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The relation between the two-pion and three-pion resonances is discussed in terms of a model in which the
motion of the pions is described by a partially relativistic Schrodinger-type wave equation, and the inter-
action between them is represented by a static potential. An attractive square-well potential that is almost
strong enough to bind the di-pion gives a satisfactory account of the observed P-wave pion-pion scattering.
If this potential is assumed to be additive between all pairs in the three-pion I=0, J=1 state, it produces
far too much binding to agree with observation. As an alternative to additivity, the interaction may be
assumed to saturate, so that the total potential never exceeds that between any pair of pions. It is found
that the model provides a qualitatively consistent explanation both of pion-pion scattering and the three-
pion system if the pair interactions saturate or nearly saturate.

I. INTRODUCTION

HK possible existence of a neutral vector meson
was suggested several years ago by Nambu' as an

explanation for the apparent absence of neutron charge
structure at that time. ' More recently, Chew' pointed
out that a bound or resonant three-pion state with I=0,
J=1 would serve the same purpose. Furthermore, he
suggested that since such a system can be formed with
each pair of pions in a relative I=1, J=1 state, for
which a resonant interaction is expected, the three-pion
and two-pion resonances should have comparable total
energies. Subsequent' experimental work on the nucleon
electromagnetic form factors, ' and on their theoretical
interpretation, has confirmed this view. Quite recently,
more direct experimental evidence has been found for
the two-pion" and three-pion" resonances. The first of
these almost certainly has l=1 and is consistent with
J= 1, in agreement with the prediction of Frazer and
Fulco. ' The three-pion resonance almost certainly has
I=a and probably has J=1 . The two-pion resonance
has a total energy of about 750 Mev and a full width at
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half maximum of about' 150 Mev; the corresponding
parameters for the three-pion resonance are 790 Mev
and 30 Mev, respectively. "

The only quantitative theoretical attempt at correlat-
ing the two-pion and three-pion resonances made thus
far is based on dispersion theory. " As an alternative
approach, we assume in the present paper that the two-
pion resonance arises from a potential, and ask what
effect this potential has on the three-pion system. The
use of potentials in field theory must be regarded as an
approximation at relativistic energies, " although it
does possess a considerable intuitive appeal. " The
potential model used here differs from field theory in
three respects: (1) the number of particles is fixed at
two or three pions, as the case may be, with no nucleon
pairs; (2) a partially relativistic Schrodinger-type wave
equation is used to describe the motion of these par-
ticles; (3) the interaction between particles is repre-
sented by a static potential. The first assumption
appears in somewhat weaker form in all calculations
based on dispersion theory, where only the lowest mass
states are included; no further attempt will be made to
justify it here. In the development of point (2), the
wave function is assumed to depend on the average
time of the several particles, not on the time differences.
This means that the center of mass of the system moves
relativistically, but retardation effects are neglected in
the internal motion. Since the use of a potential also
implies that retardation is neglected, this is the principal
physical difference between the present work and a
dispersion theory treatment deriving from field theory. "
The only justification for this neglect, apart from the
simplicity and intuitive appeal of the resulting calcula-
tion, is that retardation should be less important in a
strongly resonant or bound system, in which the
particles are close together most of the time, than in
nonresonant scattering.
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Our procedure consists f rst in setting up a plausible
wave equation (Sec. II). With the added assumption of
an attractive short-range interaction, which for con-
venience is chosen to be of square-well form, the P-wave
pion-pion scattering is calculated and the potential
depth and range determined to agree with observation'
(Sec. III). An upper limit on the energy of the three-
pion ground state is then obtained by means of the
variational method, a,ssuming that it is bound (Sec. IV).
Since the energy estimate obtained in this way turns out
to be a very rapidly-varying function of the square-well
parameters, it cannot be determined reliably. By the
same token, the square-well parameters are determined
quite precisely even if the three-pion energy is allowed
to vary considerably around zero binding. The calcula-
tions are carried through with two forms of variational
trial function and with two assumptions concerning the
additivity of the potentials between different pairs.

