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Kxperiments4 ' based, e.g., on light emission or
probe currents, give higher average velocities which

correspond to those found with shock waves. ' "These
are to be expected with the large current pulses which
have been superimposed on the auxiliary discharge.
Such velocities are probably not representative of those
in a steady discharge. The velocity spectrum in high-

'0 M. Sakuntala, A. von Engel, and R. G. Fowler, Phys. Rev.
118, 1459 (1960).

P. F. Little, Proceedings of the Conference on Ionization,
Munich, 1961 (North Ho)land Publishing Company, Amsterdam,
1 962), Voj. 2.

current arcs is still to be investigated. However, it
appears that the emission of neutral vapor from low-
current arcs cannot be described in terms of classical
evaporation theory or expressed in terms of a tempera-
ture of the cathode spot."
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The approach to equilibrium of electrons, plasmons, and

phonons in finite-temperature plasmas is studied in the random

phase approximation. It is first shown that for an electron plasma
in equilibrium, the long-wavelength, well-defined, plasmons
contribute a term to the free energy which is appropriate to a
collection of independent bosons. In order to study nonequilibrium

processes, an explicit plasmon distribution function is introduced.
The matrix element for plasmon-electron coupling is calculated
in the random phase approximation, and second-order pertur-
bation theory is used to write down the equations which couple
the electron and plasmon distribution functions. Equilibrium is

shown to result from the competition between the spontaneous
emission of plasma waves by single fast electrons and the Landau

damping of the plasma waves due to the same group of particles.
The equation for the time rate of change of the electron distri-

bution function reduces, in the classical limit, to a Fokker-Planck
equation in which there appear diffusion and friction terms
associated with plasma waves, of the type first considered by
Klimontovitch. %hen an initial arbitrary nonequilibrium electron
distribution is considered, it is seen that a plasma wave instability
corresponds to coherent excitation of plasma waves by the
electrons in contrast to the incoherent excitation associated with
spontaIi eous emission. The method is generalized to two-compo-
nent electron-ion plasmas in which well defined acoustic plasma
waves exist, by introducing an explicit distribution function for
the phonons (the acoustic plasmons). The approach to equilibrium
and the two-stream instability are derived and discussed for the
coupled electron-phonon system; results similar to those obtained
for the electron-plasmon system are found.

HE properties of an interacting electron gas in a
uniform background of positive charge have been

studied extensively in both the limit of low temperatures
and high densities (the quantum plasma) and high

temperatures and low densities (the classical plasma).
In both these limits, the random phase approximation

(RPA) is valid. In general there are two essentially

distinct modes of excitation of the plasma: single-

particle modes vrith energies appropriate to a gas of
noninteracting electrons, and collective modes, the

plasma oscillations, which possess a frequency near the

plasma frequency, ros = (4s.ne jet) &. At long wavelengths

the coupling between the plasmons (the quantized

plasma modes) and the individual electrons is weak,
because there are few electrons which are capable of

~ Part of the work described herein was carried out at the
John Jay Hopkins Laboratory for Pure and Applied Science,
General Atomic Division of General Dynamics Corporation,
San Diego, California, under a joint General Atomic- Texas
Atomic Energy Research Foundation program on controlled
thermonuclear reactions.

absorbing the plasmon energy and momentum, so that
'a long-wavelength plasmon constitutes a well-de6ned
excitation mode. For short wavelengths there are many
electrons available to absorb plasmons, so that a short-
wavelength plasma mode is highly damped and cannot
be usefully regarded as an elementary excitation of the
plasma.

Despite the by-now extensive plasma literature, ' the
coupling between electrons and plasmons in a finite-
temperature quantum plasma does not seem to have
been studied in any great detail. In the present paper
we carry out such a study with the aid of explicit
plasmon and electron distribution functions and
demonstrate its usefulness for an understanding of the
way in which the equilibrium between plasmons and
electrons comes about in both quan tum and classical
plas mas.

Some recent review articles dealing with both classical and
quantum plasmas are: Y. Klimontovitch and V. P. Silin, Uspekhi
Fis. Nauk. 70, 247 /translation: Soviet Phys. —Uspekhi S, 84
(1960)j, which contains rather complete references to the Russian
work in this Geld, and D. Pines, Physics 26, 103 (1960).
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The use of an explicit plasmon distribution function
represents a finite-temperature generalization of the
collective coordinate method of Sohm and one of the
authors. ' The coupling between electrons and plasmons
is obtained directly from the Bohm-Pines theory,
although, for example, held-theoretic methods could
also be utilized to this purpose. The method yields, in
the classical limit for the electron distribution function,
a Fokker-Planck equation in which there appear
diBusion and friction terms associated with plasma
waves. '

Equilibrium arises as a result of the competition
between the spontaneous emission of plasma waves by
single fast electrons and the Landau damping of the
plasma waves due to this same group of single particles.
The same method may be applied to an arbitrary
nonequilibrium distribution and. leads one directly to
the concept of a plasma wave instability (e.g. , the
two-stream instability) as a coherent excitation of
plasma waves (in contrast to the incoherent excitation
associated with spontaneous emission).

