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If a spin-1 meson exists it might act as an intermediate particle
in a meson current graph for neutral pion photoproduction. It is
shown that the singularities from this graph are likely to be much
closer to the physical region in the complex x=cos§ plane than any
other singularities with the possible exception of those coming
from a pion-pion interaction. Thus an extrapolation can be carried
out in x to determine the residue of the pole due to the spin-1
meson if it exists. This residue is calculated for vector (V) and
pseudovector (PV) mesons and is found to have the same negative
sign for both cases, unlike in the spin-0 case. Experimental data
at 300, 450, 700, and 800 Mev are used for the extrapolation which
is carried out as a function of intermediate meson mass. It is found
that the results are consistent with zero residue for all energies
with the possible exception of 450 Mev where there is a slight
evidence for a positive residue. Thus present evidence favors the

I. INTRODUCTION

N the past few years considerable effort has been
directed to explore various aspects of the possible
existence of a spin-1 boson. For a representative,
although not necessarily complete, bibliography see
references 1 through 26.1-26 The paper adds to this list
by exploring the effect of such a particle on neutral pion
photoproduction. In particular, our aim will be to see if
the existence of a spin-1 boson (henceforth called «°) as
an intermediate particle can be detected in the differen-
tial cross section of neutral photopions.
The key to our discussion is the assertion that if the
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conclusion that there is no contribution to neutral photoproduc-
tion from a spin-1 meson. One can place an upper limit of about
0.01 for the V case and 0.05 for the PV case on the magnitude of
(M /2m)?, where g is the coupling constant between the nucleon
and the spin-1 meson, and the latter has a mass m and a magnetic
moment . A detailed analysis is also given of the error in the
residue determined from a set of experimental data, as a function
of the location and number of data points, the extrapolation
distance, and the order of the extrapolating polynomial. It is
concluded that the present error in the residue could be improved
by a factor of 3 to 5 by an experiment measuring the differential
cross section of neutral pion photoproduction at a photon energy
of 800 Mev in the laboratory system at every 10° from 10° with
an error of 4=0.2 ub/sr on the individual measurements.

o exists, then also the Feynman diagram shown in
Fig. 1 exists. The spin-1 property of the «° figures
heavily in the existence of such a graph, since only then
can the neutral boson, through its magnetic moment
(if any), interact with the electromagnetic field. The
diagram in Fig. 1 resembles the conventional meson
current graph of pion photoproduction (in which the
intermediate particle is a pion) which, however, does not
exist for the production of neutral pions. This is a very
helpful fact, as it can be seen by investigating the loca-
tion of singularities for the production amplitude at a
fixed energy, as a function of the production angle.
This has been discussed before?” in connection with
charged pion photoproduction. In our case the ordinary
pole in the forward direction at 8,7* (8~ being the pion
velocity) is missing. The cut in the forward direction
arises only if a pion-pion interaction exists, since it
corresponds to a graph of the type shown in Fig. 2.
Thus one has singularities in the forward direction at
all only if a pion-pion interaction exists or, as we will
now show, if the graph in Fig. 1 contributes.

Let us denote the four-momenta of the photon, pion,
«°, incoming and outgoing protons by £, g, 7, p, and p’,
respectively. We will use the metric a-b=a¢bo—a-b,
where @ and b are four-vectors and a and b are three-
vectors. Furthermore, u denotes the pion mass and m
the mass of the . Then the pole corresponding to
Fig. 1 occurs at

= (q—k)?=0, (1.1)
which in turn corresponds to
x=cosf= (2gk)~1(2qok+m2—u?)
=B+ (2qk) 7 (m*—p?), (1.2)
or
a-k=gob+} (m2—u?). (1.3)

27 J. G. Taylor, M. J. Moravcsik, and J. L. Uretsky, Phys. Rev.
113, 689 (1959).
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TasBLE 1. Position of singularities in x=cosf
for neutral pion photoproduction.

Energy, Mev: 300 450 600 700 800
Conventional —4.78 —-3.29 —2.66 —241 -—-222
nucleon current
pole:
« pole, m= 2pu 1.79 1.38 1.24 1.19 1.16
23u 2.04 1.50 1.32 1.25 1.21
3u 2.57 1.85 1.54 1.43 1.36
4pu 4.11 2.52 1.97 1.77 1.63

In the special case of m=2 u we get the same position
as indicated for the forward branch point in Fig. 2 of
reference 27.

Thus we have shown that any evidence of a singu-
larity in the foreward direction would be of great interest
since it would indicate the existence of an w° particle or
a pion-pion interaction. The latter would be represented
by a cut, but if the multipion system has strong reso-
nances, the cut would look very much like one or several
poles.