II. WAVE EQUATION

A single free pion satisfies the Klein-Gordon or
Schrodinger relativistic equation,

(—V2+2212)y = 82iti/—Bt2, (1)

where p=p(r, t), m is the pion rest mass, and units are
chosen such that h =c= 1.For two noninteracting pions,
omitting isotopic spin dependence, an unsyrnmetrized
wave function may be written

$(rl t1 r2 t2) it'1(rl tl)42(r2 t2)

where each of the p's satisfies an equation of the form
(1).Then lt evidently satisfies the wave equation

(—V' ' —V' '+2212')P= (—82/Clt12 82/@22+. —(2)

It is convenient to rewrite Eq. (2) in terms of the
average time t = 2 (ti+t2), the relative time 7 = ti t2, the-
center-of-mass coordinate R= 2 (ri+r, ), and the relative
coordinate r = ri —r~ .

(—-'V'12' —2V' '+2112')P= (—-'82/Bt2 —28'/Br')P.

We now assume that the dependence of P on r can
be neglected. We also allow the pions to interact through
a static potential V2(r), which is added to the rest-mass
term (scalar potential) rather than to the total energy
term i 8/Bt (fourth component of a four-vector). retarda-
tion is neglected, and the wave equation becomes

,'V'122 2V—'„2—+V2—(r)+ m2]$2= ,'82$/Bt2. (3)——
The dependence of P on R and t can be separated out by
writing

f=x(r) expi(P R—Et),

where E and P are naturally interpreted as the total
energy and momentum of the two-pion system. Equa-
tion (3) then becomes

L
—2p '+ V2(r)+2212'jx= —'(L~' —P2)z.

This shows that the center of mass moves relativisti-
cally, like a particle with rest mass M2= (E2—P)'*; thus
M2 is the total internal energy of the system. The wave
equation for the internal motion is conveniently written

$—2V',2+ V2(r)fy= (-,'M2' —22222)y (4)

III. PION-PION SCATTERING

The isotopic spin dependence has been omitted from
Eq. (4); it appears as a multiplica, tive factor in the
wave function. For the two-pion state with I= 1,
J must be odd, and we deal with the experimentally
interesting I' state. This implies that V2(r) is spherically
symmetric; it must also be attractive if there is to be a
resonance. For convenience, we choose U2 to be of
square-well form, with depth Vp and range a.

The scattering calculation is quite straightforward, "
and the results can be expressed in terms of spherical
Bessel functions, which are tabulated. There is no
bound state so long as Vpa' is less than 2m' = 19.74; in
this case, the scattering phase shift increases from zero
at zero kinetic energy (M2=2212), goes through a
maximum as the energy increases, and approaches zero
at infinite energy. For values of Vpu' less than about. 14,
the maximum phase shift is less than —,'m, and the total-

See for example I . I. Schiff, Quantum Mec~umcs (McGraw-
Hill Book Company, Inc. , New York, 1955), Sec. 19,

and is of Schrodinger type.
The foregoing procedure is readily extended to any

number of pions. For the three-pion system, a con-
venient set of coordinates is R=-', (ri+r2+r2), r=r, —r2,
y= r2 ——,'(ri+r2). We again assume that p depends only
on the average time t=-', (t 1+t 2+t )2, separate out a
factor expi(P R—Et), and define the total internal
energy M2= (I"—P')'. The wave equation for the
internal motion, analogous to (4), is then

L 2~' ( )~ '+V (r ti)3X(r ti)

=(lM' —3 ')x(,e) (5)

We postpone a discussion of the relation between the
two-pion potential U2(r) and the three-pion potential
V2(r, y) until Sec. IV.