The generalization of the method to a two-component
plasma in which well-defined acoustic plasma modes
exist is straightforward. Examples of such plasmas are
the continuum model for the motion of electrons and
ions in a metal, or an electron-ion classical plasma in
which the electrons are at a temperature large compared
to that of the ions. One obtains thereby the approach
to equilibrium between the electrons and acoustic
plasma waves, in addition to the electronhigh-frequency
(optical) plasma wave equilibrium previously studied.
For the classical electron-ion plasma, one 6nds a
Fokker-Planck equation with terms describing acoustic
plasmon diffusion and friction; the two-stream insta-
bility is seen to represent coherent excitation of acoustic
plasma oscillations.

In Sec. II, we review brieRy the RPA plasma proper-
ties. %e show explicit1y that at finite temperatures the
long-wavelength, well-defined, plasmons contribute a
term to the free energy which is appropriate to a
collection of independent bosons. In Sec. III, we discuss
the plasmon-electrori coupling. Section IV is devoted
to a brief survey of applications of the method to
two-component plasmas, and Sec. V consists of a short
discussion of some possible future applications of the
methods developed in the preceding sections. Appendix
A is devoted to the quantum-mechanical derivation of
the plasma dispersion relation by solving the equations
of motion of the system (within RPA) as an initial
value problem.

%e review brieRy the properties of an electron plasma
as calculated within the random phase approximation' '

s D. Bohtn and D. Pines, Phys. Rev. 92, 609 (1953);hereafter
referred to as BP.

3 Such an equation was erst obtained by Y. Klimontovitch,
JETP 36, 1405 (1959) Ltranslation: Soviet Phys. —JETP 36(9),
999 (1959)j.

4 For an explicit comparison of some of the many equivalent

(RPA). These properties may be determined from the
retarded frequency and wave-vector-dependent longi-
tudinal dielectric constant e(q,Q) of the plasma. The
plasmon dispersion relation is given by

e(qqt0) =0. (2.i)
The free energy of the plasma is given by'

2+3~e'
~=~(0)—Z—

qM g

AO ' dg—Im —, (2.2)
e'(q, Q)

dQ coth
e«4vri „2kT

where e'(g, Q) is the equilibrium retarded dielectric
constant appropriate to an interaction between the
electrons of strength g and iV is the number of particles
in the system, chosen to be of unit volume. In the
RPA one has quite generally,

e(q,Q) =1+4str(q, Q), (2.3)
where 4mrr(q, Q) is the free-electron polarizability, given
by

4me'
4 (q,Q)=- -Eif(K)

q2

—f(K+q)j
h (Q i x,)—+iri

(2 4)

for 0 in the upper half of the complex 0 plane. Here q
is an in6nitesimal positive quantity, and f(K) is the
probability of finding an electron in state K, energy,
E(K)= ICE'/2m; at thermal equilibrium one has the
familiar Fermi-Dirac result

f(K)=f'(K) = &/&"" """+Ij, (2 5)
where p is the free-electron chemical potential. %e
have also introduced the one-electron excitation
frequency,

vxtt= PE(K+ Q) —E(K)1/k.
The expression (2.3) is valid both for a quantum

plasma (high electron densities and low temperatures)
and a classical plasma (low electron densities and high
temperatures). In order to satisfy the plasmon disper-
sion relation (2.1) for damped oscillations, the definition
of e(q,Q) must be extended to the lower half of the
complex 0 plane. The proper extension may be accom-
plished by analytic continuation of e across the cut
along the real axis, as discussed in the Appendix. For
small damping, one finds for the dispersion relation:

4~e' f(K)I=
ta x (rd —hq K/m)' —II'g'/4m'

i''e'
ZLf(K) —f(K+q) jest:~( —,)j. (2.(i)
K

formulations of the RPA, see H. Khrenreich and M. Cohen,
Phys. Rev. 115, 786 (1959) and D. Pines, J. Nuclear Energy C2,
5 (I960).' F. Englert and R. Brout, Phys. Rev. 120, 1085 (1960).
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In the limit of T=O the imaginary term in (2.6)
vanishes for q&qo, where qo is defined by

h(0(qo) = ItqoV);+kqo'/2m;

cv'= co„'+-',q'V), '+
At non-zero temperatures there is always at least a

slight probability of finding an electron of momentum
K such that it is capable of absorping a plasmon of
wave vector q with conservation of both energy and
momentum. For the quantum plasma, when q& qo (and
for the classical plasma, when q&kD, the Debye screen-
ing wave vector) the number of such electrons is quite
small, so that the resulting damping of the plasmons is
likewise relatively small. In the long-wavelength limit,
this damping is obtained by substituting co=co,+iy,
into (2.6) and solving for co~ and y~ under the assump-
tion that ~y~~&(~~. One finds for the dispersion relation
fol R(»~

f(K)

es I (cu,—hq K/m)' —(k'q4/4m')

4xe'

f(K)vK,
)

