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Paramagnetic Resonance Width in Iron and Nickel*
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A theory is presented to account for the unusually large linewidths found by Rodbell in the microwave
resonance absorption of iron and nickel single crystals above the Curie points. The perturbing spin coupling
is assumed to contain pseudodipolar (D) plus quadrupolar (Q) components. . By the method of moments
it is shown that the paramagnetic linewidth is proportional to (Ds+bQ') /J, where 7 is the exchange integral
and b= 0 for S=-,', and b= 1/27 for S=1.The ferromagnetic anisotropy constant at O'K is proportional
to ( D'/J)+—eQ, where e=0 for S=ss e 2 to 5 for S=1.Since D, Q, and J are Probably not very temPer-
ature sensitive, measurements of paramagnetic linewidth and ferromagnetic anisotropy, together with
well-known techniques for estimating J, may be used to deduce values of both D and Q. For iron and nickel
it is shown that the contribution of Q to the linewidth is negligible, whereas the contribution from D is
enormous, thus accounting for Rodbell's results.

X ='dCz+Kz+BCn+XO,
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(2)

(3)
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0co=Z')t Q, tr;,
—'(S,'r, ;)'(S; r;;)'.

Here the z axis is taken along the (arbitrary) direction
of the applied field Ho. The coupling constants J;;,D;;,
and Q,; will be limited in general to nearest-neighbor

J, D, and Q. It must be kept in mind that D;; also
includes long-range magnetic-dipole coupling; however,
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I. INTRODUCTION

' 'N a ferromagnetic-paramagnetic resonance study of
& ~ iron whisker crystals at 9 kMc/sec, Rodbell' has
found the linewidth to rise linearly above the Curie
temperature (770'C) to a value of 2000 oersteds at
850'C, the highest temperature reported. The linewidth
in the ferromagnetic region was remarkably small for
metals, 50 oersteds or less, indicating extremely
perfect crystals. At erst sight it is dificult to see why
the paramagnetic width should be so enormous.
Preliminary measurements' on nickel crystals in the
paramagnetic region indicate even larger widths.

It is the purpose of this paper to show why these
ferromagnets should have such very large paramagnetic
resonance linewidths and to relate these widths to the
theoretical exchange, pseudodipole and quadrupole
coupling constants I, D, and Q, and thereby to the
measured ferromagnetic anisotropy constant E~.

Following Van Vleck's standard theory of ferro-
magnetic anisotropy' we consider the spin Hamiltonian
to be a sum of Zeeman, exchange, dipole-dipole-like,
and quadrupole-quadrupole-like terms:

the effects we consider will involve only D,,' and hence
will fall off rapidly with distance. For iron and nickel
the pseudodipole portion of D is presumably very much
larger than the magnetic dipole.

Throughout this paper it is assumed that D, Q, and
J are temperature insensitive and in particular have
roughly the same values at O'K as in the paramagnetic
region. It is probable. that these parameters have only
a small temperature variation in cubic crystals. Ac-
cording to Brenner' the eGect of thermal expansion can
be related to measured changes of E~ under volume
strain, and he estimates Ej of iron to increase because
of thermal expansion by about 0.03% per degree. In
nickel the fractional change is even smaller. Probably
these changes are caused by similar small changes in
D and Q. We might expect, therefore, as much as a
30% alteration of these coupling constants between
0 K and the paramagnetic region.

It is possible that some of the anisotropy arises from
an interplay of spin-orbit coupling and crystalline 6eld
at the individual atomic sites. The Hamiltonian would
then contain a term of the form

&.= saZ'E(S")'+ (S'")'+(S'")'
——',S(S+1)(3S'+3S—1)j,

where $, rt, and f are the cubic crystal axes. This term
makes no contribution, however, unless S~& 2, the
physical reason being that only a 24 pole, or higher,
can exhibit cubic anisotropy. (Van Vleck has pointed
out that it is possible to obtain single-atom anisotropy
with S(2 if excited orbital levels are engaged, but
that this effect is very small. ) Since it is unlikely that
states with S as large as 2 are important in metallic
iron or nickel, it is believed that the principal contri-
butions to the anisotropy come from pair interactions
of the form of (4) or (5).

