
LOW —RESOLUTION SURVEY OF (d, n) REACTIONS

Thus 5 is very much smaller for (d,n) reactions lead-
ing to states of type (b) for which rt is odd, than for
those leading to states of type (a) for which rt is even.
For example, for J= 5/2, rt = 3 gives 5=0.67 whereas
hz=4 gives 5=4.0. Thus, peak A is larger than peak 8
by a factor of 4&(4.0/0. 67 (the first factor of 4 is from
the number of levels, considered above) = 24. Thus it is
not surprising that only peak A is prominent in the
experimental results, and the spectra are very similar
for odd- and even-mass nuclei.

V. CONCLUSION

Of the two strong alpha-particle groups observed in
the energy spectra, the low-energy peak was found to
be predominantly a compound-nucleus evaporation
effect and to be in good agreement with the predictions
of statistical theory. The principal features of the high-
energy peak can be explained by a two-particle pickup
process which involves the removal of nucleons from
combinations of single-particle states in the 6lling major
shells.

There are, however, additional features of the energy
distributions that cannot be easily explained. For
instance, the triple peak observed in Pr and Nd. These
peaks are not the result of a mixture of isotopes, since
Pr is mono-isotopic. A tendency towards double peaking
in the energy spectra is also apparent for the elements
Er and Te. These features appear to be isolated parts
of a systematic trend for these regions. At the time of

data accumulation, few targets were available for these
ranges of nuclei, and large intervals in atomic number
could not be studied.

A more thorough understanding of the nature of the
high-energy peak can only be obtained with higher
resolution experiments. At present such a program is
under way utilizing diffused junction solid-state
detectors and mono-isotopic targets. The results of this
study will be presented in a forthcoming article.
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Three continuous families of broad maxima and minima are observed in neutron total cross sections
between 0.1 and 100 Mev. All shift smoothly to higher energy with increasing mass number. The relation-
ships among the families, their energy-mass number dependence, and their detailed locations can be under-
stood in terms of a semiclassical treatment of a simplified optical model. The oscillations are seen to result
from interference between the part of the neutron wave which has traversed the nucleus with the part which
has gone around. This nuclear situation is analogous to the Ramsauer effect in electron interactions with
noble gases, An alternative explanation of the broad maxima as due to resonances of single partial waves is
not valid because in general several partial waves are simultaneously important and because the partial wave
characteristics change rapidly as one traverses a continuous family of maxima. The widths of the broad
maxima are related more to the parameters of the real potential well than to the depth of the imaginary
potential well.

I. INTRODUCTION

HE curves of neutron total cross section versus
energy often show broad maxima in the energy

region of a few Mev and higher. These maxima are
*The work described in this report was initiated at the Lawrence

Radiation Laboratory, University of California, and completed in
its anal form at the Institute for Theoretical Physics, Copenhagen,
Denmark, It was supported by the U. S. Atomic Energy Com-
mission.

illustrated in Fig. 1. Before the measurements were
made it had been expected on theoretical grounds that
the variation with energy would be a simple monotonic
decrease —something like 2sr (R+K)', R being the nuclear
radius and A, the neutron wavelength divided by 2x. The
theoretical model' here was that the nucleus was black
to neutrons. Note that on the average this model gave

' H. Feshbach and V. F. Weisskopf, Phvs. Rev. ?6, 1550 (1949).



J. M. PETERSON

I2 ——"——— ———2rI (8+X)2

(R= 1.35A x 10 cm)

Measured total cross section—

b

0
O. I 0.2 0.5 I.O 2.0 5,0 IO.O 20.0 500 1000

E( ~(Mev)

FIG. 1.Measured neutron total cross sections for lead, cadmium,
and copper as functions of neutron energy, which show typical
neutron giant resonances.

H. H. Barschall, Phys. Rev. 86, 431 (1952).
3 See references in compilation 1Vegtron Cross Sections, Second

edition, compiled by D. J. Hughes and R. Schwartz, Brookhaven
National Laboratory Report BNL-325 (Superintendent of Docu-
ments, U. S. Government Printing Once, Washington, D. C.,
1958), and Suppl.

4 N. Nereson and S. E, Darden, Phys. Rev. 89, 775 (1953):94,
1682 (1954).' J.H. Coon, E. R. Graves, and H. H. Barschall, Phys. Rev. 88,
562 (1952).

