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The three-pion contribution to the isoscalar nucleon structure is examined in dispersion theory. We
assume that the amplitudes (photon —+ three pions) and (three pions —+ nucleon pair) are characterized
by the pions interacting in pairs. This interaction is taken to be the low energy J=T=1 resonance, which
consequently dominates the picture. The effects of a three-pion interaction are included so as to satisfy an
extended unitarity condition. The lowest mass singularities, including the complex ones, are discussed,
interpreted, and included. If the ~-~ resonance is at 10@, then a reasonable radius can be easily obtained.
On the other hand, if the resonance is at 20'' or higher, then a strong intrinsic three-pion resonance or a
bound state seems to be needed for agreement with experiment.

I. INTRODUCTION mass state contributing to the isoscalar structure con-
sists of three pions. There has been much discussion of
this state' and of its experimental ramifications. " A
perturbation calculation of the isoscalar structure was
carried out by Hiida, Nakanishi, and collaborators, "
and Bosco and De Alfaro" carried out a calculation
based on a static model with a cutoR. However, the
significance of these results is very much in doubt if a
low energy pion-pion resonance is present.

A different dispersion theoretic treatment of nucleon
structure was suggested by Bincer, " who used a
nucleon mass rather than the photon mass for the
dispersion variable. In this case the lowest mass state
is the pion-nucleon system, and the small pion-nucleon
phase shifts contribute to the isoscalar structure. The
effects of the pion-pion resonance are therefore in-
directly included. ' However, this approach has two
potential disadvantages. The first lies in the fact that
these dispersion relations are significant only as long
as subtractions are not introduced. In particular, one
must assume that the amplitudes vanish at infinity.
The second disadvantage is related to the customary
neglect of higher mass intermediate states. These states
involve the (3-3) resonance as well as the 2m and the
3z resonances, and therefore may be both prohibitive
to calculate and crucial. Numerical calculations based
on this approach were attempted by Kawarabayashi
and Machida. '4

'We would like to present a treatment of the three-
pion contribution to these rather mysterious isotopic
scalar properties (i.e., with reference to the usual
dispersion relations). Our treatment will include the

ECENT advances, both experimental and theo-
retical, have brought the problem of the electro-

magnetic structure of the nucleon into sharp focus. The
continuing work of Hofstadter et gl. ' and the recent
work of Wilson et al.' have clarified the charge and
magnetic moment form factors of both the proton and
the neutron. The first attempts to apply dispersion
theory to certain aspects of this problem were carried
out by Chew, Karplus, Gasiorowicz, and Zachariasen, '
and by Federbush, Goldberger, and Treiman4 in their
classic paper. A qualitative, if not quantitative, under-
standing of the isotopic vector nucleon properties has
been achieved in the work of Frazer and Fulco' and
improved by the normalization procedure of Ball and
Kong. ' These works may even prove to be valid if the
much heralded but elusive low energy pion-pion
resonance should be found experimentally to possess
reasonable parameters. ' We may add that this reso-
nance is also significant for interpreting other experi-
mental facts. For instance, Bowcock, Cottingham, and
Lurie' have shown that the small phase shifts in
pion-nucleon elastic scattering can be better under-
stood if such a resonance is present.

Our understanding of the isotopic scalar structure of
the nucleon has been much less satisfactory. The lowest

*Supported in part by the U. S. A. F. Once of Scientific
Research.

' R. Hofstadter, C. deVries, and R. Herman, Phys, Rev. Letters
6, 290 (1961};R. Hofstadter and R. Herman, ibid. 6, 293 (1961).

'D. N. Olson, H. F. Schopper, and R, R, Wilson, Phys. Rev.
Letters 6, 286 (1961).

3 G. F. Chew, R. Karplus, S. Gasiorowicz, and F. Zachariasen,
Phys. Rev. 110, 265 (1958).

4P. Federbush, M. L. Goldberger, and S. B. Treiman, Phys
Rev. 112, 642 (1958).

5 W. R. Frazer and J. R. Fulco, Phys. Rev. 117, 1609 (1960).' J. S. Ball and D. Y. Wong, Phys. Rev. Letters 6, 29 (1961).' J. A. Anderson, V. X. Bang, P. G. Burke, D. D. Carmony
and N. Schmitz, Phys. Rev. Letters 6, 365 (1961);A. R. Erwin
R. March, W. D. Walker, and E. West, ibid. 6, 628 (1961).

8 J. Bowcock, W. N. Cottingham, and D. Lurid, Phys. Rev
I etters 5, 386 (1960); Nuov() cimento 16, 918 (1960) and 19, 14
(1961).