Now, to make the situation even more favorable,
we will show that not only do we have no conventional
singularities in the forward direction, but even the
conventional singularities in the backward direction
are much more distant from the physical region than the
«® or pion-pion singularities. This statement of course
depends on what mass we attribute to the «’ or what
energy to the pion-pion resonance, but, in any case, for
for m<3.5u the statement is true. Table I of the
location of the singularities illustrates the point.

It follows from the above discussion that the situation
is just about ideal for the application of the extrapola-
tion procedure first suggested by Chew,?® which has
already been applied with fair success to various
reactions.?”#=% Given the differential cross section as a
function of production angle at a fixed energy, one can
extrapolate to the conjectured pole. If the residue thus
obtained is nonzero, evidence for the existence of an «°
or a pion-pion interaction has been found.

In order to carry out such a procedure, one has to
calculate the residue one would expect if the o’ existed.
This is done in Sec. IT. Then one has to carry out the
extrapolation on experimental data. This is done in
Sec. III. It is also interesting to know how accurate must
the experiments be to be able to extrapolate to a given
point with a given error in the corresponding residue.
This is discussed in Sec. IV.

Before we plunge into these details, it is worth
mentioning three general points.
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spin-1 particle to
neutral pion photo-
production.

The first is related to the calculation of the residue.
This residue can be obtained by performing the usual
covariant lowest-order perturbation calculation, using
the renormalized coupling constants. In the case of the
spin-1 particle, however, the field theory is non-
renormalizable in the conventional sense. This is re-
flected by the fact that, as we will see in Sec. II, the
residue as calculated by the procedure outlined above js
large and increases with energy indefinitely. It is, how-
ever, finite at any fixed energy, which is the situation
we are interested in. Its order of magnitude, however, at
high energies can be much larger than that of the
differential cross section itself. Since in dispersion theory
one does not talk about renormalizability, one can say
instead that the farther singularities in fact might
partially cancel in order of magnitude the contribution
of the nearby pole. This would occur mainly at high
energies. The specific features of the pole contribution,
however, presumably remain in evidence, and hence the
extrapolation should point to the correct residue. In
fact, the situation outlined above means that a negative
result as to the existence of a residue could place quite
stringent limits on the size of the coupling constants.

The second remark also pertains to the calculation of
the residue. The present paper calculates only the
effect on an «° meson. If an «’ does not exist but some
kind of a pion-pion interaction causes a cut in the
forward direction, the effect on the differential cross
section is more complicated. Even if a resonance is
assumed, a model is needed to make specific predictions.
A calculation of this kind for the energy dependence of

Fic. 2. Feynman
diagram showing the
contribution of a
pion-pion interaction
to neutral pion
photoproduction.
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the 90° differential cross section has been made re-
cently.?® It to some extent complements the present
paper.

Finally, one should make a remark on the extrapola-
tion procedure itself. It can lead to interesting and
meaningful results, but only if careful statistical criteria
are used in the analysis. An example of how sloppy
statistics can lead to absurd results has been given by
Feldman and Fulton.?® It is also true, however, that
experiments contain, beside random errors, some sys-
tematic errors which of course are not accounted for by
statistics. Such statistical errors can invalidate all
conclusions drawn from experiments. Whether the
danger is larger for the extrapolation procedure than
for any other way of extracting information from
experimental data is not clear. In any case, one should
try to eliminate such systematic errors by carrying out
the extrapolation at various energies and for various
sets of data, thus randomizing the nonrandom errors.
This is at least attempted in Sec. ITI.

II. CALCULATION OF THE RESIDUE

We will now proceed to calculate the residue from the
graph in Fig. 1, assuming both a vector and a pseudo-
vector «°. Part of our notation has been explained in
Sec. I. We will denote by & and n the polarization
vectors of the photon and , respectively ; M will be the
proton mass. We also have

a'b:apbyg,uv, (21)

where go=1, gu=—1 (=1, 2, 3), and g,=0
(u#7v). We use y@=8=1, v2=—1 (i=1, 2, 3), and
ve:= (yoyryzys)?= —1. We will denote by ¢, ¢, and x
the wave functions of the nucleon, pion, and «° respec-
tively. The nucleon spinor will be called «. Finally g
is the w’-nucleon coupling constant and 9 the anoma-
lous magnetic moment of the

Now let us choose the basic interactions. For the
w’-nucleon vertex the simplest couplings are

glp’YMnguv ( V) )
ghvuvsbxegw i o is a pseudovector particle (PV).

