
Ctf journal of experimental and theoretical physics established by E. L. Nichols in 1S93

SECOND SERIEs, VOL. 126, NO. 1 APRIL 1, 1962
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The problem is considered of a fast charged particle injected into a plasma at an energy in excess of plasma
thermal energies. Closed expressions are obtained for the behavior of the mean energy as a function of time,
and also for the diffusion spread around this mean.

An expression is given for the characteristic speed, say I, of any plasma, defined such that for all test
particle speeds in excess of I energy is lost predominantly to electrons, while the loss goes to the positive ions
for speeds less than u. For fully ionized deuterium gas, u is 1/14 times the electron thermal speed; if the
electron and ion temperatures are the same, u is only a factor of 4 greater than the ion thermal speed. (For
convenience the "thermal speed" has been defined as (-,')& times the root-mean-square value).

l. INTRODUCTION

'HE rate of energy loss to the electrons and positive
ions of a plasma by a fast charged particle is of

interest for many aspects of plasma and thermonuclear
research.

This rate, determined by the Coulomb interaction, is
often discussed in terms of estimates of relaxation times
given by Spitzer' and Chandrasekhar. ' The information
often of interest, however, is the rate of energy loss for
all times after injection, and a comparison of the rela-
tive energy loss rate to electrons and ions as a function
of time. Moreover, the relaxation times of Spitzer' are
determined for the energy region in which the speed of
the test particle is either less than or not much greater
than the thermal speeds of the plasma particles.

A quantitative treatment of the complete behavior of
a fast particle, as it undergoes Coulomb scatterings and
loses energy, involves the solution of a Fokker-Planck-
type equation, ' This requires lengthy numerical compu-
tation, and some special cases have been treated by
Kranzer. 4 It is the purpose of this paper to show that a
closed expression for the behavior of the mean energy
as a function of time exists for almost all the range of

L. Spitzer, Physics of Ionized Gases (Interscience Publishers,
Inc., New York, 1950}.

2 S. Chandrasekhar, Astrophys. J. 93, 285 (1941).' M. N. Rosenbluth, W. M. MacDonald, and D. I . Judd, Phys.
Rev. 107, 1 (1957).' H. C. Kranzer, Phys. Fluids 4, 214 (1961).

interest. Diffusion spread around this mean can also be
calculated.

An interesting result is that, apart from the thermal
speeds m, and z; of electrons and positive ions re-
spectively, there is an intermediate speed I charac-
teristic of any plasma, which determines the relative
energy losses to electrons and ions. If v represents the
speed of the test particle, this particle loses energy
predominantly to the positive ions only in the region
v&u. For the remaining region v&N energy is lost pre-
dominantly to electrons.

For fully ionized deuterium gas straw, /14; if the
electron and ion temperatures are the same, we thus
also have I 4N;.

2. MEAN ENERGY LOSS PER COLLISION

Consider a test ion of mass M and charge Ze traveling
with velocity v in the laboratory system, colliding with
a field particle of mass m and charge ze traveling with
velocity w.

The cross section for scattering through an angle 0 in
the c.m. system is

a(e)do=
i !
k-,'[Mrl/(M'+trt)] (v—w)' jx, eye, . (1)

L4 sin'(e/2) j'
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Here 00 is the minimum angle of scatter corresponding
to an impact parameter of the order of the Debye
screening length (see Sec. 7).

The velocity of the test ion in the c.m. system is
initially [2II/(M+2II)$(v —w), and this does not change
magnitude in the collision. When one adds the velocity
(Mv+2IIw)/(M+2)2) of the center of mass, however, it
is readily found that in the laboratory system the change
hE of the kinetic energy of the test ion is

DE= — {2sin2(8/2) [(v—w) (Mv+222w)1
(M+2)2)2

+sin8 cosp
~
(v —w) X (Mv+2Nw)

~
). (2)

Here 0 is the angle of scattering in the c.m. system, and
P is the azimuthal angle of scattering in the c.m. system
measured with respect to the plane of v and w.

The average value of sin2(tI/2) for such a collision is
readily obtained from Eq. (1) (without recourse to
small-angle approximations). We find

l2r 1 ( Zse'
(»n2(|)/2))-=- —I, ~

l~, (3)
2 (T& (2 [M222/(M+222) j(v —w) 21

where o-~ is the total scattering cross section, and

lnA= ln(2/|Ip).

The second term of Eq. (2) averages to zero.
Thus the average energy change of the test particle

from such a collision is simply

42r (Zse')'
DE= ——

erg m

((v—w) [v(1+2)2/M) —(m/M) (v—w)]
XlnA~ (4)

(v—w)'

3. LOSS RATE IN A PLASMA

We now consider energy transfers between the test
particle and plasma particles of one type. Let the
velocity distribution of the 6eld particles under con-
sideration be f(w)dw per unit volume, so that their
number density p= J'f(w)dw

In a given small interval of time 8, the number of
collisions with field particles having velocities between
w aild w+dw 15

o, iv w) f(w)dwN. —
Thus the rate of change of energy of the test ion, de-
termined by plasma particles with velocity w, is5

)dEl 4
(Zse2) 2

E dk J(w) 5$

-(v—w) [v(1+222/M) —(2II/M) (v—w) j
glnA—

7—W

Xf(w)dw. (5)
5 As is well known, energy losses of a fast ion occur predomi-

A more convenient form for Eq. (7) is found if we
multiply both sides by 3v, and write dF/dt=Mvdv/dt
We then obtain the equation,

where

24/2r
(sZe')'p 1nAG(v/wi),

mM

G(x) =xF(x).