See for example G. F. Chew, Phys. Rev. Letters 4, 142 (1960).
io V. Nambu, Phys. Rev. 106, 1366 (1957)."K. Hiida and N. Nakanishi, Progr. Theoret. Phys. (Kyoto}

22, 863 (1959);further references are given in this paper."B.Bosco and V. De Alfaro, Phys. Rev. 115, 215 (1959).
"A.M. Bincer, Phys. Rev. 118,855 (1960).We thank Professor

Bincer for bringing this paper and the paper of reference 14 to our
attention.

2 ' K, Kawarabayashi and S. Machida, Progr. Theoret. Phys.
(Kyoto) 25, 17 (1961).

782



I SOS CALAR NUCLEON STRU CTU RE 783

effects of the pion-pion resonance directly and in-a
natural way. However, we will be forced to make a
number of uncontrollable approximations.

Our objectives are very modest. We will try to
understand the structure of the form factors in terms
of a low-energy pion-pion scattering resonance, a direct
three-pion force, and the singularities of the annihilation
amplitude. Now although the three-pion force is at
least in part a manifestation of the two-pion inter-
action, we are unable to estimate its magnitude in a
reliable manner, and the effect of singularities is likewise
difficult to estimate. We will therefore introduce
parameters to describe the strength of these effects.
Because of our approximations and the arbitrary
parameters we are forced to introduce, a subtraction
will be performed so that the correct value of the static
charge and the static magnetic moment is assured.

For a treatment of the three-pion contribution to
the form factors, one needs the amplitudes (photon ~
three pions) and (three pions —+ nucleon pair). In
discussing these, the approach to the problem of
constructing unitary inelastic amplitudes which was

proposed recently by one of us" will be used. It must
be stressed that we cannot at the present time give a
systematic discussion of a three-particle state. This
does not prohibit us from making a model of this state
and from forming physically reasonable approximations
based on this picture. Such models are in fact con-
structed and discussed in A.

Our procedure has been to start with one of these
models, and to modify it by including the effect of the
interaction 3x ~ 3x and the effect of singularities" of
the annihilation amplitude. Of course, both of these
modifications likewise depend on simple models. The
interaction 3~ —+ 3m has been constructed according
to A, and the treatment of singularities is based in part
on perturbation theory.

With these warnings, let us proceed by stating the
problem in more definite terms. We are interested in
the isotopic scalar part of the nucleon electromagnetic
current:

parts are to be determined from

(Poi'~.= —~l —
I 2 &01j.ls)~(P)&slflP)

XS(P., P —P)—. (1.3)

Our calculation will be restricted to the three-pion
intermediate states. If there is a true bound state' of
the three-pion system, then there will be a delta func-
tion contribution to A„. We will assume that no such
state exists for the rest of this calculation. If such a
state is found experimentally, it can be constructed
formally by an analytic continuation in the three-pion
interaction parameters. "

The two production amplitudes which must be con-
structed are then

F„s = &0
~j „~nk&Pkipki, in)(8(o&(ui(ui) i,

and

M~p~ ——(S~i~i~i) lu(P)&~kiPkiyki, out
~ f ~

P)
X (Po/M)' (1 5)

Instead of explicitly constructing these amplitudes
by the methods of A, we will simply write down our
solution for these functions and will try to make them
reasonable. The function Ii will be discussed in Sec. II
together with its physical interpretation in terms of
graphs and unitarity. The production amplitude M is
constructed in Sec. III by using F as a guide, and a
brief mathematical and physical analysis of its analytic
properties is given. In constructing production ampli-
tudes by dispersion methods, the problem of treating
the necessarily present complex singularities" must be
faced. We will present an argument, based on per-
turbation theory, that these singularities can be inter-
preted in simple physical terms. This is turn leads to a
natural mode of (approximate) treatment. In Sec. IV
the rather involved phase space integral is carried out
in detail. The numerical results and conclusions are
presented in Sec. V for the pion-pion resonance at a
total center of mass energy squared of 10 and 20.
measured in units of the pion mass. Let us now turn
to the physics of the problem.

PpPp '
J s &01 j„'~P,P; in)

M'
II. ELECTROPRODUCTION OF THREE PIONS

Electroproduction of three pions is illustrated in Fig.
1. This process has been discussed in some detail in A,

8(P)[G, (/)iy„+G, (t)(P P)~ u(P) (1 2)

where t= —(P+P)' is the momentum transfer. The
superscript s (for scalar) will be dropped from now on.
The usual dispersion representation will be assumed
for G~ and G2 as functions of t, and their absorptive

'~ R. Blankenbecler, Phys. Rev. 122, 983 (1961). Hereafter to
be called A.

