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Covalent Bonding and Charge Density in Diamond~
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Recently Gottlicher and Wolfel have measured x-ray scattering
factors from diamond powder that differ appreciably from the
older values of Brill. Because scattering from the 1s core is small,
information about the crystal covalent band can be obtained. In
the Brillouin zone theory of crystal wave functions the valence
charge density varies throughout the valence band. Free-atom
approximations to the diamond charge density replace the sP3

crystal wave functions at k=0 by atomic sp3 charge densities.
This approximation is insuKcient to explain covalent bonding
effects, such as the "forbidden" reflection P222. We have examined
crystal charge densities throughout the valence band. We 6nd that

there are two important mechanisms which affect the valence
charge density. The 6rst is a linear response to the ionic potentials.
This may be called dielectric screening; it is dominant in metals,
and it gives no contribution to P222. The second is nonlinear in
the ionic potentials, and may be called crystal hybridization; it is
responsible for covalent effects in the charge density, and it makes
no contribution to P220. The contributions of both mechanisms to
Pgl J P22p P222 P3$$ and P4pp have been computed. Surprisingly,
the results are in good agreement with the older data of Brill and
simple models of the covalent bond, while significant disagreement
with Gottlicher and Wolfel's measurements is found.

1. INTRODUCTION The latter measure the charge distribution of unpaired
spins, so that the large core background which obscured
the x-ray results was absent.

Another favorable case is that of diamond. Here the
core is very small and because of the strong covalent
bond asphericities are large. Many attempts have been
made, both experimentally and theoretically, to ex-
amine the covalent bond in diamond. Gottlicher and
%'olfel4 have recently made a painstaking study of
x-ray scattering from diamond powder. We compare
our results with experiment in Sec. 3.

Recently we have carried out calculations of the
wave functions in diamond at a number of points in
the valence band. ' The valence charge density, defined
as a suitably weighted average over the band, was

OR some time it has been customary to calculate
x-ray scattering factors in crystals from a super-

position of free-atom charge densities. The latter are
obtained from either Hartree or Hartree-Fock solutions
of the Schrodinger equation for free atom configurations
which are supposed to be good approximations to the
states actually present in the crystal.

This procedure is open to two objections. Even
though the crystal potential may be given accurately
by a superposition of atomic potentials, crystal wave
functions must satisfy periodic boundary conditions.
As a result, the atomic energy levels are broadened into
energy bands. Because of the translational periodicity
of the lattice, the crystal energy levels can be labeled
by Bloch wave vectors k in the Hrillouin zone. ' For
example, the valence bands of diamond are shown in
Fig. 1 for two principal symmetry axes of the Brillouin
zone.

Another objection is that the crystal potential should
be determined not from ad hot, assumptions but from a
self-consistent solution of the Schrodinger equation. In
this way the departure of the crystal charge density from
a superposition of atomic charge densities is treated
including the effect of overlapping atomic potentials
which modify the valence contribution to the crystal
potential.

For most experiments these corrections are too smal1

to be measurable. For example, asphericit. ies in d-

electron charge distributions in transition metals could
not be measured by x rays, ' but. some small asphericities
may have been detected by using polarized neutrons. '
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FIG. 1. Sketch of the energy bands of diamond along L100$ and
L111) axes of the Brillouin zone. The twofold degenerate states
at the top of the valence band (h~ and A3) contribute strongly to
the covalent bonding.

* Supported in part by Ofhce of Naval Research.
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expanded in the Fourier series

p„(r)=g F„»e'K',

where K is a reciprocal lattice vector, and F„» is the
usual x-ray scattering factor for the valence charge
density. From an examination of the crystal potential
we concluded that only F, K„K1=2 rra '(%1, +1, &1),
would be large enough to make an important contri-
bution to the crystal potential. The charge density was
treated self-consistently with regard to F,K„while the
other F,, K's were given their free-atom values.

Because the higher Fourier coeKcients of the valence
potential are small relative to the corresponding Fourier
coef6cients of the core potential, this approximation is

sufficiently accurate for setting up the orthogonalized
plane wave (OP%V) 111atrix elements. However, com-
parison ~vith precision x-ray data requires a detailed
examination of the other F,K E V, K. A striking
example is the "forbidden" reflection F2~~. This is zero
in the free-atom approximation because the structure
factor vanishes. Renninger's nonzero value ~ is a direct
measure of covalent bonding in the crystal. Comparable
corrections are expected for F2gp, F3yy, alld F4pp.