The possibility of pair interactions linear in one spin
and quadratic in the other, i.e., dipole-quadrupole
coupling, is ruled out by a time-reversal argument.
The Hamiltonian must not change sign if all spin
operators are reversed.

4 R.. Brenner, Phys. Rev. I07, 1539 ($957).
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Eio(0) =-'~S'(S—-')'QII. (9)

Here s is the number of nearest neighbors, the factor 3

in (9) is a correction noted in a subsequent paper by
Van Vleck, ' and 0 is the lattice sum

II=Pa—$ 1+—&(~I,'Pp'+Pi'va'+vp, '~p') j, (1o)

with nI„Pq, yI, the direction cosines of the lattice vectors
connecting nearest neighbors, taken with respect to the
cubic axes. For simple cube, body-centered cube, and
face-centered cube, respectively:

n= 6, (16/3), 3. —
A spin-wave analysis' corrects E» so that Eq. (8)

becomes

Eio (0)= —(3&VS/16s)f(1+02176) (D. P/J)Q,
(8')

i-= 2Ss~/(2Ss —~),

with, for sc, bcc, and fcc, respectively,

q= 1.26, 1.072, 0.974;

5= 0, 1, 0.
(12)

As noted by Van Vleck, E&z is intrinsically negative
for bcc and fcc, whereas E~o takes the sign of Q. U E~
is positive, as in iron, it is obvious that the contribution
from Q overbalances that from D. Aside from this
simple observation, however, measurements of Ej
cannot be used to separate the relative contributions
from E~z& and Eqo and hence to infer values of D and Q.
Even the temperature variation of E~(T) is of no aid,
since according to theory' both the dipolar and quadru-
polar contributions should vary as the tenth power of
the magnetization. It might be possible to unscramble
D and Q by comparing E& with E&, the higher-order
anisotropy constant~; however, experimental values of

' J. H. Van Vleck, Phys. Rev. 78, 266 (1950},footnote 13.' S. H. Charap and P. R. Weiss, Phys. Rev. 116, 1372 (1959);
F. Keffer and T. Oguchi, ibid. 11,?, 718 {1960).' We are indebted to Professor T. Nagamiya for suggesting
this approach. Another method of unscrambling D and Q has
been suggested by S. H. Charap, Phys. Rev. 119, 1538 (1960),
who points out that these couplings lead to different temperature
variations in the anisotropy of the magnetization. The effect,
however, is small and probably very difFicult to detect.

IL THE ANISOTROPY CONSTANT X,(0) IN
TERMS OF J, D, AND Q

For a crystal with cubic symmetry, if the magnetic
anisotropy energy is expanded in powers of the direction
cosines n~, o.2, o.3 between the bulk magnetization and
the three cubic axes, the lowest term is

pl El(al &2 +&2 aP+&p &1 ) (6)

Van Vleck' shows that, in the molecular-held approxi-
mation, the Hamiltonian (1) gives rise to an anisotropy
constant at O'K of magnitude

E,(0)=E,D(0)+E,o(0),
with

EgD (0)= —(31VS/16s) (D'/ J)fI; (8)

E2 are very uncertain at present. A study of the
theoretical relation between Ep(0) and D, Q, and J
will be reported in a future paper.

In the following sections it will be shown how
measurement of the paramagnetic resonance linewidth
can be combined with measurement of E&(0) to yield
separate estimates of D and Q.

III. THE PARAMAGNETIC LINEWIDTH IN
TERMS OF J, D, AND Q

The theoretical paramagnetic resonance lint width to
be expected from the Hamiltonian (1) will be analyzed
by the method of moments, which has been used so
successfully by Van Vleck' to study the widths of
paramagnets with small 3C~ and no 3C@. For these
substances, in order to obtain moments of only the
bM= ai main line and to eliminate the small satellite
lines, Van Vleck used the ingenious trick of truncating
3C&. Only that portion of 3C& was retained which
commutes with BC'. The satellite AM=0, a2, a3
transitions, which are permitted in the presence of the
entire 3C&, were thereby removed from consideration.