' L. F. Cook, Jr., and J. Tarski, J. Math. Phys. (to be pub-
lished); Y. S. Kim, Phys. Rev. Letters 6, 313 (1961); P. V.
Landshoff and S. B. Treiman, Nuovo cimento 19, 1249 (1961).

FIG. 1. Electroproduction of three pions.

"Such a construction would be a natural generalization of the
method described by R. Blankenbecler, M. L. Goldberger, S. %.
MacDowell, and S. B. Treiman, Phys. Rev. 123, 692 (1961).
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so that only a short review will be given here. %e will,
however, include the effect of a direct 3m ~3m scat-
tering, which was assumed negligible in the treatment
of A. The variables are defined by

$,;=—(k~+k;)s,

and they satisfy the condition

Sis+Sss+$sl= 3+()

(2.1)

(2.2)

where the pion mass has been taken to be unity, and t
is the mass of the virtual photon. The general structure
of the matrix element is'

F($ispsspst; &) = FoD '(&) expL&is+&ss+&stj, (2 4)

where

Xgs l
expL&is'+Ass'+&si'g

l

'
(2.5)

Xa ($is ass, $st ; I )

d$'fi($') ($' —$,j—ze)
—',

and Fs is a constant. The phase shift b ($) is the T=J= 1
phase shift for pion-pion scattering. The function D(t)
serves to sum the connected three-pion diagrams, and
will be discussed fully below.

The form Fs exp(Qh, ,) was given in A, and was
compared there with the works of Gourdin and Martin"
and of Kong" for the case of photoproduction. The
factors exp(h, ,) sum in an approximate manner the
disconnected two-particle graphs. "A further interpre-
tation of the product exp(Ph, ,) comes from potential
scattering, where such an expression would be inter-
preted as a product wave function for the three-pion
system. Such product wave functions are in common
use in nuclear physics" and in the statistical model. "

The form (2.5) of the function D(t) is suggested by
the formalism and by the examples of A. This form
can be interpreted with the help of the unitarity
condition. As we shall see below, Eqs. (2.4)—(2.5) lead

' M. Gourdin and A. Martin, Nuovo cimento 16, 78 (1960)."H. S. Wong, Phys. Rev. Letters 5, 548 (1960).
'0 R, D. Amado, Phys. Rev. 122, 696 (1961).It is not diKcult

to show that Amado's expression for the amplitude iN88/V8l can
be put into a form analogous to (2.4)."J.M. Blatt and V. F. Weisskopf, Theorelscal NNciear Physics
(John Wiley R Sons, Inc. , New York, 1952), Chap. V.

ss See, for instance, L. F. Cook, Jr., and J. V. Lepore, Phys.
Rev. 120, 1028 (1960).

F„»=se»s, ki"ks"ks'e»F($is)$ss)$si, f), (2.3)

where n, P, and y are the isotopic labels of the pions,
and F is a symmetric function of the three variables s;;,

Following the procedures of A, the function F is
taken to be

sis= s(&—$ss+3)+2l&il I Q ls,

$s&= l (f—»s+3)—2
I &i

l l Q I s,
(2 6)

"G.Barton and C. Kacser, Nuovo cimento (to be published).

to a reasonable approximation for the amplitude
3' —+ 3'.

For simplicity we shall not attempt to construct here
any field-theoretic models which might yield the form
(2.4), but there do exist solvable models in which the
relevant amplitudes have a structure resembling (2.4).
In these models, however, not all of the possible inter-
actions are allowed, so that some of the factors exp(A, ,)
are missing. One such model is the Lee model, for which
Amado" has calculated the relevant production ampli-
tude. Another example, which includes recoil effects,
has been presented in A.

The form (2.4) neglects the effect of singularities
other than the two-pion and three-pion normal thresh-
olds. This may seem unjustified, since it follows from
the work of Barton and Kacser23 that there are other
singularities near the relevant region (i.e., where the
pions can have real momenta). These authors argue
that the effect of these singularities is negligible for
the process E~ 3x, and we shall make an analogous
assumption. This might be justified by the fact that
the amplitude is finite rather than infinite at the singu-
larities in question. On the other hand, we will see in
the next section how the complex vertex singularities
of the amplitude XE—+ 3x can be interpreted and their
effects included.

Let us return to the function D(t) in (2.5). The
symbol Ps stands for an integral over the phase space
available for the three intermediate pions, with mo-
menta k~', k2', k3', at a fixed center of mass momentum
t' (see A). The function o is the "potential" and includes
the effects of the detailed structure of the interaction
3x —+ 3m.. We will be led to a candidate for 0-, and to an
expression for the amplitude 3m —+ 3x, when we examine
the interpretation of our functions in terms of unitarity.