Ag' K Goq vx g

(2 8)

where PK' denotes that principal parts are to be taken
when the indicated summation is transformed to an
integration. For small q and low temperatures, (2.8)
reduces to (2.7). The result for y~ is

qo is the wave vector at which it first becomes possible
for a plasmon of momentum q to transfer its energy
and momentum to an electron within the Fermi sphere
of a radius k p, and Vp is the velocity of an electron on
the Fermi surface. For q&qo (and within the RPA),
the plasmons thus represent a stable elementary exci-
tation of the system; the dispersion relation takes the
familiar form

these plasmons would then contribute a term to the
free energy F, which is

C(ec 4X'l

AQ "dg
dQ coth-----

2kT 01 g

XIm—,(2.13)
((Ie) /~Q)() (g) [Q=~(g)j+i&2 (q Q)j

where g» is the lowest coupling constant for which

.,'(q, Q) =O and .,'(q,Q)«1. (2.14)

We can transform (2.13) into simpler form with the
aid of the identity,

[(Iei'(Q)/(IQjn=. (,) = [(I~(g)/()gj —', (2.15)

which follows directly from the definitions:

Fco«= P [(h(0,/2)+kT ln(1 e—e"~()'r)j (2.11)
g(gc

appropriate to a collection of bosons of frequency ~~.
Here q, is the maximum wave vector for which the
assumption [y~/a&, j(&1 is tenable: One finds

q,—(o~/ V);, (quantum plasmas)

q„—kD co~/(k——T/m) I, (classical plasmas).

We proceed to the derivation of (2.11).
We are concerned with the contribution to the free

energy (2.2) from those poles of e'(q, Q) = ~&'(q,Q)
+ie2'(q, Q) which lie near the real axis. We can write,
in the vicinity of such a pole,

e'(q, Q) = [()ei'(q,Q)/(IQj() „(,)[Q—~(g)j
+ie2'(q, Q), (2.12)

provided e2'(q, ~)&&1. The plasmon contribution to the
free energy will then be

pq 2x' e
Zff(K) —f(K+q))h[&( — )j (2 9)

Cd (»

and
In the classical limit, (2.9) yields the results of Landau'
and Bohm and Gross, ~ which for a Maxwellian distri-
bution reads

.,'(Q) =1—4)rg f(K)
I (Q—hq K/Ss)2 —A~q4/4m~

4~g f(K)1=
~ K [~(g)—kq K/mj2 —k2q4/4m2

We then have, on substituting (2.15) into (2.13), aiid
d'v q p'„fo(v)8(&v~' —q v), (2.9a) changing variables to co(g),

where (d~' is the solution of (2.8) in the classical limit.
As long as pq&&M q, lt would seem reasonable to regard

the plasmon as a well-defined elementary excitation of
the system. Thus one might expect that in thermal
equilibrium the number of plasmons present would be
given by the Einstein-Bose distribution function,

00 hQ
F,„)(———Q dQ coth - d(v(g)

~(n 4mi 2kT

XIm- —. (2.16)
Q —

&u (g)+is~'(Q)

Where e2'(Q)&(1, we then find

E,'= 1/(e""&"r—1);
6L. D. Landau, J. Phys. U.S.S.R. 10, 25 (1946).
7 D, Bohln and E. P. Gross, Phys. Rev. 75, 1851 (1949).

(2.10) h
F,o«= P — dQcoth.

r)I((2 2 I 2k T
(2.17)
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with co~—qV, where V—V~ for a nearly degenerate
Fermi gas, and V—(kT/m)& for a classical plasma. On
carrying out the integration in (2.17), one finds the
contribution from the upper limit is given by (2.11)
and represents that part of the free energy which is
explicitly associated w'ith the plasmons. The contri-
bution from the lower limit is to be associated with
part of the individual particle contribution to the free
energy and will not concern us here.

theory to calculate the resulting changes in the electron
and plasmon distribution functions. Before carrying
out detailed calculations, it is convenient to rewrite
the plasmon-electron interaction term in (3.1) as:

H;„,,=g P Ms(AsCzystCz+AstCztCz+, ), (3.2)
K g(gc

where
(2s.e'

Ms=
/

fuo,
E qs

H=Q EzCztCz+ Q A(osAstAs
K 0+Qc

t'2me'Iss &(K q g'
+zzl

/ +, . ..)
X (A,+A, t)Cz+s'Cz+ Q

Q(pc 4Coq

X (A stA s+A sA st —A sA-s —A-, IA st), (3 1)

where CK, CKt are the second quantized operators for
the electrons and A q and A qt are those for plasmons
of frequency ~~. There are in the BP description a set
of subsidiary conditions on the system wave functions;
however, they will not affect the present considerations.

The plasmon-electron interaction in (3.1) acts to
shift the plasmon frequency from ~„to coq. The resulting
dispersion relation for coq may be obtained by a canon-
ical transformation Cwhich acts to cancel the last term
in (3.1) and agrees with (2.8)j. The plasmon-electron
interaction also gives rise to a shift in the one-electron
energies (through an effective electron interaction),
and makes possible a resonant transfer of energy and
momentum between the electron and plasmon systems.
It is this latter effect which will be of particular concern
to us here. In the long-wave limit, as we have seen, the
number of electrons which are resonantly coupled to
the plasmons is small, and we may use perturbation

g The subsidiary conditions will not affect the system at zero
temperature. At finite temperatures they will alter slightly the
corrections (arising from electron interaction) to the one electron
contribution to the free energy, specific heat, etc. For classical
plasrnas, such corrections are of order e'kg/scT, and are negligible.
For quantum plasmas, such corrections are of order r, ; they
will be neglected in the present paper.