if «°is a vector particle

(2.2)

In the vertex containing the photon, pion, and ° the
interaction must contain F,, and not 4,, since we are
talking about a magnetic moment interaction. Thus
the simplest couplings are

)
(PV)

e(m/2m)¢F,w€vuTwGRpguaguvg)\rgpw,
e(On/ 2m)pF WO pgunEv s

where €,n, is the Levi-Civita tensor, totally anti-
symmetric such that eux,=0 if any of the two indices

(2.3)

3 B. De Tollis and A. Verganelakis, Phys. Rev. Letters 6, 371
(1961).

36 G, Feldman and T. Fulton, Phys. Rev. Letters 3, 64 (1959).
The four pieces of data they used in their example are never enough
for a statistical analysis.
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are equal, €,n,= — (—1)? if all indices are different and
P is the parity of the permutation uvAp, and where

F,w=G“A,—O,A“fi(kuey—kpe“), 2.4)
Gup=0,x—xu=1 (7M77v_7'v77u);
with
9,=09/9x,.
For the photon-w’-pion vertex one might also think,
e.g., in the PV case, of the interaction

e(m/2m> (aﬂqs)Xvaﬂgﬂpgw,

which is just as simple as the one we chose. One can
show, however, that the two couplings are in fact
identical except for sign. We have

au(FPV¢X0gnngV):0: (aprvgpp)¢Xugva
FF 080 (0ub)X 08rat F 1980 (01X o8ro),

and 8,(gu,F»)=0, which establishes the identity.

Now we are in the position of writing down the matrix
element for the process in Fig. 1, using lowest-order
perturbation theory and the rules as given, for instance,
by Schweber?

(2.5)

(2.6)

3 ihe 1 (he) 1 (Re)t 1 1
(2m)* r*—m? (27) (2k)F (2m)* (20)F (27)}

<) )

X <—;>2(27r)4(27r)4e-EYE Y glalu

¢ 2m int
7 M 1 M 5
= - e glialu, 2.7)
(2m)? 2(kqopopo’)? (r*—m?) 2m int
where
I=— (kyéu_kveu)gufguve:rurw
Xg)\rgpw(")\"lp“'rpnk)a ) (2.8)
T'="ypnsgss,
and

I=— (kue'_kvfn)gupgw(’p"lv—"d"?p) }
’ PV 2.9
F=75‘Ys"}agﬂa- ( ) ( )

The symbol 3 in; refers to summing over the possible
polarization directions of the intermediate meson. This
sum can be carried out easily if we remind ourselves of
a few properties of vector particles. We have in a
covariant normalization

(2.10)

S.S. Schweber, H. A. Bethe, and F. De Hoffmann, Mesons and
Fields (Row, Peterson and Company, Evanston, Illinois, 1955),
Vol. 1, pp. 242, 247, 248.

guwnumy=—1.
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IFurthermore, we have
angvav=0=i7ngyny, (211)

and hence we can write for each of the three polarization
vectors

(s=1,2,3).
In fact, if we make s= 3 the longitudinal vector, we have

77;‘(”:(0, "li(s))y (5217 2)) Zini2=17

v 7o Y
77“(3) = <_’ - _).
m mr
To derive this last result we used Eq. (2.12). Then the
following sum can be evaluated?38

gutruny =0, (2.12)

and

(2.13)

Tuty

3
Z m‘(s)ny(s) p—
(8)=1 m?

— 8w

With the help of these relations, we can sum over the
intermediate spin polarization, obtaining after some
algebra

IT=4{(kXe-q)vo— (kXe-v)qo
IT=—2vys{k-qy-e—e-qk-v}.

V) (2.14)

rv)

Since the residue involves | 7'|2, we now have to calcu-
late it. We have

IT[2_

2 1 C)’]rz 2
_ o)
(2m)t dkqopopy’ (r2—m?)?* \2m
(p- Y+M)1F(p’-v+M)
2M 2M

%Trl]l‘ } (2.15)

The trace can be calculated by standard methods.
It gives

py+M py+M
m |

7 Tr{II‘
2M 2M

8
=—ﬂ;{2(1>o+k)2(k><s~q)2— (k-q—3u?)