These remarks about D may not be superfluous:
First, D has been subtracted, so that D(0)=1, and
therefore Ii 0 measures the strength of the photo-process.
Second, D sums the connected three-pion diagrams,
as we stated previously. Therefore, if there is a strong
three-pion interaction, it will manifest itself in the t
dependence of D. Third, if there is a three-pion bound
state of mass ts, then presumably D(fs) is zero. We shall
return to this possibility in the last section.

Let us now examine the interpretation of Eqs.
(2.4)-(2.5) in more definite terms. For the independent
variables of F we may select t, s», and s= cose, where 0
is the angle between the relative momentum of the
two-three pair (2Q) and the momentum of pion one
(ki), in the center of mass of the two-three pair. Many
other sets of independent variables could be used just
as well in the following discussion. The invariants s~~

and s3~ can then be expressed as follows:
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where
1= 4S23—1,

4$23k12= 9—( $23&+1) 2]P t —($23&—1)']
The unitarity relation which would be naturally ex-
pected in the physical region is

P~(t+zeq $23+22
& s) P~(t ze, $23+M ) s)

=2iA„(t, $23+ie', Z), (2.'I)
where

I
I
I

I
I

FIG. 2. One-pion exchange graph for the process 3m ~ 3~.

where

A„=+3 (0 ~ j„~32r'; Out)(32r'; Out
~
Ji

~
t32k3, in) (2 8)

Q3' Pp (t) $23+23 ) s )M33($23 +22, 8 )
' ' '$23

+ie, s, t) (.2.9) Further,

f;,= e' '~' sinb, ,/p;, ,

t'1= (16 ') '(so—4)'(se) '.

Unitarity relations of this kind can be inferred by
analytic continuation from space-like values of all the
variables except t. Such relations were used in the
development of A.

The next step is to carry out the explicit calculation
of A„ from the expression (2.4) and to cast this result
into the form (2.9). We will, however, ignore the spin
factors and consider only scalar functions. We will
denote the limits Imt —+0~ by the superscripts ~,
respectively. The limit Ims» ~ 0+ is to be understood.

We first assert that

exp(A;3) = exp(A, &)*, (jk) = (12) or (31).

This is not immediately obvious from (2.6), but can
be easily established as follows. In continuing from
t+ie to t ie with a fi—xed $23, we must decrease t until
it is away from its cut; in particular, we must avoid
the cut which corresponds to s;I,~4. Then the con-
tinuation to t—ie will lead us to the other side of this
cut. But this is the only cut for the function exp(h, &),
and our assertion follows.

Next, let us consider the expression Ii+D+—Ii D .
We note that D =D* and that FD=F3 exp(pA, ,},
and we obtain

F+D+ FD =2i[F+—ImD AD ]-
=F3 exp/A»+ 6»+5»]* exp(2i823]

X{expL2i(h12+41)]—1}.
These equations yield

A = (2i) 'F*(t,s», s) expL2il)23]{expL2i(b12+t)31)]—1}
+F+(D ) 'p3 ~expL&12'++23+t}31]~'

Xa ($12',$23',$31', t')
A (o)+A (')

—=Q3~ F*M33"'+Qg~ F*M33"'

We have now, in effect, integral equations for M»&')

and M33 '. These can be easily solved if, in the case of
%33&", one approximates certain angular integrations
in such a way as to be consistent with our neglect of
rescattering in higher angular momentum states. We
obtain

M„(')= (2~)' exppib237{ f122~3&(&3'—&3)

+exp L2ih 12]f312~2()(112'—Ir 2)},

M33 = expL612 +623 +531 ]0'($12,$23,$31 t)D (t)
Xexp L&12++23++31]

and

M 33=M 33"'+M33"'.

This form for M» has not been properly symmetrized
according to the statistics of the pions, but this can be
readily done. The physical interpretation of M» is
straightforward. The part 3533"' has two terms which
correspond to disconnected graphs involving x-m scat-
tering. The S-matrix factors which are present, for
example exp(2i()23), can be understood by comparison
with the solution to the Lee model. "They are also just
what one expects by analogy with a "two potential"
situation. We find there that disconnected graphs lead
to such a phase factor. One notes that there are no
graphs in M33 that involve pion number one in a com-
pletely disconnected manner. This is, of course, required
by the asymptotic condition and by the definition of
M33, which is implied.

The last term corresponds to connected interactions
of all three pions which can, however, interact by pairs
as they enter or leave. The function 0 is to describe the
detailed structure of the interaction. One of the simplest
graphs which contributes to 0- is given in Fig. 2. We
may note that in the case of the Lee model, 0. is in fact
given in terms of graphs which are analogous to this
one. This diagram describes a one-pion exchange force
and thus has a rather long range. This diagram, how-
ever, cannot be directly included, since it would lead
to a dependence of D on the invariants s;;. We will
therefore replace 0 with a pole approximation so chosen
that it has roughly the range of the one™pion exchange
diagram. This point certainly deserves further study.
We will choose

0 (t) = I' (t$—()$())-',

where so is expected to lie between zero and nine. The
strength F is to be chosen to fit the experimental
nucleon form factor.