Anderson and Weiss' and, independently, one of us"
have concluded that as 3C~ becomes much larger than
BCg, the satellite lines merge into the main line. In this
situation, which includes microwave resonance in para-
magnets with Curie temperatures greater than 10'K,
the Hamiltonian 3CD must not be truncated.

A. Second Moment

The second moment of the resonance line is given by
the mell-known formula' "

&'&~') =
& I I:~,s+l I')/& I

s+ I') (13)

Here, for convenience in calculating, we have assumed
the perturbing potential to be gPFF+S+, with

S+=P; S,+=P, (S;*+iS;"). (14)

The angular brackets on the right of (13) signify a
statistical average in the paramagnetic region (average
of a matrix trace). Thus, sufficiently far above the
Curie temperature for short-range order to be unim-
portant,

&IS'I')=&V&(S,*) +(S. ) )=-;XS(S+I). (13)

The S; S; term of KD can be incorporated into 3C~,
and in what follows we shall understand J to include
the generally very much smaller ——', D. Then

[X,S+j=gPFF p P S,+—3 P D P'T&"
p Q, , (p, ~F,.~+Z, ~p,.~)(p.') p

8 J. H. Van Vleck, Phys. Rev. 74, 1168 (1948).' P. W. Anderson and P. R. Weiss, Revs. Modern Phys. 25, 269
(1953).

'0 F. Keffer, Phys. Rev. 88, 686 (1952)."I.Wailer, Z. Physik 79, 380 (1932).
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where

F,& ='r;; 'S—; r,;=,'S-,+m;;+ ,'5-, p;,+5;*p;;;
T .j=

I 5 + p ij=5 'p . —5;+y,

mij mji (xij zpij l pij pji=&ijL &pij

Here n... P,;, and y,; are the direction cosines of r, ,
with respect to the axes of quantization. It proves
convenient to call these n, P, and y for short and to
introduce the notation:

i*+—=i+i+; i+'—= -', (i+i*+i'i+);
ioo—=i*'—i+i —i—i+:—$ (S,*)'—-', (S,)',

(ij)oo S.5,*——S

Then the following substitutions may be made in (16).

p T,~ = f(1—3y'—)i+j *+p'i j '+py (ij )" 2m—&i+g+);
i (p,.~T,~+ T,ip, ~) = (1 3~2)i+'—+p'i '+ pro—o 2mqi++- ;

(F")'= m'j+++P'j +j **

—(1 &2)j +2m&j—+*+2P&p' *;

8= (2S+3)(25—1). (21)

It is noted that no cross terms of the form DQ are
present. The expression (20) is isotropic, that is,
independent of the orientation of the magnetic field
(axes of quantization) relative to the crystal axes. On
the other hand, the second moment given by Van Vleck
for his truncated KD is anisotropic, since truncation is
with respect to Kz and divers as the direction of JIp
varies with respect to the cubic crystal axes. Van
Vleck's result) when averaged over a sphere, is precisely
—,'o the dipolar portion of Eq. (20). The fact that large
FACE, , which requires use of the full LCD, increases the
second moment of the line is sometimes referred to as
the "10/3 effect, " and has been discussed in detail
elsewhere. ' "

B. Fourth Moment

I"or a cubic crystal, with neglect of small contribu-
tions from other than the s nearest neighbors, Eq. (19)
becomes

ii'(io-'& =25(s+1)sLD'+ (1/675) PQ'), (20)

L3'.,5+j=—U= Q U. , (17)

with U 3 containing a net of three lowering operators:

where in some of the terms in F,.'T the indices of
summation i and j have been interchanged for con-
venience.

It is now relatively easy to write

In order to obtain a rough notion of the shape of the
line, it is necessary to evaluate higher moments. The
fourth moment is obtained from' "

Ii'4&~") =
& I

Pc, Ujl &/&Is+I-&, (22)

with U given by Eq. (17).
Let us first examine the terms in LX,Uj contributed

by LCD. Of these, the terms proportional to JD are by
far the largest. As in Eq. (1'7), we may write

U-o= —2Z Q'P '& 'j
t'w j

and so on up to U4, which contains a net of four raising
operators. Then

(IL~,5'll')= 2 &U-U-*)

pC UjgD= Q p'

n 1,

&IL& Ujl'&" = 2 (V.V.-'&

n—y

(23a)

n,=—3

These terms may be evaluated with use of Eq. (15)
and relations such as

The V„are complicated expressions, but the evaluation
is straightforward, if tedious. The result for the three
cubic lattices is

&'("')J'D'=4»'D'5 (5+1)Lo &+ 45(5+1)(2s—3)
+85(5+1)6], (24)

6=0, 0, j..