A qualitative description of the important physical
conclusions to be drawn from our somewhat involved
calculations is given in Sec. 2. A detailed technical
description of our methods, which we hope will be of
use to others making self-consistent studies of crystal
charge densities, is given in the Appendix.

pk(r) =g e'k "yi(r —R„),
ul

(2.1)

where l denotes carbon wave functions (2s, 2p, 3s, etc.).
Because wave functions from diGerent atoms overlap,
this basis set can describe asphericities in the charge
density due to covalent bonding. One can also augment
the atomic basis set with, e.g. , Gaussian functions
centered midway between two atoms. In this way
Ewald and Honl' ' hoped to obtain a simple description
of the eGect of covalent bonding including only overlap
of nearest neighbors. Later experience has shown,
however, that overlap between more distant neighbors
must be included, e.g. , in graphite to fifth neighbors. "

6 M. Renninger, Z, Krist. 97, 107 (1937).
7 M. Renninger, Acta Cryst. 8, 606 (1.955).

P. P. Ewald and H. Honl, Ann. Physik 25, 281 (1936).' P. P. Ewald and Ei. Honl, Ann. Physik 26, 673 (1936)."F. J. Corbato, Ph.D. thesis, Massachusetts Institute of
J'ethnology, 1956 (unpublished).

2. CRYSTAL WAVE FUNCTIONS

Because the crystal charge density is given quite
well to a first approximation by a superposition of
atomic charge densities it seems natural to make the
tight-binding approximation and expand the crystal
Bloch function as a superposition of atomic wave
functions,

We have therefore used a diGerent basis set, that of
orthogonalized plane waves (OPW's). ' This basis set
has the advantage that almost all the charge density
is automatically obtained in the Fourier form (1.1).
The charge density associated with a plane wave is
constant. We showed' that the interference between
diGerent plane waves added constructively throughout
the valence band to produce a value of F~j~ in good
agreement with experiment. The same interference is
expected to be much smaller for other reciprocal lattice
vectors, as we shall now see.

Let us assume that the eGect of orthogonalization
can be included in the crystal potential

V(r) Q V' ~~K r (2.2)

in the way discussed by Cohen and Phillips" and used
by us in I. Then if our unperturbed wave functions are
plane waves, first-order perturbation gives

(k+K~ V»~k)
Pk 4 k +Z 4'k+» ) (2.3)

Ek Ek+K
.I. (p) —&ik r .I, (p) ~i(k+K) r&k p +k+K (2.4)

The linear treatment of crystal fields implied by (2.2)—
(2.4) leads to a dielectric screening picture of crystal
charge densities when it is carried out self-consistently. "
This procedure is justified whenever the crystal
potential V is su%ciently weak.

There are two objections to this procedure in dia-
niond. As we have pointed out in I, VK, is much larger
than VK„, K„&Ki. This means that the effect of VK,
in second order may be as large or larger than VK„ in
first order. In particular second-order eGects of VI~~
make almost all the contributions to F2~..

The second objection is that (2.3) is based on non-
degenerate perturbation theory. The orbitals of p
atomic symmetry oriented transverse to the crystal
momentum Ak are exactly degenerate along the $100j
and L111] directions in Fig. 1. They remain quasi-
degenerate (in the sense that their energy separation
is small compared to VK, ) throughout the Brillouin
zone. Consequently these bands tend to hydridize
strongly, with pK„admixed into pK, in such a way as to
increase charge density along the bonding directions
where the attractive potential is largest.

Some insight into the hybridization of crystal wave
functions can be obtained by considering the expansion

~ik r Q g K~i». r (2.5)

"M. H. Cohen and J, C. Phillips, Phys. Rev. 124, 1818 (1961).