III. NUCLEON PAIR ANNIHILATION

The form that the function M can take is restricted
by the fact that the absorptive part of the form factors
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F&G. 3. Nucleon pair annihilation.

must be real. Since we are committed to the solution
for Ii given by Eq. (2.4), it will prove both necessary
and convenient to use it as a model for the construction
of M. The momentum variables for the annihilation
process are chosen as in Fig. 3. The scalar variables
can be classified as energy-like and momentum transfer-
like. The latter will also be called the crossed invariants.
The energy-like invariants are s», s», s», and s45=t.
These variables enter into the problem at hand in much
the same way as they enter into the electroproduction
amplitude discussed in Section II.

A few words about the dependence of M on the
invariants may be appropriate at this point. As is well
known, five of the variables s;; are independent. The
invariants s», s», s», and t are linearly related by Eq.
(2.2). Therefore, only three of these are independent,
and two crossed invariants may be chosen for the other
independent variables. Ke may choose, for example,
s» and s34. Of course, the complete annihilation ampli-
tude must be symmetric in the pions.

The matrix element that contributes to the form
factor is taken to be of the form

where
M~p~ ——ze„px,k j.'k2"k3 e~p~3f &, (3.1)

M&= v(k6)I Cay&+C2(ks —k4)&jN(k4). (3.2)

The invariant functions C~ and C2 depend upon the
scalar variables s,;. The functions C~ are chosen to be
consistent with our previous considerations, and also
with the fact that the process should be dominated by
the low energy pion-pion interaction:

Ct ——dt(s;, )D—'(/) exp/A„+623+6„], (3.3)

where d~ is a real function of the scalar invariants when
they are in the physical region for creation of three
pions. The other functions were introduced earlier. It
would seem as if we were neglecting the complex
singularities" which must be present in any physical
five-point function. This is szot the case, and let us
examine this point by discussing the analytic properties
of M in more detail.

For simplicity we will assume that M can be written
as a sum of terms, each of which depends on only one
of the crossed invariants, but perhaps on all of the
energy-like invariants. This is certainly incomplete,
since even the simplest Feynman diagram for the
process leads to an amplitude with the factors
(s~q —M') '(s~4 —M') '. However, this procedure can

be justified to some extent. One would expect that the
dependence of M on these invariants is governed pri-
marily by the nearest singularities. Ke will find that,
with reference to one particular term, taking into
account the singularities in s» affects only slightly the
calculated nucleon structure. It would then be sur-
prising if terms with both factors (s~q —M') '(s34 —M') '
would have a great effect. On the other hand, our
assumption greatly simplifies the evaluation of the
phase space integral.

Symmetry in the pion variables allows us to consider
analyticity in only one of the crossed invariants, s»
for example. The lowest mass state which contributes
is the one nucleon state. This, of course, contributes a
pole at s»=M'. The residue of this pole can be related
to the pion-nucleon coupling constant and in the present
approximation on the allowed angular momentum
states, to the matrix element for the process X+N —+ 2~
in the T=J= 1 state. This is exactly the same matrix
element that occurs in the isotopic vector nucleon
structure and has been discussed in references (5) and
(6).

The next state which contributes, and the last we
will consider, is the pion-nucleon state depicted in Fig.
4. The analyticity of this diagram can most easily be
discussed in perturbation theory. In doing so, all the
vertices are replaced by point interactions and the two
outgoing lines, s23, behave like a single particle of that
mass. In order to ensure that we are discussing this
function on the physical sheet, it is convenient to start
with the "mass" (s»)** of the order of unity and then to
perform an anlytic continuation to larger masses. '4 In
the stable case, we find for the contribution of this
graph,

QO

l=- ds'2 (s', $23) (s' —sy5)
—' .

7i (M+1)2

As the "mass" (s23+ie)'*is increased, this function
acquires an anomalous threshold which reaches the
point (M'+2) as s~3 reaches four. Above this point,
instability sets in and the threshold passes into the

S
F

FIG. 4. Vertex graph in annihilation process.