X[—qok*+-2qokk - q—k’q*
+k(q-2)*+ (kXeq)?T} (V)
2
=@{2k2(po+k)2(q~s)2
+ (kqo—a-k—3u2+2M2) (kgo—q-k)2}. (PV) (2.16)

The residue Qo in the x=cosf plane can be calculated
from this by the relationship

38 R. P. Feynman, Phys. Rev. 76, 769 (1949), Sec. 10 and
footnote 27.
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b/ steradion

800

x=Cos 8

4 \ | ) 1 1

Fic. 3. Q(x) vs x at 300- and 800-Mev incident photon energies
in the laboratory system, for vector intermediate particles, using
2(9M/2m)2=1. Note the peculiar scale on the ordinate.

Qo= (2m)*qq0(1+qo/q0' ) (1+k/po) !

m?...#? 2
X(l-{————ﬂ,, cosO) |T|2
ZQ()k

cosf =Br~1+ (2gk) 71 (12 — u2)

(2.17)
Thus

Qo= (2m)%e*g*(M/ 2m)*q (4k°qs®)~ (pot-k) 2

X [rhs of Eq. (2.16)]] coss =gs-1+ 20y -1 (m2 -+ (2.18)
This would be the residue for the photoproduction with
polarized photons. Present-day experiments suitable

for extrapolation, however, utilize unpolarized gammas.
Thus we average over £ and obtain

Qo= (2m)~2e’g* (M) 2m)*q (4%°qe*) (pot+k)
XC{LgF— (qok+5 (m*—u?))* ] (pot-k)?

=30 =) +D 15 (m* =) P}, (2.19)

b/ steradion
io* . T i B T

4 x=Cosé

F1c. 4. Q(x) vs x at 300- and 800-Mev incident photon energies
in the laboratory system, for pseudovector intermediate particles,
using g2(M/2m)*=1. Note the peculiar scale on the ordinate.
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F16. 5. Experimental data at 300-Mev incident photon energy in
the laboratory system, as used in the present analysis.

where
C=8, D=—p?/2,

C=2, D=—p2/24-2M>.

)

) (2.20)

This is our final result.
Numerical results are given in Figs. 3 and 4. The
quantity plotted is

me— u?

- _Bvrx> (27")2
k

0w=(1+ -

Xqqo(1+qo/po") 1+k/po) | T|?,

which is independent of 7. Thus the value of the residue
for a given m and at a given photon energy is given by
the value of Q(x) at that photon energy and that value
of x which corresponds to the location of the pole for
the value of m in question. The function Q(x) is given

(2.21)

pb/ steradian
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F1G. 6. Experimental data at 450-Mev incident photon energy in
the laboratory system, as used in the present analysis.
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F1c. 7. Experimental data at 700-Mev incident photon energy in
the laboratory system, as used in the present analysis.

for V and PV, at photon energies of 300 and 800 Mev in
in the laboratory system.

One of the qualitative features of the results is that
the residue is always negative for both V and PV. This
is unlike the spin-0 case where the sign of the residue
can be used to tell the parity of the intermediate
particle. It is clear from the proof?® however, that such
a property is somewhat fortuitous and cannot be
expected to hold for arbitrary spin. In particular, in our
case a term arises which is the same for ¥V and PV and
which, at least for the actual pion-nucleon mass ratio, is
always the dominant one. The other term changes sign
according to whether the intermediate particle has even
or odd parity, much the same way as in the spin-0 case.

We see that the angular dependence of Q(x) is peaked
around 90° for the V case, and around 180° for the PV
case. In differential cross section this corresponds to a
strong peak for the V' case somewhere in the middle of

wb/steradian

5 T T T T T T

8 Reference 46
® Reference 49
O Reference 48
{ O Reference 47
| Reference 45

) L 1 1 ! 1 1 1 1
o° 20° 40° 60° 80° 100° 120° 140° 160°
8

FiG. 8. Experimental data at 800-Mev incident photon energy in
the laboratory system, as used in the present analysis.

3 M. J. Moravcsik, in Dispersion Relations (Oliver and Boyd,
Ltd., Edinburgh, 1961).
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F16. 9. Residue at 300-Mev as determined from a fourth-order
extrapolation, as a function of the position wxy of the pole in the
x plane. The values of p? are also shown.

the angular region and a relatively flat angular distribu-
tion for the PV case. This qualitative feature resembles
the spin-0 case. Since, however, a large term of the type
under consideration would also have large cross terms,
the above features would not necessarily be patently
present in the actual experimental differential cross sec-
tion even if the intermediate spin-1 meson contributed
significantly. In fact, this is the reason why it is not

b/ steradian

T 1

Order

- 40
— a2 o

Fic. 10. Residue at 300-Mev at a pole position of xo=1.15as a
function of the order of the extrapolating polynomial. The values
of p* are also given.
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Fic. 11. Residue at 450 Mev as determined from a third-order
extrapolation, as a function of the position xo of the pole in the
« plane. The values of p? are also given.

sufficient to glance at the qualitative features of angular
distributions but rather one has to resort to extrapo-
lation procedures to detect the presence of the spin-1
meson current term.