((s, )2s,+s,-)= (1/15)s(s+1) I 25(s+1)+1j,
&(5')'(5 )')= (2/15)5(5+1)I:45(5+1)—33,

etc. ~ith a tedious amount of algebra Fq. (13) is where, for sc, bcc, and fcc, respectively,

6nally reduced to

5'(G)=o'E '5(S+1)P (1+/ ')-

X (D,,-"+(1/6»)L45(5+1) —3j'Q' ')

plus Zeeman terms which need not be considered here.
The dipolar portion of this expression was 6rst obtained
by Wailer, "who calculated moments in the absence of
Kz and therefore used the entire KD.

The extra term in the fcc arises because some nearest
neighbors of a given site are also neighbors of each
other.

When averaged over a sphere, Van Vleck's' corn-
parative result for the truncated Hamiltonian is
precisely 3/10 the value of (24) above. Thus the ratio
of the fourth moments of truncated and untruncated
KL) is the same as the corresponding ratio of the second
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moments. Therefore, for the three cubic lattice, ,

(~')/(co') = 25 'J'[38+ 'S(-S+1)(2z 3—)
+8S(S+1)6], (26)

for the principal term from 3CD, independent of trun-
cation. We shall later argue that this equation should
also hold for the principal term from BC'.

C. Exchange-Narrowed Linewidth

According to the analysis by Anderson a,nd Keiss' of
paramagnetic resonance in the presence of Kg))3C~,
the line shape is given by

lattices, is

mr&S(S+1)[D'+ (1/675) PQ'j
Ado) = (32)J['b+—', S(-S+1)(2z 3—)+8S(S+1)hj'

with h given by Eq. (21), 6 by (25).
It is seen that the contribution from a, given size of

() increases rapidly with increasing S.
As mentioned above, when X~))BC', the linewidth is

isotropic. On the other hand, when BC'(&GCz and the
truncated 3CD must be used, Van Vleck finds a marked
anisotropy in the main line. One way of determining
the applicability of our theory to a given case is to
search experimentally for linewidth anisotropy.

(27)

Here co~ is the frequency associated with the dipolar
source of the linewidth, that is

co„-'= (a)');

and co, is the rate at which the exchange modulates the
dipolar perturbation. In the language of Van Vleck
ancl C'orter, "" this modulation, which can be traced
to the noncommut, ativity of Kz and Xz as exhibited by
Eq. (22), causes "exchange-narrowing" of the linewidth.

The Anderson-Weiss line shape has the fourth
moment

(M )= 3M& + z7cM&"G)~

The linewidth is given by

ah = (a/J)[D'(T)+. bQ'(T)];

E,(0)/iV =c{[—D'(0)/ J7+eQ (0));
(33)

(34)

where we have emphasized the possible temperature
dependence of D and Q, as discussed at the end of Sec.
I. If temperature effects are neglected, then measured
values of linewidth and anisotropy may be combined to
yield both D and Q. We consider two cases in detail.

Case A: 8= —,
'

With spin —,
' there can be no quadrupolar coupling,

and therefore

IV. RELATION BETWEEN PARAMAGNETIC
LINEWIDTH AND FERROMAGNETIC

ANISOTROPY

The results of the previous two sections are sum-
marized by a pair of equat, ions:

'/ =( ')L-' ( ')/( ')j' (30) b= e=0. (35)

The arguments of Anderson and Weiss are sufficiently
general to apply to Kq as well as to 3C&. I.et us now
tentatively identify ~„'- in the above equations with
(~'} of Eq. (20). Then, according to Eq. (29),

M OP —x'cd (31)

"C. J. Garter and J. H. Van Vleck, Phys. Rev. 72, 1128 (1947).