The neglect of the dependence of P on the relative
times can be looked at in the noninteracting forms of
Eqs. (4) and (5). If we set V2 ——0 in (4), the resulting
plane-wave solution yields the correct energy M2 of the
internal motion. On the other hand, when V3 is set equal
to zero in (5), M2 has the correct value in the non-
relativistic limit, but not for high relative energies unless
all three momenta have equal magnitudes. Thus neglect
of the relative time dependence causes a kinematical
error when more than two noninteracting pions are
present. However, this, as well as the neglect of retarda-
tion mentioned in Sec. I, should be less important in a
strongly resonant or bound system of three pions, in
which the momenta are expected to be comparable,
than for free particles.
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FIG. 1. Total E-wave pion-pion scattering cross section in milli-
barns plotted against total center-of-mass energy in Mev. Curves
A and 8 are calculated on the basis of attractive square-well
potentials of depth Vo and range a: (A) Vp(2=12.50, Vp~=6. 5m,
a=0.76 fermi; (B) V8a =19.47, V8&=50m, a=0.12 fermi. Curve
C represents the experimental results of Erwin, March, Walker,
and West. ' The curve labeled 12m%' is an upper bound on the total
cross section.

cross-section curve lies entirely below 12+4', where
1/M = 14M22 —218', for larger values of V8a2, the maximum
phase shift is between -', m and 7I., and the cross-section
curve has a maximum at an energy slightly below the
first point at which the phase shift is ~m, which is the
first point of tangency to 12mB.

The general shape of the scattering curve is deter-
mined by the value of Uou', becoming sharper as this
quantity approaches 2m'. The energy scale is determined
by the value of Vo ol of a; for given Vou', the energy of
the cross-section peak increases as Vo increases and a
decreases. Figure 1 shows the total cross section in
millibarns plotted against M2 in Mev, for two sets of
parameters:

curve A: Voa'= 12.50, Vo'= 6.5m, @=0.76 fermi;

curve 3: Vou'= 19.47, Vo'= 50m, a= 0.12 fermi.

For comparison, the experimental results' are plotted
as curve C. The parameters of the two theoretical curves
are chosen so that the positions of the maxima agree
with observation. Curve A is clearly much too broad to
fit the experiment. However, curve 8, or something
close to it, is sharp enough to be in agreement with
curve C if the peak of the latter has been lowered
slightly by instrumental broadening, as seems quite
plausible.

Ke conclude, then, that an attractive square-well
potential with Voa' slightly less than the value needed
for binding can provide at least a qualitative explana-
tion of the experimental observations on the two-pion
system.

IV. THREE-PION SYSTEM

It is easily seen that three pions, each of which has
unit isotopic spin, can combine to form one state with
I= 3, two states with I= 2, three states with I= 1, and
one state with I=O. Thus the I=O state suggested by

Chew' is unique; it may be represented as the triple
scalar product of the three isospin vectors, and each
pair of pions is in a relative I= 1 state. Since it is anti-
symmetric in the interchange of any pair of pions, we
require that the space part of the wave function be
completely antisymmetric.

There are two independent vectors from which the
space function y, which is to be a solution of Eq. (5)
with J=1, can be constructed. These may be taken to
be r and g, which were dehned in Sec. II; or they
may be taken to be any two of the vectors r», r», r»
(r,;=—r, —r, ), which satisfy the identity r»+r23+r»—=0.
If we avoid using spherical harmonics of higher order,
there are only two completely antisymmetric states
with J= 1 that can be constructed:

Af(r12,r23, r31),

A=rX9= —r12Xr23 r23Xr31 r81Xr12,

where f is symmetric in its arguments; and

r12g(r23 r31 r12)+r23g(r31 r12 r23)+r31g(r12 r23 r31), (&)

where g is symmetric in its 6rst two arguments. The
wave function (6) has odd parity, and each pair of
pions is in a relative J= 1 state; it is the one referred to
by Chew, ' and the one favored by experiment. "The
wave function (7) has even parity; we shall not con-
sider this state further.

Our objective is to determine whether or not the
energy eigenvalue M3 of Eq. (5), obtained with the
help of the two-pion potential V2 of Sec. III, is in agree-
rnent with observation. In order to accomplish this
objective, we must relate Va to U2, and then solve
Eq. (5). For the latter step, we use the variational
method. This assumes that the three-pion system is
bound, and gives an upper limit for M&. Experimentally,
the state is not bound, since M& is approximately 790
Mev, and hence is greater than 3m. However, we shall
see that the variational energy is a very rapidly varying
function of Vo and a, so that a small change in these
parameters su%ces to change the variational estimate
of M3 by a large amount in the neighborhood of
%3=3m. For this reason, it does not seem worthwhile
to improve the method of calculation of M~. Instead,
we shall set the variational estimate of M3 equal to
3m, and find the corresponding value of Vea' (the
separate values of V8 and a do not enter in this case).
Because of the strong dependence of the variational
energy on the potential parameters, the value obtained
for Voa' is very insensitive to the value assumed for M3 ~

On the other hand, it does, of course, depend on the
relation that is assumed to exist between U2 and V&.