If we first approximate fk by e'k', then the Ck» that
are strongly eGected by hybridization are those asso-
ciated with K=Ki. Because k&Kp this means (see
Fig. 2) that the volume of momentum space
k'&K&+Ki must be treated exactly, allowing for
nonlinear terms in V~, and interference of V~, with
VK„. For k')Kp+Ki only V»„are involved, and as
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~sir= fc/~& f„—
F,..= 2f„—
&4oo= fc 2f„—

(2.6)

where fc(K) is the form factor for the spherically
symmetric charge densities located on the carbon sites
and f,(K) the form factor for the bonding charge. The
signs of the bonding contributions in (2.6) should be
compared with our Eb„,q as given in Table IV. It will
be seen that qualitatively the charge within the
hybridization volume conforms quite closely to the f,
of the Ewald-Honl-Brill model. Also fc represents the
scattering from the 1s electrons and the "dielectric
screening" part of the valence charge density. However,
it is difficult to determine f,(K) quantitatively from
Table IV and (2.6). Thus we see no simple way to
define the "number of electrons" in the covalent bond.

Dielectric Screening Region

FIG. 2. All k space is divided in three parts. The Fermi volume
is that part of k space which is occupied in the limit of weak
crystal potentia1. Those states which are mixed into states in the
Fermi volume by V»1 constitute the hybridizing volume. The
rest of k space is available to react to the higher and weaker VK
and forms the dielectric screening region.

R. grill, Z. Elektiochem. 63, 1088 (1959).

these are small they can be treated by the linear
approximation (2.3). Figuratively speaking, linear
dielectric screening is valid for k'&Kp+Kt, that is,
outside the hybridization volume.

Within the hybridization volume the Schrodinger
equation must be solved at a number of points in the
valence band large enough to give a good sample.
Because of the quasi-degeneracy of the transverse-P
valence band, the techniques we have invoked to make
our sampling are quite involved, and they are described
in the Appendix.

We conclude with some qualitative remarks about
hybridization. Following Ewald and Honl, Brill" has
represented the charge density as a superposition of
atomic charges plus a bonding charge centered between
nearest neighbors. The scattering factors are then

~trt= fc/~~+ f )

Fsso= fc,

E

O

E
O
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Fro. 3. Valence charge density along a (111) axis in diamond.
The dashed line is the charge density obtained from P(0) and
Pjfj alone. The solid line is obtained from P(0), Fill Fatso P3$$,
F2.2, and F400 computed from the hybridizing region of k space
only. The orthogonalization to the 1s core function has not been
included. Note the effect of hybridization is to transfer charge
from the atom to the covalent bond.

Alternatively we may plot the crystal charge density
along a L111$ direction connecting nearest neighbors
(Fig. 3).Notice that all F&„add constructively between
the atoms to give a sizeable amplification of the bonding
charge due to I'"pig alone.

3. COMPARISON WITH EXPERIMENT

The experimental results of Gottlicher and Wolfel'
are listed in Table I together with the older results of
Brill et ul."Gottlicher and Wolfel measured integrated
intensities for powder samples while Brill measured
Fz, and Fz„ for a single crystal and then corrected for
extinction by comparing with a powder measurement,
of P~1 Got tlicher and Wolfel also compared the
experimental and theoretical scattering factors for
larger K (where the is electrons alone contribute to the
scattering). They thereby determined a Debye-%Railer
correction exp(35K') with M in good agreement with
the Debye temperature of diamond (2200'K). The
corrected scattering factors are given in columns 4 and
5. Scattering factors for the is electrons" are listed in
column 6, and when these are subtracted from the
experimental values one obtains the experimental
valence scattering factors (columns 7 and 8).

In Table II we compare the two sets of experimental
valence scattering factors with theoretical ones from
superposition of Hartree-Fock atomic charge densities"

'3R. Brill, H. G. Grimm, C. Herman, and C. Peters, Ann.
Physik 34, 393 (1939}."D. T. Keating and G. H. Vineyard, Acta Cryst. 8, 606 (1955).



TABLE I. Absolute values of x-ray scattering factors. Values measured by Brill ei al (c.olumn 2) and by Gottlicber and Wolfel (column
3) are listed in units of electrons per atom. Columns 4 and 5 list these results multiplied by an appropriate Debye-Wailer factor. Column
6 lists the is Hartree-Fock core contributions to the scattering factors which when subtracted from columns 4 and 5 gives the experi-
mental valence contributions to the scattering factors.

111
220
311
222
400

BGHP

2.33
1.81
1.06

1.38

2.32
1.91
1.13
0.14a
1.39

Corrected
BGHP

2.35
1.86
1.11

1.47

Corrected
GW

2.34
1.97
1.18
0.15a
1.48

1$

1.36
1.79
1.22

0
1.62

Val. BGHP

0.99
0.07—0.11

—0.15

Val. GW

0.98
0.18—0.04

&0.15'
—0.14

Measured by Renninger (references 6 and 7).