We now consider the way in which an equilibrium
distribution of plasmons and electrons is established
(again, within the RPA). We may do this by considering
dN, /dt and Bfz/Bt, the time rate of change of the
plasmon and electron distribution functions, respec-
tively, in consequence of the plasmon-electron inter-
action. We calculate dNs/Ch and 8fz/Bt by using the
collective description of Bohm and one of the authors, '
in which collective coordinates for the plasmons are
speciied explicitly. The Hamiltonian which describes,
in the RPA, the plasmons of momentum q&g„elec-
trons, and their mutual interaction, is

This simplification is made possible by the fact that
we consider only resonant transitions.

%e find, on the application of time-dependent
perturbation theory, that the time-rate of change of
the plasmon distribution function is given by'

BSq 2x
=g —~Sr, t {(N,+I)y(K+q)CI —y(K)j

Bt KA

—N, f(K)CI —f(K+q)g)8(Ez+Aar, —Ez+,), (3.3)

where the first term in brackets arises from the emission
of plasmons by the electrons, the second from plasmon
absorption. It may readily be seen, upon substitution
of (2.5) and (2.10), that in thermal equilibrium BNs/BI
=0; this result is hardly surprising, since the use of
time-dependent perturbation theory is equivalent to
assuming detailed balancing, and necessarily leads to
BNs/Bt, =0 in thermal equilibrium.

It is instructive to rewrite (3.3) as

(9iV 4x'e'
~.Cf(K+ q) —f(K)l~C&(~s —~zs) jN s

8t

4m'e'

+Q co,f(K+q)C1 —f(&)]&Pi(~s &zs)j (3 4)
K q~

The two terms in (3.4) possess a simple physical
interpretation. The first arises from induced emission
and absorption of plasmons by the electrons; it may be
written as 2&,Ns, where p, is given by (2.9)."Usually

pq is negative; corresponding to the damping of the
plasma waves by the individual electrons. The second
term is the rate of gain of plasmons due to sponta-
neous plasmon emission by the fast electrons in the
plasma. This emission, which corresponds to the forma-
tion of a wake of plasma waves behind the electrons,
is the longitudinal analog of Cerenkov radiation. "We
see, therefore, that thermal equilibrium arises in conse-
quence of a balance between two competing processes—

'At this stage the calculation is essentially identical to that
required to determine the phonon-electron equilibrium in metal.
See, for example, R. E. Peierls, Qncnh~m Theory of Sohds (Oxford
University Press, New York, 1955), p. 127.

"The factor of 2 arises because E& represents a probability
and is therefore proportional to the square of the amplitude of
the plasma waves of momentum q. The latter changes at a rate
yq, so that X& changes at a rate 2yq."D.Bohm and D. Pines, Phys. Rev. 85, 338 (1952).
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plasmon damping and spontaneous plasmon emission-
and that both sects are simply described in the
above quantum mechanical description.

The time rate of change of the electron distribution
function is given by

&fz 2m.
= Q —(M, ('(X»+1)B)Ez+hcu, —Ez+,]fz+,

R Q4Qc

XL1—f,]+X,SLZ,+a~,—Z lf

2'—E —
I ~» f'~'»~Pz+&~» —&z+»]fzC1 —fz+»]

c+0c

+(JV +1)bPFz—h~» —hz»]fzI 1—fz,]. (3.~)

The first. two terms in (3.5) represent the gain of
electrons in state K as a result of emission and absorp-
'tion of plasmons; the last two, the loss of electrons
from this state due to plasmon absorption and emission.
Again, we can easily show upon substitution of (2.5)
and (2.10) that Bfz/Bt=O in thermal equilibrium.

It is convenient to group the terms in (3.5), so that
one obtains

~fz 4ire —»'»D(K+ q) —f(K)]
Bt e(qe g' fl

X&I ~» —A(K q/m+q'/2m)]

+D(K—q) —f(K)]&L~» h(K q/m —q'/2&n)]

%re' o) q+ Z —f fz+»(1 —fz)&L&»—h(K q/m+q'/2m)]
9+Qc g' jg

+fz(1—fz»)&[~» —h(K q/m —q'/2m)]}. (3.6)

Again, we remark on the balance in thermal equilibrium
between the rate of gain of electrons in state K due to
plasmon damping and the rate of loss of electrons from
this state due to spontaneous plasmon emission.