It is to be noted that the residue increases as the
distance of the pole increases, and in fact the magnitude
of the residue is very roughly (within a factor of 3 or so)
proportional to its distance from the edge of the physical

pb/ steradian
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F16. 12. Residue at 450 Mev at a pole position of xp=1.15, as a
function of the order of the extrapolating polynomial. The values
of p? are also given.
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pb/ steradian
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Frc. 13. Residue at 700 Mev as determined from the 4th- (solid
line) and 3rd- (broken line) order polynomials, as a function of the
position xo of the pole in the x plane. The values of p? are also given.

region. Using the electrostatic analogy for dispersion
relations one would expect, therefore, that the effect of
a pole, if far enough from the physical region, would be
about the same for any combination of strength and
distance which leaves the ratio of these two quantities
constant. Thus we can conclude that if we could detect
an effect in the differential cross section the product
22(M/2m)? deduced from the effect would be insensitive

pb/steradian

2
= [3
R
o] " 2 3 2 5t 3 > 8‘ Order
-
- 2
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—5.._
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- 8 —13
...gL_
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F1c. 14. Residue at 700 Mev at a pole position xo=1.15, as a
function of the order of the extrapolating polynomial. The values
of p? are also given.
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to uncertainties in our knowledge of the mass of the
intermediate particle.

Itis also of interest that the magnitude of the residue,
while increasing indefinitely with energy, is not a strong
function of energy, particularly not for the V case.

III. ANALYSIS OF EXPERIMENTS

Experimental information on neutral pion photo-
production is relatively scanty compared to charged
photopions. Nevertheless, a considerable body of infor-
mation has been building up on the differential cross
section anywhere between 180 and 985 Mev.

For reasons outlined in Sec. I, the extrapolation has
been carried out at four different energies. These were
selected so that many data points should be available
and also so that high energies should be well represented.
The reason for the latter is that the higher the energy,
the closer the pole is to the physical region for a given
«® mass. One might think that this will be counter-
balanced by the increased number of powers of ¥ needed
to describe the angular variation. This, however, need
not be necessarily so. In the region between 500 and
800 Mev we know that the main contribution beside
S and P waves is the second resonance state which is in
a J=% state and hence does not increase the power of
cosine beyond that needed for .S and P waves Thus one
might hope that the extrapolation at 800 Mev, ceteris
paribus, would be actually easier than, say, at 400 Mev.
This assumption was to some extent verified by the
results. For a discussion of this question, see also Sec. IV.

The four energies chosen were 300, 450, 700, and
800 Mev. The data were taken from references 40-49.
They are shown in Figs. 5-8. The extrapolation was
carried out at each energy to x=1.05, 1.10, - - -, 1.50. It
was found that generally the error in the extrapolation
of present-day data got to be too large if the procedure
was carried beyond x=1.50. Of course, a given value
of x corresponds to different values of the «” mass at
different energies. For each position of the presumed
pole the extrapolation was carried out using poly-
nomials of the 1st, 2nd, - - -, 10th order and the standard
statistical methods® were used to select the “right”
order. It turned out to be in all cases the 3rd, 4th, or Sth
order, in general agreement with expectations based on

4Y. Goldschmidt-Clermont, L. S. Osborne, and M. Scott, Phys.
Rev. 97, 188 (1955).

4 R. L. Walker, D. C. Oakley, and A. V. Tollestrup, Phys. Rev.
97, 1279 (1955).

2D, C. Oakley and R. L. Walker, Phys. Rev. 97, 1283 (1955).

4 W, S. MacDonald, V. Z. Peterson, and D. R. Corson, Phys.
Rev. 107, 577 (1957).

4 J W. DeWire, H. E. Jackson, and R. Littauer, Phys. Rev.
110, 1208 (1958).

45 P, C. Stein and K. C. Rogers, Phys. Rev. 110, 1209 (1958).

6 J. 1. Vette, Phys. Rev. 111, 622 (1958).

47 H. H. Bingham and A. B. Clegg, Phys. Rev. 112, 2053 (1958).

48 R, M. Worlock, Phys. Rev. 117, 537 (1960).
( 49 K. Berkelman and J. A. Waggoner, Phys. Rev. 117, 1364

1960).