24 R. Blankenbecler and Y. Nambu, Nuovo cimento 18, 595
(1960); S. Mandelstam, Phys. Rev. Letters 4, 84 (1960).
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complex plane to the point

$*=M +2$23—~zL$23($23 —4) (1—1/4M') 7*. (3.4)

The path followed by the threshold s"' is shown in Fig.
5. The discontinuity of I($i~) across the anomalous
and complex cut is found by continuation in the
standard manner. '4 It is essentially the inverse of the
product of the center of mass energy and the absolute
magnitude of the momentum of the intermediate
nucleon:

(L$—(M—»~')'7L(M+»3')' —$7) ' (3 5)

The function C~ is then a pole plus a line integral
from s* to infinity. I et us evaluate this function for
$is off its cut, say less than (M' —2), which is the
physical region for the annihilation process. Then C&

is still complex because of the presence of the complex
spike. The question is now to interpret the resultant
imaginary part of C& in physical terms. In order to do
so, it is convenient to backtrack for a moment.

Consider C~ as a function of the variable s~3, with s~5
real and less than (M' —2). An ordinary dispersion
relation holds, and the complex part in this case is due
to the possible physical state of two pions which simply
gives the function the phase of m-x scattering. The
imaginary part must be identical with that due to the
complex spike in s~5 because these are just two different
procedures for constructing the same function. This
leads to a natural physical interpretation of the complex
singularity in s». It is simply a manifestation of the
fact that there is a real process possible on another leg
of the vertex which, in turn, must give the function
the phase of that scattering process even if the original
variable, s~5, is real and not on its cut. It should be
stressed that this argument has been carried out only
to lowest order in perturbation theory.

It is also possible to interpret the complex singularity
in terms of wave functions. The analogous problem in
the anomalous threshold case has been fully discussed. "
The essential point is that the wave function has an
exponential fall-off which is given by the anomalous
threshold or, equivalently, the binding energy, instead
of the Compton wavelengths of the particles involved.
The case of the complex spike may be interpreted in
terms of a complex fall-off distance which in turn
implies a finite lifetime for the state in question. These
properties have become familiar in discussions of nuclear
decay problems. "

%e may point out that the complex spike such as in
Fig. 5 is one of the two common ways by which the
spectrum of the imaginary part of an amplitude arises.
A well-known example of the other kind of spectrum
for the imaginary part is given by the Mandelstam

25 See, for instance, R. Blankenbecler and I 1'. Cook, Jr., Phys.
Rev. 119, 1745 (196O), where references to earlier works are given."See, for example, E. C. Kemble, The Fundamenta/ Principles
of Quantum Mechanics (McGraw-Hill Book Company, Inc. , New
York, 1937), p. 192,

M -2 M M+@, (M+I)

FIG. 5. Vertex singularity in annihilation amplitude.

spectral functions. In this case the spectrum is on the
real axis (or on the real plane).

In constructing our approximate solution for C~, Eq.
(3.3), we are taking into account the complex singu-
larities insofar as they affect the phase of the function.
For d~, we shall use the following expression:

d(= g(($irj M2)— (3.6)

The quantity M' is to be chosen so as to simulate the
effect of the pole at s~5 =M', and also of the real con-
tribution of the line singularities shown in Fig. 5. We
choose

M'= M'+-,'. (3 7)

IV. PHASE SPACE INTEGRAL

In order to evaluate the absorptive part of the form
factor, the three-pion phase space integral must be
evaluated. The integral to be calculated is

(2')'2 =7r d'kid'k2d'k36(kl'+1)b(k2'+1)b(ks'+1)

Xe(ki")&(4')e(k3')b (ki+k2+k'i —
q) e„.i, .ki"k2 k3'

XGap&Ski k2 k3 F M ($12&$23&$3i &
~ I $1&,$84). (4.1)

Next, the g~ are constants which are to ensure the
correct values of the static form factors. It seems
difficult to relate gi and g~ to more fundamental con-
stants, since both the form (3.6) and the value (3.7)
are somewhat arbitrary.

It is worthwhile remarking that if we were to choose
di to be a constant and also D=1, then (3.3) achieves
the form that one would expect on the basis of the
statistical model. " The phase factors of exp(A, ,') are
roughly speaking the values of the pion wave functions
at the origin compared to what they would be if there
were no final state interaction.

The final unsymmetrized form for the annihilation
amplitude is therefore taken to be

M"=b"($ig —M') 'D '(i) explhigyhg3/63i7, (3.8)

where
b"= 8(kg)(gii'r&+g2(ks k4) &7m—(k,) (3..9)

It is not necessary to symmetrize this function since
it is to be inserted into a completely symmetric phase
space integral. Let us now turn to this aspect of the
problem.
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Here q is the total available four-momentum:

q
= k4+ka, —

q = t

For completeness we note that M may depend on s34.
This dependence will be ignored from now on, in
accordance with Eq. (3.8). Now, there are several ways
to proceed. For instance, Lardner transformed an
integral such as in (4.1) but without the factors k,"
into an integral over the invariants. Such a procedure
cannot be easily adapted to our problem, and we shall
proceed to carry out the successive integrations directly.