It is interesting to go to the classical limit of (3.6).
This may be done with the aid of the following relations:

AK/m —+ v: f(K) ~ f(v),
f(K+q) ~ f(v+hq/m)

= f(v)+(5/m)q V„f(v)+. , (3.7)

hl(o» —k(K q/m+q'/2m)] —& 8(co»—q V)

+(5/2m)q V„b(~» qv)+—
One then finds, after a certain amount of algebra,

Bf(v) 4ne' 8,
,
—q &.f~(~» —q v)q &.f}

Bt ~&~. esp' yg

+~»q p„{f(v)S(~,—q v)}, (3.8)

where we have introduced the energy in the qth plasma

88, 4xe'
= 27»&»+ ifv ~» f(v)~(~»

Bt q2
(3.9)

where the first term represents, usually, the damping
of plasma waves, while the second gives the appropriate
classical rate of plasma wave excitation by the electrons
due to spontaneous plasmon emission,

We should like to emphasize that (3.4) and (3.6) or

(3 8) and (3.9), do not possess an equilibrium solution

for an arbitrary distribution of electron momenta. As

is well known, when the momentum distribution of the
electrons possesses two humps, there is the possibility
of a solution for (2.9) in which the sign of y» is

positive, corresponding to a growing plasma wave. The
growing-wave solution corresponds to a coherent exci-

tation of plasma oscillations by the electrons, in

contrast to the incoherent excitation represented by,
say, the second term on the right-hand side of (3.9).
Under these circumstances, both terms in (3.4) and

(3.9) or (3.6) and (3.8) will possess the same sign, and

there is, of course, no possibility of equilibrium if one
considers only these equations. %hat will happen is

that the plasma waves will grow in amplitude until

limited by nonlinear e6ects in the set of coupled

equations under consideration, combined with a non-

linear coupling between the plasmons of different wave

vector, a coupling which lies outside the framework of
the RPA."

It is straightforward to extend the discussion given

above to a plasma formed by two sets of particles
having masses nz and M, and charges —e and e. In
addition to the high-frequency "optical" plasma oscil-

lations in which the charges move out of phase there

may exist, under certain conditions, low-frequency
acoustic plasma oscillations in which the electrons

'2%. E. Drummond and D. Pines, Proceedings of the Salzburg
Conference on Plasma Physics, j.96j. (to be published).

"For a discussion of this problem for classical plasmas, see
reference 12.

mode, 8~, and
Bq = lVqAMq.

Equation (3.8) is in agreement with the kinetic equation
result of Klimontovitch. ' The first of the terms in (3.8)
may be calculated directly from the nonlinear terms
in the classical collisionless Boltzmann equation"; the
second term associated with spontaneous plasmon
emission appears in a classical treatment only when

one goes to one higher order in the equations of motion
of the coupled distribution functions, the Fokker-Planck
equation. %e see that both terms appear on the same
basis in our quantum description utilizing collective
coordinates.

The classical limit of (3.4) is obtained by considering
the time rate of change of 8~, the energy in the qth

plasmon mode. One finds then
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move in phase with the positive (heavy) charges in
such a two-component plasma. The complex frequency,
Oq of these collective oscillations may be determined as
a function of the wave vector q by requiring that the
total dielectric constant vanish. Thus one has, in the
RPA, '4

according to (4.1) and (4.3),

Q.=~.(q)+ iv. (q),
where

~'(q) =
1+4mn(q, (o.) e(q, 0)

(4.5)

e(q, Qs) = 1+4irn(q, Q,)+4~n+(q, Qs) =0, (4.1)

where 4xn+ is the polarizability associated with the free
positive charges, and is given by an expression similar
to (2.4);

4~n+(q, ~)=—4me'-

ZLf+(K) -f+(K+ q) l
q2 K

4mn+ (q,cv)——Q„'/u&'+ 0 (q'(e') „ /uP),

Q~ = (4n.Ee'/M) '

(4.3)

is the positive charge plasma frequency, and (v'), is
their average squared velocity. Closer investigation
shows that under the circumstances the acoustic sound
waves are well-defined elementary excitations the
expansion (4.3) is justified in the determination of their
frequency and it suffices to keep the leading term.
For example, in the continuum model of a metal, for
which the ions are treated as a continuous Quid, the
ions possess a polarizability —Q„'/re'. For a classical
plasma of electrons and ions, or a quantum plasma of
electrons and holes in a semi-meetal, the sound wave is
well defined only when the eBective positive charge
temperature, T+, is small compared to that for the
electrons, T; in this case the expansion (4.3) is likewise
justified. "We shall accordingly use (4.3) in this section.

The dispersion relation for the sound waves is then,

'4I"or a discussion of this dispersion relation as applied to
sound wave frequencies in metals, see D. Pines in The Mony-Body
E'roblem {John Wiley 8t Sons, Inc. , New York, 1959), p. 517;
as applied to electrons and holes in semiconductors or semimetals,
see D. Pines and J. R. Schrie8er, Phys. Rev. 124, 1387 {1961);
as applied to electrons and ions in a classical plasma, see
Klimontovitch and Silin and I. Bernstein, Phys. Rev. 109, 10
(1958).

5 It is meaningful to consider a meta-equilibrium condition in
which T»T+ provided the time required for the positive charges
to come to equilibrium with the electrons is long compared to
any of the times of physical interest. We assume that to be the
case in this section.

X (4 2)
AQ E~(K+—q)+F~ (I)+irI

Here f+(I) is probability of finding the positive charge
in state I, with energy, E+(I)=O'E'/2M; for positive
charges at a temperature T+, it is simply

f+(I)= 1/(expL(&+(K) —~+)/k T+3+I),
where p+ is the chemical potential appropriate to the
positive charges.