The simplest assumption to make concerning V3 is
that it is the sum of the three pair interactions. Since
each pair is in a relative I= 1, J= 1 state, only V2 and
not the interaction in other possible pair states enters.
Our erst assumption is, then, that.

V3= V2(r12)+ V2(r23)+ V2(r31)
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where V2 is the attractive square-well potential of
Sec. III. The variational calculation is carried through
with an exponential trial function of the form (6), where

f= exp —n(rio+roo+roi),

and with a Gaussian trial function

(9)

The E term is the expectation value of the kinetic
energy, and the I term is the expectation value of the
potential energy. The corresponding expression for the
Gaussian trial function, (6) and (10), is obtained in an
elementary fashion:

W= Vol ly'+o(y) j, y=a(3P)', 1.=10/Voa',

~(r) = —3~(r)+4~ 'r(r'+o) exp( —y'),
(12)

C (y) = 2or
—l exp( —t')dt.

The variational procedure consists in varying n and

P while keeping Vo and a fixed, so as to make W a
minimum. The values of the dimensionless variables x
and y that minimize t/V are called xo and yo, and are
functions of Vga'. Then Voa' is chosen so that with the
appropriate values of xo and yo, lV is made to vanish;
this corresponds to zero binding energy, or Ma=3m. It
is easy to see that the foregoing procedure in the
exponential case is equivalent to solving the equations
W=O, dW/dx=O simultaneously for xo and Voa'; it can
also be verified that d'W/dx')0, so that W is a
minimum. Both of the above equations can be handled
quite simply; Eq. (11) leads to xo=6.052, Voa'= 14.48,
and Eq. (12) leads to yo ——1.613, Voa'=14. 24. Thus the
two trial functions agree in giving a value for Vou' that
is much too small to explain the observed pion-pion
scattering.

It is not difficult to see that a small increase in Voa'
would give a large increase in binding energy. One can
show that for small variations 6:

&LW (xo)/ Vog/6 (Voa') = —(6/11) (xo/ Voa')'; (13)

a similar expression holds for the Gaussian trial func-
tion, except that xo is replaced by yo and 6/11 is replaced
by 10. The expression (13) is equal to —0.095 in the
exponential case; thus if Voa' were increased by unity,
which is not nearly enough to account for pion-pion

f= exp —P(rio'+roo'+rol ). (10)

Equations (6) and (9) may be used to calculate the
expectation value S' of the square bracket on the left
side of Eq. (5), with the help of certain integrals that
are discussed in the Appendix. The result is

W= VoLEx'+N(x) 1 x=4na, K=6/11V oa'

N(x)= —3+3e '
x' x' x' 29x' 19m' g'

X 1+*+ + + + + +
2 6 24 3960 23 760 23 760

scattering, t/t/' would be decreased from zero to about
—0.1VO. Now 8" is an upper limit on 3M3' —3m', and
from the work of Sec. III we expect Vo& to be somewhat
greater than 6.5m; it follows that this small increase in
Voa' would be enough to make M3' negative| The
Gaussian case gives a similar result. Thus the variational
estimate for M3 is very sensitive to the value of Vog', and
there is no point in considering values of W other than
5'=0 when Voa' is being estimated from the three-pion
system.

It follows that within the framework of our potential
model, Chew's conjecture' that the addition of pion pair
interactions would give sufFicient binding in the three-
pion system grossly underestimates the effectiveness of
the pair potential. An additive pair potential consistent
with pion-pion scattering would give far too much
binding in the three-pion I=O, J=1 state.