We first carry out the integrations over k2 and k3 by
transforming to their center-of-mass system:

E=k +k, Q=-,'(k —k )

We introduce an arbitrary vector a„, and in this system
the spin factors take the form

a"e„.g.kr"k2"k2 ——S22'(a Xkr) .Q.

mass system of q:

k42= k22= 4't -M—2

K2=kt2=
I t—(S22&+1)2]Lt—(S22'*—1)2]/4t
(kl )c.m. i28) ($23/t) ~

1II12 Sr&
—~2+ + (kt —k2)2

=-,'(t—s»+2) —2lk&I Ik, Ix,

(4 4)

where x is the cosine of the angle between k2 and
kt, in c.m. (q).

To complete our work, we insert M as given by Eqs.
(3.6)—(3.7), and we change the integral over kte to one
over s». The absorptive part A„can be brought easily
into the form given by Eq. (1.2). The imaginary parts
of the form factors can now be read off; the results,
with the over-all constant factors omitted, are as
follows:

F(s», t)The integrations over E and Q now lead to a result ImG, (t) —g, ds„K,2Q2(t/s„)-'. H, (s„t)
which in the center of mass system of s» can be written

I D(t) I'
as follows:

ImG2(t) = ds22 Kt'Q (t/s»)-:5'(s» t) I D(t) I

(4.5)

(22r) 4A =— d'kr0(kr')8 (kt'+1) S22'Q'kt X (BXk,). (4.2)
3

The time component Ao equals zero. Here
where

3f
X g2(Hr —H2) glH2 (-,'t —3P) ', (4.6)2'

3 1

B(S22,sr4,. t) =— ds(1 —s2)F*M. (4.3) 3 1

dx (1+x')(s,s
—1III2)

—'

The expressions for st2, S2r, Q', and kt' in terms of s22, t,
and s are given in Eqs. (2.6), and

Q'=—Q'= 4s, 2
—1.

3
H2 ——

8
dx (3x'—1)(st2 —1II12) ',

Before going on, let us comment on changing frames
of reference. If we do the integration over the angles of
Q in a frame where kr ——(0,0, Ikr I), then we get a result
which is proportional to kt2(a 8,+a„B„)We can write.
this result in the following form, which has a manifest
three-dimensional invariance:

a B(kt2) —(a kt)(B kr).

This expression gives the triple cross product occurring
in (4.2). Next, it is convenient to carry out the inte-
gration over k& in the center of mass system of q, and
for this reason we write the triple cross product in the
Lorentz invariant way

s22 e&„z (q kr) k 4 &4"(q
—kr)„Bp(kr), .

We see at once that

I ktx(Bxkr)]. i22&=ts22 'I krx(Bxkt)].
Let us also list some useful relations for the center of

2' R. W. Lardner, Nuovo eirnento 19, 77 (1961).

3 1

p— ds(1 —s ) I exp'»+a„+a»]

The integrals over s22 are from 4 to (tl 1)'. In eval—u-
ating the integral over sr2(s) and S2t(s) in F, it is
convenient to use the fact that the integrand is a
symmetric function of z, and hence can be rewritten
as an integral from zero to one. Finally, in order to
avoid a double numerical integral, we have simply
evaluated the integrand at the midpoint, z= —,'. This
does not introduce a very large error.

It may be worthwhile to comment on the integrands
in Eqs. (4.5)—(4.6). These integrands vanish at the
endpoints, due to phase space factors. For small t, each
of these integrands has one maximum, which repre-
sents the effect of one excited resonance. For large t,
there are two maxima, one of which is the effect of the
resonance in s23, and the other, of the resonance in s~2

or $3y.

In order to simplify the presentation of the numerical
evaluation of the form factors, let us write Eqs. (4.5)-



x ~~, CTI~RI-AR NUCL-I SOS CA LA

28

24
40

3220

24

l2

I

2812 2
. 6~2hase functions, e6. Pion-pion p a

52

l6

60 68
I

5226 44l2

&0 Fach curves ace integrals
~ize

fo«.= . 'FIa. 7. Phase sp
bitrarily norma izeas been ar i

I

76

Fro

(5.3)(")= 2/(t, —1)(4.7)

e q adius is 0.67f,

2

ean square ra
' '

. f

= .J.(t)/ D(t) I,

ssible to increase

ImGg(t)=g~ ~

J (t)/ID(t) I +g,J3 tImG2(t) =g, ,

g g the reson
3 interactlo

uari ie
'

ift the e ec i
b

llows the s&ngu an ie
to lower energ'

realistic
t th t'fWe alo

g
q

m lltu es

lusion is o
ons if the anni ia iconsiderations, i

ed invariants.
ll b' d"'u'"d

nstant f"t

not depen

b the corresponnction D(t) is givennex
int

(4.6y m

!