For both classical and quantum two-component
plasmas, the positive charge polarizability, 47m+(q, co),
reduces in the high-frequency limit to

and

pr. 1 2' "e

Z(f(K) —f(K+q))
e(q,O) q"-

Xbl k .(q) -&-(K+q)+L(K)] (4 6)

In (4.5), e(q,O) is the static electronic dielectric con-
stant, which takes on the following values in the
quantum and classical domains:

Quantum domain:

e(q,0)=1+kpT'/q'= 1+3(u„'/q'V p'. (4.7a)

(T—+ 0).

Classical domain:

e(q,0)=1+kDs/q-'= I+4m rie'/q-'k T. (4.7b)

With the aid of these expressions, and (4.6), one
obtains the following long-wavelength (q((qa or qFT)
results for co and y, ":
Quantum domain:

&o.= qV p(m/3M) I, (y./ei. )= —(m-/4) (m/3M) l. (4.8a)

Classical domain;

(a.= q (k T/M) '* y./(u. = —
(m m/8M) l. (4.8b)

The reader may remark that the results (4.8a) and
(4.8b) show that the use of e(q,0) in (4.5) and (4.6) is
justified; he should also bear in mind the fact that we
have assumed the Landau damping of the sound waves
by the positive charges is negligible, a condition
tantamount to asserting that T))T+.

%e now write the Boltzmann equations for the
coupled electron-phonon (acoustic plasmon) system. "
As we have done for the plasmons, we introduce an
explicit set of collective coordinates, and a corre-
sponding distribution function for the phonons. The
necessary additional terms which describe the phonons
and their interaction with the electrons may be obtained
directly from the work of Bardeen and Pines, "and are

H'= Q b, tb, flu, (q)
QC Qa

+ P m, (bsCx+ ICx+b ICx1Cx+ ), (4.9)

where b~ and b~t are the phonon annihilation and

"We do not consider here the phonon-plasmon coupling, which
is negligible, on the ion-phonon coupling, which is small for
T+«T. The latter may simply be included by writing the analo-
gous Boltzmann equation for the ions."J.Bardeen and D. Pines, Phys. Rev. 99, 1140 {1955).
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-2me' Puv. (q)-»

g' e(q,O)

L (5K—m vg)/2m]' —p
f'(K, vd) = exp — — — —+1(4.10)

kT

creation operators. The Inatrix element for scattering of phonorls. Thus if one considers the electrons to move
of a phonon by an electron is with a drift velocity, e&, corresponding to a distribution

function,

where &o, (q) is the phonon frequency defined by (4.5).
In (4.9), q„denotes the maximum wave vector for
which the phonons are a well-defined elementary
excitation. For example, for a classical plasma of
electrons and ions for which T)&T+, one finds

q.—(4m ee'/k T+) l.

The rate of change of the phonon distribution
function, e~, is then

4me'
dm, /dt=2y. (q)n, +Q —cu. (q)f(K+q)

x q'e(q, O)

XLI—f(K)3~P~ (q) —(k'/~)(K q+q'/2) j, (411)

where we have made use of (4.6). It is easy to show
tha, t f&'and

-8f(v)- 4xe'

BI &h„~~~ Q(Qa t5g e(q, O)

-h. (q)
X —— q &.(q &„f(v)S( .—q v)}

the threshold for the instability is reached when

q vd=~, (q); for drift velocities in excess of this value,
coherent phonon excitation occurs, and the mechanism
by which equilibrium comes about is very much altered.
Such an effect is probably of principal importance for
classical plasmas. ' Ke therefore quote the relevant
expressions for the equations which couple f(v) and
8,(q), the energy in the qth phonon mode, in the
classical limit. They are:

)s ~"= I/Lexp (Aa&, (q)/k T)—1] (4.12) +~.q V.(f(v)&(~. qv) },—(4.14)

4me'co, '
+ d'v f(v)b((o. qv). (4.1—5)

q'e(q, O)

provide the equilibrium solution of (4.11). Thus the
acoustic plasmons do not reQect the positive charge
temperature T~ under the present physical conditions, gg, (q)
and, instead, come to thermal equilibrium with the — =2y (q)h (q)
electron temperature l. Bt

There will also be an additional term in the Boltz-
mann equation for the electron distribution function
due to the electron-phonon interaction. This is

(
8fx 47re' cu. (q)n,=Z

t9t Pro „q(q Q' e Q, O fg

X{Lf(K+q)—f(K)jbL~, —h(K q/m+q'/2m) j
+Lf(K—q) —f(K)jar .—fi(K q/m —g'/2m)g}

47re' &u, (q)

«~. q'e (q,O)

x(f.„(1-f.)|L .-I(K q/ +~/2 )j
+fx(1—fx,)&(~ —A(K q/m —g'/2nz) 1}. (4.13)

The distribution functions (4.12) and (2.5) may like-
wise be shown to provide an equilibrium solution of
(4.13). We see that for the phonons equilibrium arises
as a balance between phonon damping and spontaneous
phonon emission by the electrons; for the electrons it
comes as a balance between spontaneous phonon
emission and the induced emission and absorption of
phonons.