% See, e.g., P. Cziffra and M. J. Moravcsik, University of
California Radiation Laboratory Report UCRL-8523 (Rev.), 1959
(unpublished).
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S, P, Dy states being dominant at the energies under
investigation. The residues as functions of the location
of the pole are shown in Figs. 9, 11, 13, and 15, while
the residues as functions of the order of the polynomial
are shown in Figs. 10, 12, 14, and 16. In all these figures
the corresponding p? (which is x? divided by the number
of degrees of freedom) is also given.

The selection of the proper order of the polynomial
could be carried out with fair confidence. At 300 Mev it
is the 4th and 5th order, and the prediction of the two
orders agree quite well. At 450 Mev the 3rd order is the
best, but the predictions of the 4th and 5th orders also
give the same result within errors. At 700 Mev the
3rd and 4th orders give the best fits, in agreement with
each other (see Fig. 14). At 800 Mev the 4th order is
singled out, although there the plateau in p* as a function
of the order is a bit bumpy (see Fig. 16). In general,
therefore, there are no serious ambiguities in selecting
the proper order.

One might remark in this connection that if the
differential cross section itself demands a polynomial of
order #, one cannot necessarily conclude that the order

of polynomial giving the best fit to Q(x) will be n+2.

Firstly, the fitting of Q(x) by a polynomial corresponds
to a fitting of the differential cross section itself by a
nonpolynomial, so that strictly speaking no direct
comparison can be made. Secondly, the pole term might
account for some of the higher powers of x required in
the simple polynomial fit of the cross section. Thus, the
physical arguments concerning the expected order of
the best fitting polynomial are only approximate and
have to be supplemented by statistical criteria.

Once the problem of selecting the proper order is
taken care of, one would like to (a) investigate if the
residues are significantly different from zero, and (b) if
so, select the right location of the pole and thereby
determine the mass of the o’

At 300 Mev one cannot say that the residue is
significantly nonzero. The slight tendency toward a
negative residue is not convincing. At 450 Mev, on the
other hand, a fairly definite positive residue is evident.
The same is true to a lesser degree at 700 Mev. At 800
Mev the residue is zero within error. One would conclude
therefore that the residue is zero or perhaps positive, but
that no very definite conclusions can be drawn.

The indecisiveness of the conclusion from present
data is underlined if one looks at the p? as a function of
location. Firstly, the absolute values of p?, with one
exception, is significantly larger than unity, probably
indicating that the data leave something to be desired.
Furthermore, one would hope that if a pole really
existed, one would reach a minimum in p? at its location.
Such minimum, however, is either absent (300 and
800 Mev) or is very shallow (450 and 700 Mev) and
occurs at distances corresponding to m=1.5u and
m=2.3 u, respectively. The former is too low compared
with expectations, while the latter is the right order of
magnitude. The sign of the residue, however, is opposite
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F1c. 15. Residue at 800 Mev, as determined from a 4th-order
extrapolation, as a function of the position x, of the pole in the x
plane. The values of p? are also shown.

to what we obtained in Sec. II, no matter whether «° is
V and PV. It might be mentioned, of course, that if the
singularity is due not to an ° particle but to another
model of pion-pion resonance, the sign of the residue
need not necessarily be negative. One might also note
that, as we argued before, if both the strength and the
position of the pole is treated as unknown, one should
expect to find a range of locations in which the strength
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F16. 16. Residue at 800 Mev at a pole position of xo=1.15, as a
function of the order of the extrapolating polynomial. The values
of p? are also given.
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is correlated with distance, and the couplets within this
range should give approximately equally good fits.
Hence, perhaps, the shallowness of the p? curves is no
surprise. Finally it is also possible that, especially for
the two lower energies, the location of the pole is
beyond x=1.50. Nevertheless, the evidence presented
here must be conservatively described as showing
zero residue with a slight possibility of a positive residue.

Quantitatively we might summarize our results by
saying that the 300-Mev data limit the order of mag-
nitude of g2(9M/2m)? to be less than 0.03 to 0.1 for
the vector case and 0.13 to 0.5 for the PV case, while
the 700- and 800-Mev data impose the limits of 0.003
to 0.014 for the V case and 0.01 to 0.05 for the PV case.
The ranges given here correspond to the various
extrapolation distances giving slightly different upper
limits.

Since the present experiments are indecisive, it is
interesting to investigate the experimental requirements
for a more accurate determination of the residue. This is
done in the next section.

1V. SPECIFICATIONS OF EXPERIMENTAL
REQUIREMENTS

In view of the tentative nature of the above results
and in view of the increasing use of extrapolation
techniques, it seemed advisable to carry out a detailed
investigation of the relationship between the error in
the residue, the number and distribution of experimental
points, and the magnitude of the error in the extra-
polated point. The magnitude of the measured differen-
tial cross sections themselves do not enter the problem.