) the following way:
are radius isThe mean square

Ke note that

J3(t)= M=La/2(-'t —m2)][J, (t) —J, t .

where

nted in the nextions will also be presenteThese two functions wi a s
sect'ion

CONCLUSIONSICAL RESULTS ANDV. NUMERICAL

we have carried

set
( t,~ ('= ab(s —t„),

tion G, (0)=1,with the normalizatiothen we 6nd, wit

3(t 1)
1()= ()=

'
n. Further, the fu

2

t section. ur

find
ImG, = ImG, =J,(t).

eg al

i Fi . 7 for t„=10.The

Jp f

Th f to J,
g

t over perturbation
radius urn

is an improvemen o0 E0 = «P~'(t/s23) &F(s„,t).

theory.

and J . These fun tio
are so si

'
e wey

ention on J only, anfocus our attention

(5.4Gg(t) =G, (t).
d in the introducti ion

btraction, tto com-make an explicit su0 Th
factor cacua iai

hase shift ensate for tfor th resonant p '"
p

(5.5)

g "' '"' h'f

G~ t = (1—b)+bG(t).
case of a e a

'
esonance.

er rete asme

factors in the ca

(5 1)
The parameters u an

hi her mass an d hence unca cu a e

r



790 R. 8 LAN KENBECLER AND J. TARSKI

40-

52

)2

IO-

24

l6-

20
l

28
t I 1

56 44 52 60 68 &6

I I I I

l2 20 28 56 44 52
PEG. 9. Three-pion rescattering function,

~
D(t)

~

—'.

t

60

FIG. 8. The functions JI for t„=10 and 20.

authors are in striking disagreement, and our choice
G~(t) =Gt(t) can be considered as a compromise.
Obviously further work is needed.

The functions Jt(t) are plotted in Fig. 8 for t„=10
and 20. The radii turn out to be 0.66f for $„=10 and
0.48f for t,.= 20.

Finally, let us consider the effect of a 37I. ~37r
interaction. For this, we use Eq. (2.5) for D(t) and
Eq. (2.11) for a(t). The integral to be evaluated here
is, except for o.(t), an integral similar to that giving
the form factors. A numerical evaluation, however, is
tedious, since the integral in D(t) is to be evaluated
where the integrand is singular. We therefore approxi-
mated Jo(t) by a resonance-type formula and carried
out the integration analytically. A plot of

~
D(t)

~

' for
so=8, F= —~, and t„=10 is shown in Fig. 9. The final
absorptive part, ImGr(t), including the effect of this
type of ~D(t)

~

', yields a root mean square radius of
0.75f for t„=10and of 0.55f for t„=20.

The plot of Fig. 9 suggests that D(t), or its analytic
continua. tion through the physical cut Drr(t), has a zero
for some 1=to(9, and this point deserves a brief com-
ment. If D(to) =0, then there is a three-pion bound
state, and its effect has to be included as a delta function
in ImGt(t). However, if Drr(to)=0, then there is a
virtual bound state' and its effect need not be included
explicitly. It can be quite effective in increasing the
radius, however.

Let us conclude with a discussion of the form factors
for $„=20. The radius cannot be increased much by
adjusting the parameter so. Increasing

~
P

~
would corre-

spond to a stronger 3x ~ 3m interaction, but it is not
at all clear whether this would affect the radius greatly.

Since there is some experimental preference' for a reso-
nance above 20, we would like to point out two modihca-
tions which would lead to a reasonable value of the
radius in this case. The most drastic involves a three-
pion bound state. ' Its e6ects need not be discussed fur-
ther. The second modification involves using a rescatter-
ing function D '(t) which shows a strong resonance in
the vicinity of the ~-x resonance position. Such a reso-
nance, if it exists, should be seen experimentally. "

To summarize, we have seen that if the m-w resonance
were in the vicinity of 10, the scalar radius could be
Gtted without any spectacular 3z ~ 3z scattering
effects. On the other hand, since the resonance is higher
than 20, it is perhaps impossible to ht the radius unless
a three-pion resonance or a bound state is present.

At this point, let us mention only two of the many
shortcomings of this work: First, no attempt was made
to explain at the same time the smallness of the scalar
magnetic moment and the largeness of the radius.
Second, no attempt was made to calculate the function
D(t) in terms of an assumed ~-m. scattering without
introducing new parameters. Our results, however,
specifically point to the importance of such a calcu-
lation. These two dificult points certainly deserve
further study.
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