For the two-component plasma one may likewise
encounter a two-stream instability, corresponding to a
positive y, (q). Under present circumstances, the insta-
bility may be attributed directly to coherent excitation

The coupled equations for the electron and plasmon
(or electron and phonon) distribution functions provide
a simple physical picture of the way equi1ibrium is
established between the single-particle modes and the
collective excitations in finite temperature plasmas.
They also serve to demonstrate clearly the relationship
between growing waves in plasmas and the spontaneous
Cerenkov excitation of plasmons; the former correspond
to coherent excitation of plasmons (or phonons) by the
electrons, the latter to incoherent plasmon or phonon
excitation.

The use of collective coordinates plus time-dependent
perturbation theory and the random phase approxi-
mation has led to a particularly simple derivation of
the relevant classical equation: the collision terms in
the Fokker-Planck equation which explicitly derive
from the collective modes, together with the equations
which describe the time dependence of the energy
stored in the collective modes. These equations may be
useful in studying the conductivity of a classical plasma
for which T))T+ (the ion temperature) under the action

"It may. , for example, explain the phenomena of "pump-out"
observed in the Princeton stellerator. See I.Bernstein, E.Frieman,
R. Kulsrud, and M. Rosenbluth, Phys. Fluids 3, 136 (I960).
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of weak external helds"; they may also be of use in
determining the relaxation rates and effect of strong
electric fields under circumstances that growing plasma
waves play a role."In addition to these collision terms,
there will also be terms associated with collisions
between individual electrons; in fact, this latter class
of terms comprise those usually considered in calcu-
lations of plasma relaxation times and conductivity. "
It is likely that for many problems both kinds of
collision terms will be of importance.

We may mention some solid-state applications of the
coupled equations for electrons, plasmons, and phonons.
The calculation of the resistance of a metal, in the
continuum model, follows directly from (4.13); in this
model, sound wave attenuation is determined from
(4.8a), while the approach to equilibrium between
phonons and electrons is determined by (4.11) and
(4.13)." These equations may likewise prove useful
for the determination of electron-electron or electron-
hole scattering in semiconductors and semi-metals.

Finally, we should like to emphasize that all of the
foregoing considerations are based on the use of the
random phase approximation. For classical plasmas
near thermal equilibrium, the approximation is justi6ed;
its validity depends on e'kD/kT((1, a condition that is
well satis6ed. For states well away from equilibrium,
it is difIicult to assess the region of its validity; thus
far, studies of problems in this area have not fully
exploited the RPA, much less assessed its accuracy.
For quantum plasmas, the RPA is valid for the long-
wavelength phenomena here considered, but cannot be
relied on in a description of short-range electron-
electron collisions. "

p»(q) = CxtC»~, . (A. 1)

Within the random phase approximation it satis6es

28——px(q) = CH, p»(q)7/&= v»,p»(q)
Bf,

+U.L ~»+s —~'»/I 7Z p» (q), (A 2)

where 1V» ——C»tC» and U, = 4x.e'/rI'. Taking matrix
elements with respect to RPA eigenstates icr) and iP)
of H, (A.2) becomes

8—i—+v»(q) E»(q, t)
8f

Usaf»+ s f»IA7E E» (q, t), (A.3)

where

&»(q, t) =&tI I px(q, t) In), (A.4)

as well as growing oscillations may be treated. Strictly
speaking the dielectric constant method can only
describe the driven response of the system to an
external field; the free decay of the plasma oscillations
follows only if one makes the assumption that e(q, co)

should be analytically continued into the lower half of
the co plane. We give below an extension of the initial
value problem approach to a one-component quantum
plasma, and thereby justify the results obtained by
analytic continuation.

The one-particle density matrix is given in terms of
creation and annihilation operators CKt and CK for
particles of momentum E by

APPENDIX A. QUANTUM MECHANICAL
DISPERSION RELATION

The dispersion relation giving the complex frequency
of the collective modes is best obtained within RPA by
solving as an initial value problem the equation of
motion for the one-particle density matrix in the
absence of external 6elds. This approach, which follows
that used by Landau' to treat the dynamics of a
classical plasma has the advantage over the more
conventional dielectric constant approach that damped

f =&ttlA IP) (AS)

To treat the 6eld-free motion of the system given the
boundary values Rx(q, O) at t=O, we take the one-sided
Fourier transform of (A.3) with respect to time:

R» (q,cu) Lv», —ro7

= U, (f»+s —f»)g 8» (q,ru)+iI|.'»(q, O), (A.6)
K'

B»(q,rd) = e' 'E»(q, t)dt, (A. 7)
's H. W. Wyld (private communication) has independently

derived (4.14) and has used it to determine the plasma conduc-
tivity.

"Studies of relaxation rs, tes based on (3.8) and (3.9) have
been carried out in reference 12.

I' L. Spitzer, Physics of Fully Ionized Gases (Interscience
Publishers, Inc. , New York, 1956}. For a derivation of these
terms within an approximation equivalent to the RPA, see M.
Rosenbluth and N. Rostoker, Phys. Fluids 3, 1 (1960) and R.
Balescu, ibid. , 52 (1960). A simple quantum derivation based
explicitly on RPA has recently been shown to lead directly to the
Rosenbluth, Rostoker, and Balescu result (D. Pines and H. W.
Wyld, to be published).~ D. Bohm and T. Staver, Phys. Rev. 84, 836 (1952); T.
Staver, Ph.D. thesis, Princeton University, 1952 (unpublished).