6 A. E. Taylor and E. Wood, Phil. Mag. 44, 95 (1953.).' A. Bratenahl, J. M. Peterson, and J. P. Stoering, Phys. Rev.
110, 927 (1958):120, 521 (1960).

P. H. Bowen, J. P. Scanlon, G, H. Stafford, J. J. Thresher,
and P. E. Hodgson, Nuclear Phys. 22, 640 (1961).

the correct cross section, although it did not account for
the oscillations, whose amplitudes amount to as much
as 25% of the average values at low energies and are
typically 10% at the higher energies.

These giant resonances were 6rst observed and
pointed out by BarschalP and co-workers at the Uni-
versity of wisconsin, who made systematic measure-
ments up to 3 Mev. Many other sets of measurements'
have been made, notable ones being those of Nereson
and Darden' at Los Alamos, who mea, sured from 3 to 13
Mev, those of Coon et ul. ' at Los Alamos at 14 Mev, and
those of Taylor and Rood' at Harwell from 30 to 150
Mev. More recently Bratenahl et al. ' at Livermore have
measured a large number of elements over the range 7
to 30 Mev„and Bowen et. al. ' at Harwell have measured
a series between 16 a,nd 118 Mev.

Altogether these total cross-section data, plotted
against both energy I'. a,nd mass number 3, form a
smooth surface in which three continuous ridges of giant
resonances are apparent. Figure 2 is a three-dimensional,
Barscha11-type plot covering the neutron energy range
from 1 to 30 Mev; on this plot two of the ridges and a
hint of a third at higher energies can be seen. The posi-
tions (E,A') of all the broad maxima and minima which
have been experimentally observed for neutron energies
up to 100 Mev are plotted in Fig. 3. Note that just three
families of maxima (and minima) occur and that they
all seem intimately related somehow. (There is another

group of broad maxima, all of which occur at about 1.5
or 2.0 Bev, but they arise from meson effects, pre-
sumably, and will be ignored in this discussion. ) Note
too that the slope of the locus of each family is every-
where positive in the E, A' plane.

These data have been explained theoretically by
various optical-model calculations with varying degrees
of success. ln this type of model the neutron-nucleus
interaction is represented by a complex potential well.
The best known of these representations is that of
Feshbach et al. ,' who fitted their model to the 0- to
3-Mev data of Barschall and co-workers. This model
was particularly successful in the low-energy region; at
thermal energies it explained the peaks in the strength
function distribution' " and the discontinuities in the
scattering length distribution" near A =55 and A = 155
(A'=3.8 and 5.4, respectively) as due to resonances of
s waves. The resonant condition for low-energy s-wave
resonances in a square potential well is that there be an
integral number of half-wavelengths inside the nucleus,
i.e., that k; R= (m+2)m, where l';„ is the neutron wave
number inside the nucleus of radius 8, and m is any
integer. The model predicted, furthermore, that p-ivave
resonances should occur near A = 25 and A =90 (A'= 2.9
and 4.5, respectively), where k;„R=mm. This prediction
was substantiated by Newson and co-workers" working
in the energy region 30 to 110kev, who observed peaks

39
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Fxo. 2. Three-dimensional plot of measured neutron total cross
sections versus neutron energy and versus A &, covering the energy
range 1 to 30 Mev. Continuous families of broad maxima are
exhibited.

'H. Feshbach, C. E. Porter, and V. F. Weisskopf, Phys. Rev.
90, 166 (1953):96, 448 (1954). Also, X. Campbell, H. Feshbach,
C. E. Porter, and V. F. Weisskopf, Massachusetts Institute of
Technology Laboratory Nuclear Science Technical Report 73,
1960 (unpublished).' V. F. Weisskopf, Revs. Modern Phys. 29, 174 (1957):D. M.
Chase, L. Wilets, and A. R. Edmonds, Phys. Rev. 110, 1080
(1958)."K.W. Ford and D. Bohm, Phys. Rev. 79, 746 (1950):R. K.
Adair, ibid. 94, 737 (1954)."R. C. Block, W. Haeberli, and H. W. Newson, Phys. Rev. 109,
1620 (1958): H. W. Newson, R. C. Block, P. F. Nichols, A.
Taylor, A. K. Furr, and E.Merzbacher, Ann. Phys. 8, 211 (1959).
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near A =25 and 90 in the ratio of elastic scattering at
180' to that at 90' and also a peak near A =90 in the
p-wave strength function.

