A12+421)+X (CL21ck12—412421)j;
and hence

Similarly

S OCC '4 OCC 912 — XM]2 X (+12+22 +11+12)~

The approximate second-order correction is then

(6.5)

(hO) 22 g eight (eun—occ) P pi= (eunoco)92 ~

Then, from (2.16),

&unoCC

f12 —Q +12
n 0 (eo~)n+1

1.e.)

where
gi~")——»i2

X=1/Ae

(6.1)

(6.2)

and Ae is a "mean excitation energy. " This gives an
approximate first-order correction,

9&"=—X(1412+421), (6.3)

2 R. McWeeny, Proc. Roy. Soc. (London) A235, 496 (1956);
A237, 355 (1956); A241, 239 (1957).

(421412 412421)+X (f12 +$21 ). (6.6)

The second term in (6.6), calculated according to (6.5),
gives an improvement on the results obtained by the
steepest descent method.
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'0 This is irrespective of the choice of y1~(~& because the third-
order expression can be written in the form of an expectation
value, 6=Trhg.