(9)

(10)
For x&1 we have

(2 222 l
G(x) = ——x+i -+—exp+

M E3 M)

and for x))1 we have

G(x) -',gn. . (12)

It is to be noticed that F(x) and G(x) have a zero
when x' 32I2/2M, i.e., 2Mv2=4nzw p; according to our
definition of mt, , this means that there is no average
energy loss or gain when —,Mv =2kT, where T is the
temperature of the plasma particles. This is as it should
be, for at this point the test particle is in kinetic
thermal equilibrium. For x=v/w, ) (3m/2M)**, F(x) is
positive and the test particle loses energy to the plasma;
for x((32I2/2M)&, F(x) is negative.

4. RELATIVE LOSS RATES TO ELECTRONS
AND IONS

We now consider the relative energy loss rates to
electrons and ions of a plasma. We denote the positive
ion properties by subscripts i, and the electrons by
subscripts e, and write the particle thermal speeds as m;
and w„respectively. Equation (9) now becomes

dv' 24/2r
(Ze')'

dt M
~i pi.2 Pe

XInk G(r/w;)+ —G(v/M. )). (13)
mi mg

nantly as the additive effect of large numbers of small-angle
collisions each with small energy loss.' It should also be possible to perform the integrations ana-
lytically for a wide class of distribution functions f(w). For the
above definition of w~ we have —,'mw P= AT.

We now must simply integrate over w to find the
total rate of energy change. If we take a Maxwellian
distribution,

f(w)=fo e PL—(w/w )'j (6)

where zv~ is the thermal speed of the plasma particles,
the integrals are elementary'; we obtain

8/2r (Zse')'
F(v/w, ) luau,

m m~
where

1 *
t

(vv lF(x) =- exp( —x2)dx —
~
1y—

~
exp( —x'). (g)

x p k M)
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(b) U'((u':The relative magnitudes of the two terms on the
right determine the relative loss rates to ions and elec-
trons. In the high-energy region when both v/u), ))1,
and i)/w, ))1, we see that the loss rate to electrons is
larger than to ions by the factor (m,/m, ) (p,/st;).

It is of interest to determine the speed I of the test
ion for which it is losing energy equally to ions and
electrons. This is given by the solution of the equation with

~i ps.2 ps
G(u/nr;) =—G(u/zv. ).

u)'- t
v V1— 1+ —

I

—+
vi

t
=V 1———

r, i

The solution is in general such that u/u), is small, but
that u/w, is still several times greater than unity. Thus
we may use the forms (11) and (12) and find that

(14)

In this region the loss is occurring predominantly to
ions. For the particular case in which the injected and
plasma ions are deuterons, we have

1.6g 10" J'0:
X

ink p

r, = & X 10'X&0'*/p

It should be noted however that it is only in the region
v(u that energy loss occurs predominantly to ions, and
for which the above time v-; is applicable.

where Eo is the injection energy in kev. If we take the
If the plasma electron and ion temperatures are the usual value lnA~20, we have
same, this is equivalent to

although Eq. (14) is independent of this assumption.
In the case of deuterium with p;=p„s,=1, and

m;/m, 3700, we find u w,/14; if the ion and electrons
temperatures are the same this implies I 4x;.

It is also perhaps of interest to note the relative rates
at which a 3.2-Mev proton (say from a fusion reaction)
gives its energy to electrons and ions of a deuterium
plasma. If the temperature of the plasma is, say, 10' 'C
we have i)/u, 24, and v/w 0.4. Theratioof energyloss
rate to electrons as compared to ions is approximately
(1/12+m)m;/m 170. Thus only a small fraction of the
energy of such protons is converted directly to plasma
ion energies.

where
LV(t)]3= V' —(V'+u') (1 e'tze), —(16)

S. TIME-DEPENDENCE OF ENERGY LOSS

In the wide region v/u);))1 and v/w, &1, for which
Eqs. (11) and (12) may be employed, the integration of
Eq. (13) is trivial. If the test particle has speed V at
time t=0, we obtain the result

0. DIFFUSION AROUND MEAN

The equation for the energy loss rate —Eq. (7)—
really refers to the average energy of the test particle at
time t, say E(t). Similarly, Eq. (16), for example, refers
to the average speed of the particle 8(t) at time t.
Clearly, for completeness we should investigate the
diffusion of energies around the average.