Another feature of the I'eshbach, Porter, and Keiss-
kopf calculations was that broad maxima appeared in
the curves of cross section vs energy; these broad
maxima were identified as resonances of single partial
waves of the neutron-nucleus system. Lane et ut."have
extended the interpretation of neutron giant resonances
in terms of single-particle resonances, explaining their
great widths largely in terms of the imaginary potential
of the optical model. However, there is very little corre-
spondence between the positions of these calculated
maxima and those observed experimentally (Fig. 3). A
characteristic feature of each of these calculated maxima
is that it shifts to loner energy with increasing mass
number (i.e., rsegaIime slope in the E, A I plane), although
BarschalP had noted that experimentally the maxima
seemed to shift to higher energy with increasing mass
number. The reason that the maxima in the Feshbach,
Porter, and Keisskopf calculations shift toward lower
energy with increasing mass number is that they are all
concerned with resonances at energies below the height
of the centrifugal barrier at the nuclear radius for the
partial waves involved. The energy being lower than the
centrifugal barrier corresponds classically to an orbit
which misses the nucleus. The condition for the reso-
nance of a given partial wave in these circumstances is
that there be a characteristic number of wavelengths in
the radial wave function inside the nucleus, corre-
sponding to the condition of repeated, reinforcing, in-
ternal reflections. Therefore, as the radius (or mass) is
increased, the wavelength must correspondingly in-
crease (and energy decrease) to maintain the resonance
condition. Thus the slope in the E, A' plane is negative
for resonances at energies below the barrier. Just the
opposite dependence is found for the case of resonances
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FIG. 3. Plot showing the measured positions in energy and mass
number of all the known broad maxima and minima in neutron
total cross sections. In addition, S and I' indicate the positions of
the low-energy s-wave and p-wave maxima, respectively. I The
figure includes recent data from Bowen et. ol."g

'3 A. M. Lane, R. G. Thomas, and E. P. Wigner, Phys; Rcv. 98,
693 (1.955): K. P. Wigner, Am. J. Phys. 23, 371 (1955).

(~L

FIa. 4. Basic picture of the Ramsauer process. Neutron wave is
incident on nucleus represented by a square potential well of
radius R. Interference between that part of the wave which has
traversed the nucleus and that part which has gone around causes
oscillations in the total cross section.

at energies greater than the height of the centrifugal
barrier at the nuclear radius. This case corresponds
classically to an orbit which intercepts the nucleus. It is
shown in Appendix I for this case that the resonance
shifts to higher energy as the radius is increased, i.e.,
that the slope in the E, A& plane is positive for energies
greater than the centrifugal barrier involved.

Optical-model calculations at higher energies have
been more successful. The model of Bjorklund and
I'ernbach'4 has reproduced not only the total cross-
section data in the 7- to 30-Mev region, ' both qualita-
tively and quantitatively, but also the elastic scattering
angular distributions" and the nonelasi;ic cross sec-
tions" in this energy range.

The success of the optical model in general is such
that there is little doubt that it can explain the measure-
ments, in the sense that it can predict all the measured
cross sections. However, the calculations generally in-
volve many partial waves and are so complex as to
require the use of an electronic computer. As a result it
is not easy to get a simple interpretation or intuitive
picture of the basic processes involved in these inter-
actions. It is the purpose of this paper to point out that
a simple and comprehensive interpretation of the giant
resonances is afforded by the concept of a nuclear
Ramsauer effect, which is analogous to the well-known
electron effect."

II. NUCLEAR RAMSAUER EFFECT

The following qualitative picture was suggested by
Mottelson and Qlassgold' as a means of explaining the

"F.Bjorklund and S, Fernbach, Phys. Rev. 109, 1295 (1958)."J.D. Anderson, C. C. Gardner, ).W. McClure, M. P. Nakada,
and C. Wong, Phys. Rev. 110, 160 (1958):115, 1010 (1959).Also,
J.H. Coon, R. W. Davis, H. E. Felthauser, and D. B.Nicodemus,
ibid. 111,250 (1958).' M. H. MacGregor, W. P. Ball, and R. Booth, Phys. Rev. 108,
726 (1957):W. P. Ball, M. H. MacGregor, and R. Booth, ibid.
110, 1392 (1958): and M. H. MacGregor, W. P. Ball, and R.
Booth, iLid. 111, 1155 (1958). Also, T. W. Bonner and J. C.
Slattery, ibid. 113, 1088 (1959)."C. Ramsauer, Ann. Phys. 66, 546 (1921): N. F. Mott and
H. S. W. Massey, Theory of Atomic Collisions (Clarendon Press,
Oxford, 1950), 2nd ed. , p. 206.