The opposite extreme to the additivity assumption
expressed by Eq. (8) is the saturation assumption.
According to this, V3= —Vo whenever any one, or any
two, or all three of the interparticle distances r~2, r23, r3~

are less than a, and V3=0 when all three of these
distances are greater than a. This assumption has a
certain intuitive appeal, since Vo has been found to be
so large that it is difficult to assign physical meaning to
2VO or 3VO. The potential energy integral for the
Gaussian trial function is impossibly complicated in the
saturating case, although the exponential trial function
is quite tractable (see the Appendix). The expression
for W that is obtained with (6) and (9) is

W= Uo)Ms'+w(z)) s= 2na, M = 24/11Voa'

zy(s) = —1+(4/33) Pe "(s~+ js'+ 23so+33s'
—20s' —132s'-144s—48)
+e "(8s'+52s'+167z'

+320s'+366s'+ 225s+ 225/4) $.

The variational procedure described in connection with
Eqs. (11) and (12) leads to so ——2.289, Voa'=22. 70. As
before, 8' is a very rapidly-varying function of Voa'.
This value of Voa' is somewhat larger than that required
to account for the observed pion-pion scattering, which
is around 19.5, and would result in a bound di-pion.
However, it must be remembered that the variational
method overestimates the energy eigenvalue, and hence
overestimates the value of Voa' that is required to give
the three-pion system zero binding energy.

We conclude that our potential model provides a
qualitatively consistent explanation both of pion-pion
scattering and the three-pion system if the pair inter-
actions saturate or nearly saturate. The model also
excludes the possibility that the pair interactions add
without saturation.
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APPENDIX

The variational integrals involving the exponential
trial function (6) and (9) are all of the form

r~2'r23 r3~" expL —(nr2~+Pr3~+yr~~))d'r, d'rmd'r, ,

where the over-all volume of integration 0 is very large,
and the interparticle distances may or may not be
restricted. Such integrals can be obtained by repeated
differentiation with respect to n, P, and y of the same
integral with /= m =e= —1.Then there is no restriction
on the interparticle distances, the basic integral is"

r12r 23r 31

&&exp) —(nr g3+Pr 3y+yr $2))d'r yd'r 2d'r 3

(Ai)
(n+P) (I+V) (V+n)

which can be evaluated by residues to give the right
side of Eq. (A1).

The same procedure works when one or more of the
interparticle distances is restricted. The integral (A1)
with only r» restricted to be greater than u is evaluated
by replacing the r» and r» parts of the integrand as in
(A2), and replacing the r» part by

(2s') ' y (k) (k'+n') 'e'"'d'k

y~(k) =-', e ~ L(1—in/k)e'" +(1+in/k)e ")
(A4)

this is equal to r 'e "if r&u and 0 if r(a. The integra-
tion over the space coordinates and two of the k's goes
as before, and leads to (A3) except for a factor P (k) in
the integrand. This integral can also be evaluated by
residues, and yields

— (6~2@ —-g—&~+~&~ e
—&~+&)~-

r—lg—ar (27r2)
—1 (k2+n2) —1gik rdsk (A2)

The r integrations are performed by expressing the
relative coordinates in terms of the orthogonal coordi-
nates R, r, y of Sec. II, and lead to b functions in the k
variables. Integration over two of the k's yields

The evaluation of (A1) may be carried through by
expressing each of the factors in the integrand in terms
of its Fourier transform:

Repeated derivatives of this integral are used in eva1uat-
ing the three-pion potential energy in the nonsaturating
case.

For the potential energy in the saturating case, we
require the integral (A1) with all three interparticle
distances restricted to be greater than u. As before, this
leads to (A3) except for the factor p (k)ps(k)P~(k) in
the integrand; here, pp. and g~ are given by (A4) with
n replaced by P or y. Evaluation of the integral yields

32xQ $(k'+n') (k'+P') (k'+y')) 'k'dk, (A3) p~ ( +p) ( +~)

"J.B. Fisk, L. I. Schiff, and W. Shockley, Phys. Rev. 50, 1090
(1936); the value of the integral given in this paper should be
divided by 4m. P(P+n) (I+V) V (V+n) (V+A)