A true distribution function g(E,t) would give as its
average for E at time t the value E(t) determined by
Eq. (7).To investigate the diffusion, that is, the spread
of the distribution about the mean, we must calculate
the diiference ((DE)'), —((ALe,'), )' for ea.ch collision.
From Eqs. (1) and (2) it ca,n readily be found that for a
collision between a test ion of velocity v and a held
particle of velocity w we have

mM

lr, —,'[Mm/(M+m)](v —w)' k(M+m)'i

1 ((16+ )Z'eee le6) 1

31m. ul, '

and where we have put p;= p, =p.
There are two simple limits of Eq. (16):
(a,) V'))u', i)'))u'.

(17)
X (f(v—w) (Mv+mw)]'L1 —(80 Inh)'7

+L(v —w) X (Mv+mw)]'(lnA ——,')). (20)

In a short time 8t, the number of collisions with
field particles of velocity between w and w+dw is
6Tllv —w~ f(w)dwt')t, so that in time t)t the total mean
square deviation is

In this region the loss is occurring predominantly to g dw f(w) ~
„w~~,L((gE)2) ((t),L) )2]& ) (21)

electrons.
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Fi(x) =— exp (—x')dx—exp (—x') .
S 0

(23)

It is to be noticed that unless the test particle is very
close to being thermal, the function Fi(x) is essentially
identical to the function F(x) of Eq. (8). It is thus im-

mediately clear from Eq. (7) that (22) may be written
in terms of dE/dt, which is the rate of change of the
mean energy. We have simply

Mean square deviation in 8= mwP (dE/d—t)bt. (24)

But mm&' is a constant; it is the thermal energy of the
plasma field particles. Hence we can simply integrate to
find the total mean square deviation in energy after
time t—say, e'(t) Ke have.

dE)
e'(t) = —mw P ddt =mw('(Ep —E), (25)

p dt&

where Eo is the injection energy.
It is to be observed that e'(t) is independent of the

nature of the field particles, but is dependent simply on
their temperature; thus whether the test particle loses

energy predominantly to ions or electrons is irrelevant
in the determination of the diffusion of energies around
the mean. If electrons and ions are at the same tempera-
ture T such that —,m;zv,~= —,'m, m, '=kT, the diffusion
spread is

e'(t) = 2kT(Ep —E).

In general, therefore, the energy E of the test particle
will be given by E to within &e, i.e.

E=E&6

=Em(mw P (Ep—E)».
The diffusion spread in energy will become of the

same order as E itself only when

E~ (mw 'Ep)'.

If, for example, test particles are injected with an
energy 200 times greater than the plasma thermal
energy, they will lose 90% of their energy, and be only
20 times thermal, before the diffusion spread becomes
of the same order as the average remaining energy E.

If we substitute (20) into (21), and use the Maxwellian
distribution (6) for f(w), we find once again that all
integrals are elementary, though tedious. By far the
largest contribution comes from the last term of (20), as
it is the dominant term proportional to lnA. LThe
number (Hp lnA)' is extremely small. ]Although the corn-

plete result can be written down, the contribution from
the last term above gives the mean square deviation
accurate to better than 5% for lnA 20, and we there-
fore use this result.

After time Q this mean square deviation is found to be

etD8+rr) (Zse')'pw, Fr (v/w, ) lnA], (22)
where

Except for energies close to thermal, the distribution
function g(E, t) for the test particle may thus be con-
sidered to have the approximate form

LE—E(t)]')
g(s t) oex=p(—

2e'(t)

LE-E(t)]'
=C exp

2mm, '[s,—g (p j) (26)

The normalization constant C is a function of t only,
chosen such that for any t the integral over all E is unity.
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7. CERENKOV RADIATION

In the preceding sections we have confined our atten-
tion to the test particle itself, and its rate of loss of
energy. It is also possible, of course, to investigate the
manner in which the energy is taken up by the plasma.
We shall not do this in detail here, except to remark that
for v)m~ the test particle will leave a wake or Mach
cone whose opening angle 0 is given in the usual way by
sin(H/2) e/m~. One is thus led to ask whether the
binary collision description which we have used in this
paper includes what is commonly referred to as the
"Cerenkov radiation. "'

This question has been investigated by Salpeter, who
has shown that the binary collision treatment does ac-
curately include the "Cerenkov radiation" eA'ects, pro-
vided that for v &z ~ the screening distance, or maximum
collision impact parameter, be taken as Xiii/ie„where
AD is the Debye length. Impact parameters less than XD

produce what are normally considered the binary colli-

sions, and the range of impact parameters from X~ to
Aria/ret, produces the "Cerenkov radiation. "

For v(m&, the maximum impact parameter is the
usual Debye length X~. Thus for ~&m~ the value of ink
is increased by the (in general) small term ln(rt/ve, ).

At this point it is appropriate to mention also that,
in the average energy loss per collision, the second term
of Eq. (2) has zero contribution only when the cross
section is Q independent. ' lt has been shown by Salpeter'
that when the screening effects are accurately considered
this term does make a small contribution to the rate of
energy loss, but that it is at most of order unity com-
pared to ink.