~8B. R. Mottelson and A. E&. Glassgold (private communi-
cations).
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explicitly we substitute

k,„t,= (2mE/k')&=0. 22E'* (Mev) fermi ',

k;„=0.22(E+ V)** fermi ',

E.=re'= 1.152' fermi,

where m is the neutron mass and V is the depth of the
well (in Mev). The locus Eq. (2) can thus be written as

A
' =3rtm/{0 88r.rr p((E+ V) ' —E&)). (3)

I.O
0 20

I

40 60
Neutron energy, Mev

I
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FIG. 5. Plot of a, the ratio by which the average chord through a
sphere is greater than 4R/3 due to refraction.

ridge of giant maxima observed in the total cross-
section data~ in the 7- to 30-Mev region. The essential
feature is the consideration of the interference of that
part of the incident neutron wave which traverses the
nucleus with that part of the wave which has gone
around. This picture will be recognized as the same as
that used by Fernbach et uI."in 1949 to explain neutron
total cross sections in the 90-Mev region. The schematic
picture is indicated in Fig. 4. For simplicity we represent
the nucleus as a square well of radius E.. Let ko„~ and k;
be the respective wave numbers outside and inside the
well. For the case of no refraction the average chord
length through a sphere is 4R/3. (See Appendix II.) The
average phase difference 6 between the wave traversing
the nucleus and that going around is

6= -',a(k;„—k.„,)R,

where n is a number somewhat bigger than 1 allowing
for the increased path length inside the nucleus due to
refraction effects. This expression for the phase differ-
ence ~ ignores absorptive effects on the grounds that if
the absorption is moderate or small, it cannot, to first
order, affect the average phase of the transmitted wave
and, hence, cannot inhuence the position of an inter-
ference maximum, although of course it directly affects
its magnitude. Also, rejections from all surfaces are
ignored here because in a real, diffuse-edge nucleus re-
jections are small and their relative importance further
reduced through absorption.

The condition for maximum cross section is maximum
destructive interference between the two wave com-
ponents, i.e.,

6= s4tr(k;„—k,„,)R=e~, m=1, 3, 5, . , odd. (2)

Kith n even, this same expression represents the con-
dition for a relative minimum in the cross section.
Considering 6 as a function of neutron energy E and
mass number A, we see that the A=ex expression
represents the equations of the loci of the maxima and
minima in the E, A& plane. To show the dependence

For the factor n, we used the ratio by which the average
chord is greater than 4R/3 in a sphere whose index of
refraction is (E+V)'/E'. Simple geometrical optics (see
Appendix II) gives this expression as

E+V ( V

E (E+V)

This expression for o. is plotted in Fig. 5.
The nuclear potential U is energy dependent. The

values for V used in evaluating n and in the locus
equation were those found by Bjorklund and Fernbach"
in fitting various neutron data in the 7- to 30-Mev
range. These values were extrapolated to higher energies
with guidance by the energy dependence of Riesenfeld
and %atson. 20 The values used are plotted in Fig. 6.

The loci expressed by Eq. (3) for e = 1, 2, 3, 4, 5, and 6
are shown as solid curves in Fig. 7, on which are plotted
also the experimental points of Fig. 3.

III. DISCUSSION OF RESULTS

The fit of the loci equation to the experimental
families of maxima and minima is generally quite good
in spite of the crudeness of the theory. The following
observations about these theoretical results can be
made:

(1) Evaluation of the loci equation shows that nuclear
radii and potentials are such that just three families of
maxima (and minima) are possible, in agreement with
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Fio. 6. The depth of the potential well used as a function of
neutron energy. The values used by Bjorklund and Fernbach are
shown by circles.

'9 S. Fernbach, R. Serber, and T. B.Taylor, Phys. Rev. 75, 1352
(1949):T. Taylor, ibid. 92, 831 (1953).