(column 3), Ewald and Honl's tight-binding values,
and our values. Note that our values consist of a
hybridization part and a dielectric screening part, and
that the former makes a negligible contribution to E22Q,

and the latter a negligible contribution to Fsss (Table
IV in the Appendix).

From Table II we see that for J 222 our results improve
considerably on those of Ewald and Honl, and are in
substantial quantitative agreement with Renninger's
experimental value. Because F222 is a direct measure of
asphericities in the charge distribution about each atom,
our results represent the first successful attempt to
calculate bonding asphericities using Bloch band
functions.

In view of our success with respect to J 2~2, we should
expect our estimates of the bonding corrections to other
scattering factors also to be satisfactory. In the case of
F~2Q in particular our calculations give a very small
valence contribution, in agreement with the bonding
model (2.6). The experimental results of Gottlicher
and Wolfel disagree significantly (by about 10% in

FsM) with this conclusion. Because of the great care
taken by Gottlicher and Wolfel to eliminate systematic
errors, this 10% discrepancy warrants further
dlscusslon.

There are three possible sources of error in our
Hartree-Pock calculation:

'1. The crystal potential may be inaccurate.
2. The calculated charge density may be inaccurate

because too few plane waves were used in the expansion
of Ps.

3. The sampling of the valence band may be too
coarse, because only 32 states in the extended zone were
treated.

The errors coming from the first two sources are easily
seen to be quite small. Changes in the crystal potential
cause small changes in the charge density, because the
core potential is 6xed and is much larger than the
uncertain parts of the electronic potential. (For
example, in I a Hartree potential gave practically the
same value for Frrr as a Hartree-Fock potential. )
Similarly our "dielectric" corrections should be accurate
to 30%, and they give the corrections to PI.„ that would
be obtained from a complete set of plane waves.

It is dificult to put an upper limit on the errors
coming from 3. Our experience with studying wave
functions away from symmetry points in the Brillouin
zone gives us considerable confidence in our results,
especially with the "k p" corrections discussed in the
Appendix. These appear to be the largest error in the
sampling procedure, and even these terms are more
than 3 times too small to explain the discrepancies with
experimental results.

The self-consistent procedures used here have been
programmed for very high speed computers by several
workers. "A check on our results with these programs
appears to be worthwhile, because theoretical con-
firmation of our calculated charge densities would call
into question the accuracy of modern powder x-ray
techniques.

We are grateful to Dr. H. C. Bolton for bringing this
problem to our attention.

111
220
311
222
400

Val.
BGHP

0.99
0.07—0.11

—0.15

Val.
GW

0.98
0.18—0.04

w0. 15—0.14

Free
atom

0.84
0.19
0.03

0—0.03

Tight
binding

0.80

—0.03

Plane
wave

0.88
0.01

—0.14
—0.15
—0.13

TABLE II. Comparison of valence contribution to scattering
factors. Columns 2 and 3 are the experimental values from Table I.
Column 4 is a superposition of free-atom Hartree-Pock charge
densities. Column 5 is the tight-binding calculation of Ewald and
Honl and column 6 the present plane-wave calculation.

APPENDIX

Ke describe here in some detail the sampling of
valence-band charge densities. As we indicated in Sec.
2, the quasi-degeneracy of bands complicates the
sampling considerably. The degeneracy is greatest at
the symmetry points where we have calculated charge
densities, so that we tend to overestimate hybridization
eGects. We describe here methods used to correct for
this tendency.

"F.Herman (private communication) and F. Quelle (private
communication).
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TAaLE III. Contribution of valence bands computed to 65 plane waves to scattering factors. The singular terms which result from
interference of a particular symmetrized combination of plane waves (SCPW) with itseif are listed in parenthesis next to the regular
terms which result from interference between different SCPW. In computing the total contribution to any F, each term must be multi-
plied by the degeneracy and weighting factors listed in columns 2 and 3.