10”

10°

10°

—— Situation I
—— Situation I

105 ] 125 135 145 155 165 175 185 195

Xo

Fic. 17. Ratio of the error in the residue to the error in the
experimental points, as a function of the position %o of the pole in
the « plane for experimental situations I and IT described in the
text. The numbers 1, - - -, 10 on the right refer to the order of the
extrapolating polynomials.
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Four hypothetical experimental situations have been
considered. In situation I, experimental data are as-
sumed to have been taken at every 5°, from 0° to 180°.
In situations II and IIT the data are assumed to have
been taken also in the whole angular interval, but every
10° and 15°, respectively. Finally, in situation IV it is
assumed that we have data every 10° from 0° to 60°
and every 15° thereafter up to 180°.

In all these cases absolute values of the errors in all
the individual points were assumed to be equal. Since
doubling the size of the errors on the individual points
simply doubles the error in the residue, only the ratio of
the error on the residue to the error on the individual
points is of interest.

The above ratio is given for each of the four situations
as a function of the location of the singularity. It might
be mentioned in this connection that equal errors in the
experimental data do not mean equal errors in Q(x).
The extrapolations have been performed by polynomials
of 1st to 10th order. The results are shown in Figs. 17 to
19. They are summarized as follows.

The interpolation and extrapolation regions behave
quite differently. In the figures only the boundary of the
two regions is shown, but even this indicates that the
error in the interpolation region is strongly dependent
on the number of points, and that the variation with the
order of the polynomial is much smaller for the many-
point case than for the situations with fewer pieces
of data.

The extrapolation region is quite different. It can be
seen that after a short transition region (very small
extrapolation distances) the pattern for all four situa-
tions investigated is the same except for a rather small
over-all up-or-down displacement of the curves. This is
an important property since it means that for any other
combination of data points in the same angular range
the error patterns in the extrapolation region can be
established by computing only one point and normaliz-
ing the common set of curves against it.

We see that, ceteris paribus, the error depends very
weakly on the number of data points. In particular,
tripling the number of data decreases the error by less
than a factor of two (compare situations I and IIT). We
also see that the data points at the close end of the
physical region are the most important. This is borne
out by the errors in situations IT and IV being almost
completely identical.

On the other hand, the dependence on the distance
of extrapolation is most critical, especially for small
distances and high-order polynomials. Thus, e.g., for a
4th-order polynomial, the change of the position of the
pole from 1.1 to 1.2 produces an increase in error by a
factor of six.

The dependence on the order of the polynomial is
uniform in the sense that at a given distance the error
increases from order to order always by about the same
factor. This factor increases as the distance increases.

The practical question often asked is whether it is
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F1c. 18. Ratio of the error in the residue to the error in the
experimental points, as a function of the position x, of the pole in
the x plane for experimental situation III described in the text.
The numbers 1, ---, 10 on the right refer to the order of the
extrapolating polynomials.

more advantageous to do the experiment at high
energies where the order might be large but the distance
small, or at lower energies where the converse is true.
In most particular situations one can make a decision
now on the basis of the figures given here, but one can
even state in general that it is very likely that the higher
energy experiment will be preferable even at the cost of
one or two additional parameters to be determined.

In any case, one of the important requirements is to
take measurements at the close end of the physical
region so as to decrease the extrapolation distance. For
instance, if the pole is at 1.4, and a 4th-order extra-
polation is needed, but the smallest angle point is at
25° instead of at 0°, the error is increased by a factor of
two. Unfortunately, small angle differential cross section
measurements often run into considerable experimental
difficulties.

In view of these considerations as well as the results
of the extrapolation from present data, it is suggested
that an experiment be carried out around 800 Mev
measuring the differential cross section of neutral pion
photoproduction from 10° to 160° every 10°, with a
relative error on the data points of 0.2 ub/sr. Such an
experiment, if it confirms the choice of the 4th-order
polynomial for the extrapolation, would reduce the error
in the residue, compared to that given in this paper, by
a factor of 3 to 5 depending on the precise location of the
conjectured pole. It is needless to say that such a set of
measurements would have other interesting uses also,
since it would lie between the second and third-nucleon
resonances.

If the above requirements turn out to be too stringent,
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the best compromise seems to be to thin out the data
points around 90° to 120° (without, however, eliminat-
ing the endpoint at 160°) or measure them less ac-
curately. If only a less ambitious experimental program
is feasible, the 10° interval could be changed to 15° with
a relatively small increase in the error on the residue.