~0 W. B. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157
(1956).
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FIG. 7. Plot shorving the agreement of the calculated loci of
maxima and minima (solid curves) with the observed values
(points) taken from Fig. 3.

for it can not explain the s-wave maxima, which occur
very near the zero-energy intercepts of the m=4 and
e= 6 families of minima (at A&= 3.8 and 5.4, A = 55 and
155), as shown in Fig. 7.

(3) The disagreement seen between theory and ex-
periment for the e= 1, 2, and 4 curves are qualitatively
understandable in the following perturbation sense. The
theory which has been used here can be considered as
supplying a relatively small and oscillating correction or
perturbation term g(I':) to a dominant and slowly
varying unperturbed cross-section expression F(E),
derived from a black-nucleus model (which, we know,
predicts the correct average cross section). That is, one
can consider

observation. This neutron-nuclear situation contrasts
with the electron-atomic case, in which the corre-
sponding radii and potentials are such that only one
family of Ramsauer maxima and minima are possible.
In other words, near zero electron energy the radius and
the well depth of the atomic potential of the noble gases
are such that just one electron wavelength fits inside the
atom, whereas in the corresponding neutron-nucleus
case as many as three full wavelengths can fit inside the
nucleus.

(2) The agreement between theory and experiment
holds down to very low energies. On the one hand, this
agreement at low energies is surprising because the
basic picture used is one that has been expected to have
validity only at relatively high energies. On the other
hand, it is not completely unexpected because the loci
Eq. (2) for maxima (n odd) reduces at zero energy
precisely to k;„R= (m+~2)~, the condition for zero-
energy s-wave resonances, which was used by Feshbach,
Porter, and Keisskopf to explain the peaks in the zero-
energy strength function and the scattering length
distributions. The present theory calls for the zero-
energy maxima to occur at the intercepts of the n= 3
and e= 5 families of maxima, and this is just where the
p-wave maxima of Newson were fouiid, namely at
A'=2.9 and 4.5, as shown in Fig. 7. However, the
present theory calls for k;„R= (m+-', )~ (=-,'nor with e
odd) at this point, whereas the theory of Feshbach,
Porter, and %eisskopf prescribes k;„R=m~. Thus there
is a serious difference in the parameters of the nuclear
wells which have been fitted to the data. Since at low

energy only the product k;„R occurs in the theory, one
can not determine the well depth and radius separately
but only the product UR'. In the Feshbach, Porter, and
Weisskopf fit to the low-energy data the product VR' is
about 88A: Mev fermi', whereas in the present fit to
data which extends up to much higher energy but which
also overlaps the region fitted by Feshbach, Porter, and
Weisskopf a product of about 66A& Mev fermi' is ob-
tained (at low energies). This discrepancy is not under-
stood. The present picture must fail near zero energy,

«= F(E)+t(E)

rrG. 8, Schematic graph
demonstrating relative
shifts in the maxima and
the minima, of the total
function 0- f from those
of the oscillating function
a{I'-'). rw

where F(E) could be something like 2+(R+K)'. The loci
equation derived above predicts the positions of the
maxima and minima of only the correction term g(E),
whereas the experimental points are the corresponding
extreme in the total function 0~. As shown in Fig. 8, it
is clear that the maxima of o-& are shifted toward lower
energies and the minima toward higher energies from
the corresponding maxima and minima of the oscillating
function g(E). The amount of shift depends, of course,
upon the slope dF(E)/dE and upon the amplitude and
wavelength of g(E). In this way one can qualitatively
understand the apparent theoretical-experimental dis-
crepancies seen in the e=1, 2, and 4 families. (The
constant ro was chosen originally to ensure a good fit of
the theory to the experimental points along the m=3
family, and it must have helped the fit for the m=5
family. The lack of discrepancy along the v=6 family
is probably due to the smallness of the inherent shift
here, as the amplitude of the oscillating function is
relatively large and its wavelength along the energy
scale relatively small. A slight adjustment of the con-
stants of the theory would be adequate to give a better
over-all fit with the experimental points, i.e., a fit that
is more equitable among the 6 families; the lack of this
improvement is attributable to personal inertia. )

These relative shifts and the magnitudes of the oscil-
lations can be used to evaluate roughly the amount of
nuclear absorption. However, since the purpose of this
rough treatment is merely to give a qualitative picture
of the processes involved and since a much better
evaluation can easily be done with a complete optical-
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terms of a set of complex phase shifts 8~ is
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Fic'. 9. The distributions in l of the partial wave contributions
to the total cross section for three cases lying on the n =3 family of
broad maxima. The values ~vere obtained from exact calculations
on the complete optical model of Bjorklund and Fernbach.

model calculation, it does not seem profitable to ca,rry
this theory very far in that direction.