Term D lV F311 F4oo

FI
7 orr

XI
X4

L3
Total

1
3
2 3
2 3
1 4
1 4
2 4

0.0218 ~
0.0401
0.0285
0.0277
0.0230 (—0.0099)
0.0172 (0.0139}
0.0197 (0.0138)

0.924

0.0002 (0.0020)
0.0078 (-0.0064)
0.0003 (0.0019)
0.0059 (—0.0088)—0.0040 (0;0027)
0.0041 (0.0009)
0.0080 (—0.0099)

0.002

—0.0014—0.0091—0.001.7—0.0058
0.0009 (0.0008)—0.0023 (—0.0001)—0.0045 (—0.0057)

—0.160

—0.00t t (-0.0010)—0.0060 (—0.0062)—0.0025—0.0004 (—0.0036)—0.0001—0.0021—0.0074
—0.145

—0.0015—0.0033 (—0.0048)—0.0006—0.0022 (—0.0043)—0.0013—0.0017—0.0059
—0.127

The charge density is sampled at 32 points of high
symmetry in the extended reciprocal lattice. The
sampling procedure has been described in detail in I in
connection with the calculation of F~~~. In the case of
F»& each subzone contributes approximately equally,
as one would conclude from first-order perturbation
theory LEq. (2.3)J. For the higher F's, because of
hybridization this is no longer the case. We have
therefore divided the contribution from each point
into regular and singular terms. By singular term we
mean the following. Crystal symmetry requires that
basis functions consist not of single orthogonalized
plane waves but of certain symmetrized combinations
of orthogonalized plane waves. A simple example is
the first basis function at L=xa '(1,1,1), which is

~ni)= (I/v2)(exp(iL r)+exp( —iL r)g. (2.7)

Now in the calculation of p=f*P interference between
different plane waves in ~n) will contribute oscillatory
terms to the charge density which are essentially inde-
pendent of the sign of Viii. For instance, ~ni) as
described by (2.7), will contribute to F»i.

In Table III the singular and regular contributions
to the various F's are listed. It can be seen that a large
contribution to F222 comes from the threefold de-
generate state at k=O of p atomic symmetry, I'ss. It
would be incorrect to treat this term by the sampling
procedure used for the regular terms which are more
nearly constant over the zone, since the "accidental"
symmetry of ~~ ni)» is rapidly lost as one goes away from
k=O in the valence band. Instead its is expanded in
terms of tps by the usual k y perturbation theory" for
k near 0, and an exact analysis of the secular equation
is carried out for larger values of k when k lies along
certain symmetry directions. The sum over the Bril-
louin zone can then be done approximately in the
neighborhood of k=O. The result for the subzone about
I' is 0.65&0.15 times the value which the sampling
procedure would have given. A similar calculation
shows that no correction is necessary for the singular
contribution to F222 from X4. Thus the listed singular
terms have each been multiplied by an appropriate

G. Dresselhaus, A. F. Kip, and C. Kittel, Phys. Rev. 98, 556
(1955).

QE' 1 e(E,O)—
~K Vion ef f

gx e(E,O)
(A3)

where 0 is the atomic volume. Because we are interested.

factor less than i. This complication in calculating the
singular contribution is not intrinsic and would be
overcome with a 6ner sampling of k space. These results
which were computed from the plane-wave part of the
OP%'s are listed in the first row of Table IV. The
additional contributions obtained when plane waves
are orthogonalized to the is core are listed in the second
rom of Table IV. We choose to list the two contributions
separately because although both terms contribute to
the x-ray scattering, only the plane-wave part contrib-
utes to the covalent bond (see Fig. 3).

These charge densities were obtained from wave
functions calculated in I from an expansion of 65 OP%.
This includes all the hybridizing volume of k space (see
Fig. 2). In order to test the convergence of our solutions
we carried our calculations to more tahn 400 OP% for
state I"2s (p electrons at k=O). Beyond 65 OPW the s
electrons contribute practically nothing to the charge
density. Hence we are able in row 3 of Table IV to
list an estimate of the additional contributions to the
scattering factors beyond 65 OPW. At 0=0 there are
three p states and one s state, compared to two and two
throughout most of the valence band, so that row 3
should be an overestimate.