It might be mentioned that in our case the high
energy for the experiment is also suggested by the fact
that the calculated residue itself, for given g2(9M/2m)?,
increases with energy and hence a negative result with
a given error places stricter upper limits on g*(9/2m)?
at higher energies than it would at a lower.

It is perhaps needless to add that the results in Figs.
17 to 19 are in no way restricted to the particular
reaction which is the topic of this paper but can be used
in any extrapolation of angular distributions. In fact,
the qualitative conclusions can also be used for the
Chew-Low type®! extrapolation which is also gaining in
popularity.52.5

Note added in proof. Since this paper was submitted
for publication, experimental evidence has accumulated
for the existence of two vector mesons with masses
around 5.3 and 5.6 pion masses. [ For a recent summary
of the status of vector mesons, see J. J. Sakurai, Phys.
Rev. Letters 7, 355 (1961).7] At the lower energies con-
sidered in this paper, the pole corresponding to such a
heavy intermediate meson would be so far from the
physical region that its effect would likely be masked
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Frc. 19. Ratio of the error in the residue to the error in the
experimental points, as a function of the position w, of the pole in
the x plane for experimental situation IV described in the text.
The numbers 1, ---, 10 on the right refer to the order of the
extrapolating polynomials.

51 G. F. Chew and F. E. Low, Phys. Rev. 113, 6140 (1959).

52W. P. Swanson, D. C. Gates, T. L. Jenkins, and R. W.
Kenney, Phys. Rev. Letters 5, 339 (1960).

5 J. A. Anderson, Vo X. Bang, P. G. Burke, D. D. Carmony,
and N. Schmitz, Phys. Rev. Letters 6, 365 (1961).
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by the nucleon pole (see Table I). At 800 Mev, however,
this might not be the case, and the more precise experi-
ment suggested in this paper, which would allow an
extrapolation beyond 1.5, might show the effect.
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Dispersion relations for fixed momentum transfer are applied to the problem of the Yy*, and it is shown
that an s-wave resonance in 7-A scattering does not appreciably influence the position of the p-wave 7-A

resonance predicted by global symmetry.

HE existence of the ¥;* resonance now seems well
established.! However, due to the effect of Bose
statistics on the final two pions in the reaction

K~p— Vi*47m— Adat47,

the spin state of the ¥'1*is still an open question.2 Theo-
retically, global symmetry® suggests that it should be
p3, while the calculation by Dalitz based of the s-wave
K-N scattering lengths shows that s; is an equally
likely assignment.

The purpose of the present letter is to pursue a
remark by Dalitz* that, if the resonance should turn
out to be s, then perhaps the coupling of the K-N
system to the =~V system might have shifted the reso-
nance predicted by global symmetry to an extreme
energy range, or that the coupling might destroy the
resonance entirely. In this respect, two mechanisms for
destroying global symmetry come to mind. First, there
could exist a relatively strong nonglobally symmetric
p-wave K interaction (e.g., due to a K meson-nucleon
intermediate state); or second, recoil effects might
couple a strong s-wave m-A interaction into the globally-
symmetric p-wave equations. Concerning the first
mechanism, there does not appear to be a very strong
p-wave interaction in the reaction K4+N— 7+A5
However, since virtual effects may be expected to enter,

* Supported in part by the National Science Foundation.
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M. H. Alston, L. W. Alvarez, P. Eberhard, M. L. Good,
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3D. Amati, B. Vitale, and A. Stanghellini, Phys. Rev. Letters
5, 524 (1960).

4R. H. Dalitz, Phys. Rev. Letters 6, 239 (1961).
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this possibility is not really precluded. However, there
does appear an a priori reason why the second mecha-
nism might be significant. Chew et al.% have shown in
m-N scattering that the resonating (3,3) p-wave
produces a striking contribution to s-wave equations
when recoil is taken into account. It is conceivable,
therefore, that a corresponding effect might appear in
the globally symmetric p-wave equations if the Dalitz
s-wave resonance does in fact exist.

In this note we shall examine the latter possibility
without investigating the effects of the first mechanism.
A s-wave resonance is assumed for pion-hyperon scat-
tering; it will be shown, however, that such a s-wave
resonance has a negligible influence on the position of
the p; resonance predicted by global symmetry.

As a first attempt, we use unsubtracted dispersion
relations with a suitable cutoff. The technique used to
couple the s-wave into the p-wave equations is that of
Chew et al.,% and the notation used is identical with
theirs. We write the basic dispersion relations for m-A
scattering as
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