Since in Eq. (3) the quantities V and Jt.'are mathe-
matically separated, it was hoped by fitting all the loci
of maxima and minima that each quantity could be
separately determined rather than just the familiar
product VR'. Although in principle this separate de-
termination is possible, the hope was in vain, for ap-
proxima, tely equally good fits are obtained if one varies
V by, say, 20%%u&j but holds the product VE''constant. -

IV. COMPARISON WITH EXACT CALCULATIONS

The question as to why this simple picture works so
well was explored in the following way. The details of
some successful, exact optical-model calculations were
examined to see the behavior of the various partial
waves involved. These calculations were very kindly
provided by Bjorklund. In particular, the contribution
of each partial wave to the total cross section at three
representative points along the n= 3 family of maxima
of Fig. 7 were evaluated. These points were: zinc at 7

Mev, cesium at 14 Mev, and lead at 19 Mev. The partial
wave contributions" to these total cross sections are
shown in Fig. 9. This plot shows that the identity of the
partial waves which contribute most to the total cross
section varies smoothly and rapidly as one tra, vels along
a continuous family of maxima. In each of the three
cases the largest / value of importance is equal to k,„&R

(the largest 1 value classically possible), and the f value
at the maximum is equal to (k„„&E—1).

These exact optical-model calculations plotted in

Fig. 9 show not only that the partial wave population
changes widely as you traverse a continuous family of
broad maxima, but also that at any point. many partial
v aves are generally important. To see this point more
clearly, consider the phase shifts involved, as follows:
The general expression for the total cross section in

"The calculations ~vere performed using spin-dependent po-
tentials. For simplicity of presentation in Fig. 9 the spin-up and
spin-down contributions Nrere lumped together for each partial
wave.

where b&=—imaginary part of exp(ib&) sinb&. I.et b& —=nI
+if ~ T.hen

bt=2(1 e'—~~ cos2n()

In the limit of zero nuclear absorption, /~=0 and
b~= sin 6g, which is a more familiar expression for the
phase factor. Thus, dividing each value 0-« in Fig. 9 by
4'(2l+1)/k, „t,"-, we get the plot of the phase factor b&

shown in Fig. 10. This plot shows that a// the partial
waves from /= 0 to /, , =k,„~R have important and
comparable phase shifts.

This phase factor plot, which was obtained from exact
calculations of a full-blown optical model, serves to
justify the simple wave picture from which the A(A, f.')
=nx equation was derived, for the basic statement of
the simple picture is that it is the over-all or average
phase shift of all of the wave front c1assically intercepted
by the nucleus which must be considered, i.e., that many
partial waves are simultaneously important. Further-
more, the phase factor distribution of FIg, 10 corre-
sponds in detail very well with the distribution one
would obtain using the simple picture (with absorption)
and considering the /th partial wave as an annular
section of the incident wave front whose inner and outer
radii are lA and (k+1)lt, respectively. This picture was
justified also by Fernbach et a/. " in t.heir 90-Mev work

by means of a, %KB analysis.

V. CONCLUSIONS
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.I'tr, . 10. Plots of the phase factors corresponding to the partial
wave cross-section contributions of Fig. 9.

In summary, we have seen that the several families
of neutron giant resonances observed in the neutron
total cross sections can be simply understood as maxima.
created by interference between that part of the neutron
wave which has traversed a partially transparent nucleus
and that part which has gone around it. Each family can
be simply characterized by the relative phase shift of n7r

between the two wave components. An alternative
interpretation of these maxima as resonances of single
partial waves is not satisfactory because in general at
any maximum several partial waves are simultaneously
important; furthermore, the partial wave distribution
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FIG. 11. The measured neutron
total and nonelastic cross sections
for copper as functions of energy.
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changes markedly as one moves along a continuous
family of maxima.