The ratio of moments thus depends only on the rate co,
at which the exchange interaction modulates the
perturbation. As long as ~,))cv„, we do not expect this
ratio to depend on the particular type of perturbation
causing the linewidth. This ratio is in fact independent
of truncation of BCD, as shown by Eq. (26). Therefore,
without going to the very considerable trouble of
calculating (&v'} in the presence of BCo, we can in general
relate the right side of (26) with z'zs&, '.

Incidentally, this argument supplies a missing link
in the otherwise complete analysis given by Anderson
and Weiss of the 10/3 effect of 3CE)) tCz on paramag-
netic linewidths.

From Eq. (30) the linewidth, for the three cubic

From Eqs. (8') and (32) it is easy to evaluate for
sc, bcc, fcc, respectively:

a = 2.66, 2.95, 3.07;
c= —0.150, 0.077, 0.03,

(36)

It is generally assumed that nickel, when considered
from the atomic point of view, is predominantly spin —,.
If this is so, and with the fcc numbers, we expect

kh(u= (a/c)[iE (0) i/.Vj
= (100)(9X10 "erg), (37)

where we have inserted the standard experimental value
of E&(0). The predicted paramagnetic width is thus

Av=2X10" cycles/sec. (38)

This extremely broad line could probably best be
detected by microwave Faraday rotation. Any quadru-
polar source of E,(0) would of course change the result
(38). Since E~ in nickel is negative, the presence of
positive (or negative) Q would mean we have under-
(or over-) estimated D and also the linewidth. (As
shown below, the contribution of Q to the width is
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negligible. ) Of course, actual measurements of Av could
be used to determine the quadrupole-dipole ratio.

Preliminary measurements by RodbelP indicate a
tremendously broad paramagnetic width in nickel.
Bloembergen" has measured a width of =750 oe at
the Curie point in a s,ample of electrolytic nickel foil;
at higher temperatures the resonance signal became
unobservably small, but there were clear indications
that the linewidth rises rapidly with temperature.

Case 3:8= I

Here, for sc, bcc, fcc:

a= 4.09,

ah= 0.151,
c= —0.263,

ce= —0.5,

4.62,

0.171,

0.144,

0.444,

4.91;
0.182;

0.047;

0.25 ~

(39)

(6.2X10 ")'
=0.868 erg.

3.6y 10-i4
(40)

Here we have inserted the standard experimental value
of Ey(0), and we have evaluated J from Rodbeli's~
measurement of the exchange stiffness parameter A,
using S= i. The predicted paramagnetic width is

hv = 1.4X 10' cycles/sec, (41)

that is, less than 0.1 oe. Thus the width from Q is

negligible, even in the unlikely situation that E&@ is

13 N. Bloembergeri, Phys. Rev, 78, 572 (1.950),

Let us tentatively assume that iron has predomi-
nantly spin 1, and that its positive anisotropy arises
entirely from Q. Then, with use of the bcc numbers,
we expect

Ada= (ab/e e )[Kq(0)/i'V) J "

several orders of magnitude larger than K~. Almost
the entire width is therefore caused by D, and for bcc
with 5=1 this width is

or
58(o= (32.1)L I E»(0) I /E$,

Dv= 3.0X10"» cycles/sec. (42)
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Here the parameter e is given by

»= IE»(o) I/E~(0), (43)

and is less (or greater) than unity if IE»(0) I
is less

(or greater) than —,'Eqo(0).
For &=1, this width corresponds to 10.7&10' oe.

Rodbell's measurement of 2)(10' oe at 850'C can thus
be accounted for, although the experiment must be
carried to a temperature sufFiciently high for the width
to Qatten out before a reliable estimate of e can be
made. Small changes of D and Q with temperature,
discussed at the end of Sec. I, will of course modify
these results a bit.

Experiments indicate that the paramagnetic line-
width rises with temperature above the Curie point in
ferromagnets, '' " but falls above the Neel point in
antiferromagnets. "A detailed theory of this tempera-
ture variation has not yet appeared. Short-range order
effects are clearly involved, apparently in such a fashion
as to decrease the local field Quctuations in ferromag-
nets, but to increase the fluctuations in antiferromag-
nets. A proper theory should fit smoothly into the
analysis of this paper, which is valid in the limit T~ ~.