~ P. Nozieres and D. Pines, Phys. Rev. 111,442 (1958}.

E» (q,O)
g B» (q,ro) =i+ -H(q, ru). (A.8)
K' K' pKr

The response kernal H(rI, ru) is given by

(f»-f»+ )
H (q, co) = 1+U, Q (A.9)

where ~ is defined to be in the upper half-plane. Solving
for R»(q, a&) and summing on I, one obtains
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so that the electric field is given as a function of time by

4~ed
J:(q,t) = 8» (q,0) de

H(q, ce) e ' '—.(A. 11)
VKr fl

—M 2x

It is well known from Fourier transform theory that
the contour C is to be taken along a line from —~ to
+ oo above any singularities in the integrand. " For
t&0, it is possible to close the contour by a semi-circle
of in6nite radius in the lower half-plane. The essential
point in the derivation is the analytic continuation of
the integrand into the lower half plane so that the

'4 P. M. Morse and H. Feshbach, methods of Theoretical Physics
(McGraw-Hill Book Company, Inc. , New York, 1958), p. 468.

From Poisson's equation it follows that the Laplace
transform of the electric field E(q,&e) is given by

iqE(q, ce) =4vre Q BK (q,ce), (A. 10)
K'

Cauchy theorem may be used to evaluate the integral.
In general, poles of the integrand in (A.11) come from
both the numerator and denominator. However, the
poles which are characteristic of the collective modes
of the system rather than the specific form of the initial
disturbance are given by the zeros of H(q, ce). The zeros
of the analytic continuation of H(q, ce) into the lower
half plane, give the frequency and damping rate of the
damped plasma oscillations. If H(q, )cehas zeros in the
upper half plane, the plasma oscillations undergo
unstable growth. As Landau has pointed out, the
analytic continuation of H(q, ce) may be accomplished
by replacing the sum in (A.9) by an integral and
suitably deforming the resulting contour. For small
damping rate, this result is equivalent to the familiar
prescription of replacing the resonance denominator by

+i7rb(vxq —co).
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Magnetoacoustic Measurements in Silver at 230 Mc /sec and 4.2'K~

VERNQN J. EAsTERLING AND HENRY V. BoHM
Department of Physics, 8'ayne State University, Detroit, ilficfs1gan

(Received September 21, 1961)

Measurements of acoustic attenuation in silver have been made with 150—233 Mc/sec longitudinal
sound waves in magnetic fields up to 15 000 oersteds and at a temperature of 4.2'K. Plots of the ultrasonic
pulse height as a function of the reciprocal of the magnetic field strength show from ten to fifteen maxima
and minima for several orientations. Numerical data are presented and discussed in some detail. The
Pippard type theoretical model of the silver Fermi surface is compared with our measurements.

INTRODUCTION
' 'N recent years, the oscillatory behavior of ultrasonic
~ - attenuation as a function of applied magnetic field
has been reported for several metals. ' Recent theoretical
discussions' 4 of the interaction between sound waves
and electrons in very pure metals subject to a magnetic
field, indicate that the observed periods of oscillation
are directly related to the Fermi surface dimensions.
Some preliminary magnetoacoustic data taken on silver
were reported by one of us at the International Con-
ference on the Fermi Surfaces in Metals held at
Cooperstown, New York, in August, 1960.5 Since that
time, our data accuracy has been improved through

*This research was supported by the U. S. Air Force through
the Air Force OfFice of Scientific Research.' Extensive discussion of recent work as well as a complete set
of references may be found in The Fermi Surface, edited by W.
A. Harrison and M. B. Webb (John Wiley 8z Sons, Inc. , New
York, 1960).

A. B.Pippard, Proc, Roy. Soc. (London) A25?, 165 (1960).'M. H. Cohen, M. J. Harrison, and W. A. Harrison, Phys.
Rev. 11?,937 (1960).

4 T. Kjeldaas and T. Holstein, Phys. Rev. Letters 2, 340 (1959).
~ H. V. Bohm, reference 1, p. 245.

development of more refined experimental techniques
and the construction of higher frequency equipment.
The presentation and discussion of these more recent
data is the purpose of this paper.

EXPERIMENTAL TECHNIQUES

Ultrasonic pulse techniques similar to those described
by Morse' were used. For the frequency range up to
190 Mc/sec, a commercially availabler combination rf
transmitter, receiver, and cathode-ray oscilloscope unit
was used. For the frequency range from 200 to 250
Mc/sec, a new transmitter-receiver system has been
constructed in our laboratory. In order to obtain more
eS.cient transmission of power to the sample, we have
found it useful to incorporate a tuned circuit into the
sample mount (see Fig. 1).The sample mount, including
the tuning elements, is suspended in a glass Dewar
system and immersed in liquid helium. Final tuning is

~ R. W. Morse, Progress in Cryogenics, edited by K. Mendels-
sohn (Haywood and Company, Ltd. , London, 1959), Vol. I.' "Ultrasonic Attenuation Comparator" manufactured by
Sperry Products, Inc. , Danbury, Connecticut.