Another point coming from this interpretation of the
neutron giant resonances concerns their widths, which
are found to be of the same order as their spacings. This
fact is understandable from the viewpoint that the inci-
dent neutron makes but one pass through the nucleus,
so that as you move in energy from one maximum to the
next, the cross section can change only very slowly and
gently —like a sinusoid. That is, the condition of re-
peated, reinforcing, internal reAections, which is neces-
sary for a resonance narrow relative to the spacing
between resonances, is missing here. The widths of the
giant resonances are, therefore, of the same order of
magnitude as the spacings and thus are related more to
the nuclear size and the real potential than to the
imaginary potential. A supporting argument for the
absence of appreciable internal reflections comes from
considerations of the nonelastic cross section. If the
nonelastic cross section depended in any way upon
interference effects, then it too would exhibit structure.
However, no structure at all is apparent in the experi-
men antal data (nor does it appear in the optical-model

sh-predictions) at energies much greater than the thres-
olds for inelastic scattering. Typical plots of both total
and nonelastic" cross sections versus energy are shown
in Figs. 11—13. It can be seen that there is no structure
in the nonelastic cross sections which corresponds to the
very pronounced structure in the total cross sections. It
is also interesting to see these cross sections plotted as
functions of mass number. In Fig. 14 (obtained from
Ball et al.") total and nonelastic cross sections measured
at 14 Mev, normalized by w(R+X)', are plotted vs
A&. The nonelastic cross sections are consistently equal
'mply to 1.0 times geometrical, while the total crosssimp y 0

1.sections oscillate smoothly about 2.0 times geometr&ca .

The dashed curve is the difference between the total and
non-elastic plots and shows explicitly that the elastic
cross section contains all the structure. This behavior is

]us wust what is called for on the basis of the one-pass
picture.
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Fzo. 12. The measured neutron total and nonelastic cross sect&ons
for tin as functions of energy.

J. D. Lawson, Phil, Mag. 44, 102 (1953).

VI. CONCLUDING REMARKS

I have found that this nuclear Ramsauer picture has
b en used before. I,awson22 similarly derived an equa-
tion for the locus of the maxima and used it to interpre
the high-energy (30 to 150 Mev) data of Taylor and
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FIG. 13.The measured neutron total and nonelastic cross sections
for lead as functions of energy.

Wood. ' He noted that the formula predicted other
maxima at lower energies but doubted that his con-
siderations were valid at such energies. Carpenter and
'Wilson also refer to the high-energy resonances as "akin
to a nuclear Ramsauer effect. ""Nemirovski's work too
contains many of the features mentioned here. '4 Al-
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~ y

~ ~~ ~
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~ ~

~et

~ ~ /
~ ~ ~ ePi'

~ne
~J~o

l

3
A+

Fro. 14.The measured 14-Mev neutron total (upper points) and
non-elastic (lower points) cross sections divided by x(R+X)' as
functions of 3&. R here was taken equal to (1.262&+0.75) fermis
(reference 16)~ The dashed curve represents the elastic cross
section: it is the difference'between the upper and lower sets of
points lSee M. H. Ma. cGregor, W. P. Ball, and R. Booth, Phys.
Rev. 108, 726 (1957).j

"S.G. Carpenter and R. Wilson, Phys. Rev. 114, 510 (1959).
~' P. E. Nemirovski, Proceedings of the International Conference

on the Peacefu/ 0'ses of Atomic &sergy, Geneva, 1&&55 (United
Nations, New York, 1956),Vol. 2, p. 86.

though many features of the broad maxima have been
noted before in various places, the general simple
systematics of the whole ensemble have not previously
been realized. An early report on this work was given
in 1960.""
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APPENDIX I:PROOF THAT A RESONANCE SHIFTS TO
HIGHER ENERGY WITH INCREASING NUCLEAR

SIZE FOR ENERGIES GREATER THAN
THE CENTRIFUGAL BARRIER

Consider a neutron of energy E (and wave number k)
incident on a nucleus A. The neutron-nucleus interaction
is represented by an attractive potential well V„(r),
whose exact shape need not be specified except that it
have a reasonably well-defined radius E=roA&. 'We con-
sider a case such that the 3th partial wave is in reso-
nance, where l (kR, i.e., the /th phase shift 8 =r/s2 and
E)V~(R), Vt(r) =It'l(l+1)/2mr' being the centrifugal
potential associated with the /th partial wave. This
situation is illustrated in Figs. 15(a) and (b), where u(r)

!
I

& ~V&(r)

o

FIG 15 Figures illus-
trating the proof that a
resonance of the lth par-
tial wave, for l (kR,
shifts to higher energy
v ith increasing mass
number. V„(r) is the
nuclear poten tial well.
V~(r) is the centrifugal
potential corresponding
to the lth partial wave.
np(r) is the radial wave
function at energy 1' for
the 3th wave in the ab-
sence of V„(r). N(r) is
the corresponding func-
tion with V„(r) present
and represents a reso-
nance condition. u(r) is
changed to u'(r) (oA
resonance) by the in-
crease in nuclear radius
aR. up" (r) and u" (r)
represent the new reso-
nance situation brought
about by a compen-
sating increase in energy
hL'.