This estimate can also be made by computing the
dielectric screening directly. It was shown by Cohen
and Phillips" that

V ff V' fr +V V' ff*/e(E, O), (A1)

where V;,„,rex is the Kth Fourier component of the
effective ionic potential, V,K the screening potential
and e(E,O) the static dielectric constant given by

@re' NI, —Ng+K
e(E,O) =1-

& &~—~~~K

where N is the occupation number of the unperturbed.
states. Using Poisson s equation, we obtain the screening
charge density
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TABLE IV. Bonding and dielectric screening contributions to x-ray scattering factors. Rows 1 and 3 are quantities listed in Tables III
and V and row 2 is the contribution of the oscillatory part of the valence wave function to the scattering factors: row 5 is their total.
Row 3 lists the additional contributions to the various scattering factors beyond those obtained from an expansion of 65 plane waves.
The Brillouin zone was sampled only at k=0 for these additional contributions.

65 plane waves
Orthogonalization terms
F» estimate beyond 65 plane waves
Dielectric screening beyond 65 plane waves
Total

0.924+0.08
—0.041

0.88

F'P20

0.002&0.04
—0.047

0.058
0.047
0.01

—0.160~0.04
—0.011

0.039
0.031

—0.14

—0.145&0.04
—0.002

~4OO

—0.127a0.04—0.020
0.030
0.017—0.13

in large K for which Err&)E„ the energy gap in the
semiconductor, we can approximate e (E,O) by its
value for a free electron gas which is well known to be
given by

2EJ. Ep E'
e(E',0) = 1+ 1+ 1——

m.aoE' E 4Eg, '

E+2Er;
Xln —,(A4)

E—2Epl

where as is the Bohr radius 5'/me'.
Now an electron of wave number k can have the

state K+k mixed into it by V;, ,rtx only if
~
K+k

~
)J,

the radius of the hybridization volume. (If
~
K+k~ &J

we have already counted its contribution to ~ in our
65 OPW expansion. ) Thus Eq. (A4), which is obtained
by integrating over the whole Fermi volume, is valid
when hybridization is present only if K+Er) J.If'
E Kr &J&K+—EF, then the dielectric constant must
be obtained in integrating over that part of the Fermi

2
Ep' lne'(E,O) = 1+-

7ruoE'

2EEp+E'
J'—Ep'

2JK K' E' —2Kp+K—J' 1n- ——1nJ'—Ep i 4 i 2J—E

+,'(Kr, ' J'+-KKp—+KJ) . (A5)

If E—Ep&J then since the entire Fermi sphere lies
within J, e'(E,O) =0. Values of e(E,O) and e'(E,O) are
compared in Table V for the three values of E of
interest. J was taken to be ~2~a '(2,2,2)

~
because the

k with the largest magnitude in the jagged Fermi

TABLE V. Dielectric screening of effective ionic potential.
Columns 2 and 3 list ~(E,O) —1 as computed for a free electron
gas and for a free electron gas in which only those electrons with
k such that ~K+It~ &

~

2s.o '(2, 2,2) can contribute to e. Column
4 lists the Eth Fourier component of the average effective ionic
potential. In column 5 is listed I'K', the screening charge re-
sponding to V;„,,ff K due to e' of column 3.

sphere which in Fig. 4 lies outside the sphere J. This
is done in the cylindrical coordinates y, p, cp shown in

Fig. 4 and the result is

2~g—1 (2 2 2)
2 ~ '(3,1,1 )
2 ~ '(4,0,0)

e—l ~ —1

0.173 0.023
0.076 0.024
0.030 0.021

ion eff K

—0.20
—0.09
—0.04

FK

0.047
0.031
0.017

Fzc. 4. Region of k space that contributes to dielectric screening
of V&. Ferm'. volume of Fig. 2 is rep1aced by sphere centered at
end of vector K. If K+4 lies outside the hybridizing volume
(sphere of radius J) then the state K+4 is mixed into the state k
by VI,. The integration over k of Eq. (A2) is done in the cylindrical
coordinates y, p, p.

sphere (Fig. 2) is 2ma '(1,1,1). V;,„,ttx, which is also
listed in Table V, is taken from Cohen and Phillips. "
Using V;,„,rt, s'(E,O), and Kq. (A3), we calculate the
changes in the charge density obtained due to dielectric
screening beyond the covalent bonding region of k
space. These are listed in Table V and also Table IV
where they are added to the covalent bonding contri-
butions (65 plane wave expansion). They are seen to
be relatively small and their eEect is to lessen somewhat
the peaking of the charge density between nearest
neighbors due to hybridization.