Sq = n./2
(»R)

—E+aE

J Q-

s' J, M, Peterson, Bull. Arn. Phys. Soc. 5, 32 (1960).
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and uo(r) are the radial functions (times r) of the /th
partial wave of energy E with and without the presence
of the nuclear potential V„(r), respectively. uo(r) is the
spherical Bessel function j&(kr) (times r) and has its
6rst peak just beyond kr =L. The phase shift 8 & is defjLned

as the phase difference between uo(r) and u(r) for r))R.
Now consider the effects on the wave functions pro-

duced by a small increase hE of the nuclear radius,
illustrated in Figs. 15(b) and (c). uo(r), being inde-
pendent of V„(r), is unchanged; also u(r) for r(R is

unchanged, for in this region V„(r) is unchanged.
However, for r &R, u(r) has been changed to u'(r), all of
whose characteristic points have been shifted to slightly
smaller radii because of the increased curvature of the
wave function in the region AR. The system is now
slightly oG resonance.

Next we consider how the energy is to be changed in
order that the phase shift be returned to 7r/2. Consider
the energy dependence of the functions u'(r) and up(r).
As the energy increases, the wavelength decreases, and
all of the characteristic points of each function shift to
smaller radii. However, the two functions shift at
different rates. A characteristic point of u'(r) shifts
more slowly with energy than a corresponding point of
uo(r), because for r ((R+AR) the effective wavelength
of u'(r) jcorresponding to an effective kinetic energy
E~=E V„(r)—V ~(r)j—is everywhere smaller than that
of uo(r) Lwhose wavelength corresponds to the smaller
effective kinetic energy E V&(r)).For r &—R, the wave-
lengths of u'(r) and uo(r) are, of course, everywhere the
same. Since the change in wavelength hA due to a shift
in energy AI;'is LN= XAE/2E&, it is thu—s clear that a,

maximum in u'(r) will not shift as much as a corre-
sponding maximum in uo(r). In other words, because of
the effect of the nuclear potential U„(r) the phase of the
wave function u'(r) for r(R is relatively stable to an
incremental change in energy when compared to that of
the function uo(r) Thus sinc.e the phase of uo(r) changes
faster with energy than that of u'(r), we see that there
is a positive hE such that the phase shift bg will be
returned to vr/2, as illustrated in Fig. 15(d), where
u" (r) and uo" (r) are the analog of u'(r) and uo(r), re-
spectively, for the energy I'.+DE.

This argument applied in the opposite direction shows
for a negative AE that the phase shift goes further from
~/2. Thus the slope dA'/dl' of a resonance locus in the

FIG. 16. Ray geom e try.

A l, E plane is positive for any partial wave if E& V ~ (R).
This energy condition, which is equivalent to l(kR,
corresponds classically to the condition that the classical
orbit intercepts the nucleus. For the particular case of s
waves, our result shows that the slope of the locus is
positive for atl positive energies.

C2xpdp.

Let p=R sin8. Then

C=4E. cosy sin8d sin|I
0

si n 1(1/ n)

=4Re' cos"y sin yd y.

4R 1
C= n' 1— 1——

~3»')
which reduces to C=4R/3 for»=1 (no refractive
effects) and gives Eq. (4) for n =C/(4R/3) and
»= (E+V) :/E:. -

APPENDIX II. AVERAGE CHORD LENGTH
THROUGH A SPHERE

We wish to derive the average chord length through
an evenly illuminated sphere of radius R and index of
refraction e. I.et the s axis be parallel the radiation and
go through the center of the sphere. Consider a ray
incident at. radius p from the s axis (Fig. 16). Its chord
length, C, is 2R cosy, y being the angle of refraction and
0 the angle of incidence. Snell's law relates the angles
and the index of refraction as sin%in'= ». The average
chord length C for uniform illumination in the s direc-
tion is


