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Total (z*,p) and (p,p) cross sections in the momentum range
1.4 to 4.0 Bev/c are presented. These measurements, with an
accuracy of approximately 29, were made at the Berkeley
Bevatron by using counter techniques. Pions were distinguished
from protons by means of a gas-filled Cerenkov counter. The
(z+,p) total cross section was found to be almost constant above
2.0 Bev/c at a value near 29 mb. The (p,p) cross section decreases
gradually from 47.5 mb to 41.7 mb over the momentum range
covered.

Transmission measurements of 7+-nucleus and p-nucleus cross
sections in both good and poor geometry were made at 3.0 Bev/c.

I. INTRODUCTION

HE pion-nucleon total cross section is well known
for pion momenta below approximately 2.0
Bev/c, but little accurate data are available at higher
momenta, especially for n*-p scattering. We present
here the results of a measurement of the total =*-p
cross section in the momentum range 1.4 to 4.0 Bev/c.!
Total p-p cross sections were measured simultaneously
in the same momentum range. These measurements,
with accuracy of approximately 29, were made at the
Berkeley Bevatron, by using counter techniques, and
are part of an experimental program whose objective
is a detailed knowledge of the pion-nucleon interaction
above 500 Mev.

It was also possible in this experiment to measure
cross sections for several heavy nuclei with the same
equipment used to measure the total #+-p and p-p cross
sections. This was done at 3.0 Bev/c for Be, C, Al, and
Cu with various geometries. The results are used to
determine best-fit values of the imaginary part of the
nuclear potential, which are then compared with the
predictions of the optical model.

In contrast to most previous attempts to make fits
of this type to high-energy scattering data, those
presented here were made by using an essentially exact
solution of the wave equation for a complex potential
well with a diffuse edge. This was possible through the
use of a high-speed electronic computer (the IBM 704).

* This work was done under the auspices of the U. S. Atomic
Energy Commission.

T Submitted by one of the authors (M. J. L.) in partial satis-
faction of the requirements for the degree of Doctor of Philosophy
at the University of California, Berkeley, California.

1 The total #7-p and p-p cross sections presented here were
previously reported in Phys. Rev. Letters 3, 568 (1959). The
values given here are slightly different because of a more thorough
analysis of the data and a correction for electron contamination
in the pion beam that was previously neglected. The =*-p total
cross sections at lower energies were measured with a different
experimental arrangement and are presented in the preceding
article [T. J. Devlin et al., Phys. Rev. 125, 690 (1962)].

The results are compared with the predictions of the optical
model. In contrast to most previous work at high energies, an
essentially exact solution of the wave equation for a potential
well with a diffuse edge was used. The values of the imaginary
part of the optical potential that best fit the experimental data
are in good agreement with the predicted values. No strong
conclusion regarding the real part of the potential was possible.
Absorption and total elastic scattering cross sections for Be, C,
Al,and Cu are presented. The total elastic scattering cross sections
from this experiment disagree with Wikner’s for = -nucleus
scattering.

II. EXPERIMENTAL METHOD AND EQUIPMENT
A. General Description of Method

In these measurements, a beam consisting primarily
of a mixture of positive pions and protons of well-
defined momentum was collimated by means of a
counter telescope. Pions were separated from protons
electronically by use of a gas-filled Cerenkov counter.
This allowed simultaneous measurements of pion and
proton cross sections. After passing through the
monitor telescope, the beam was allowed to strike an
absorber. The fraction of beam transmitted was deter-
mined by means of a counter placed after the absorber.
The apparent cross section is a function of 6, the half-
angle subtended by the edge of this transmission
counter. In the idealized experiment we are discussing,
the apparent cross section o (6) is given by

o (6)=— (1/nx) In(N/No), ¢y

where N/N, is the fraction of beam transmitted for a
particular value of 4, and #x is the number of nuclei

o (6)

27 (1- cos O

F1c. 1. Variation of cross section with
subtended angle (schematic).
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I*16. 2. Experimental arrangement. Magnetic shielding has been omitted for clarity.

per cm? as seen by the incoming beam. The expected
variation of ¢(f) with the solid angle subtended by the
transmission counter is depicted in Fig. 1. At very small
angles the curve rises sharply because of Coulomb
scattering (portion A B of the curve). As 6 is increased,
a point is reached where most of the Coulomb scattering
is contained, but the majority of particles undergoing
nuclear interactions are scattered out of the cone sub-
tended by the detector (point B). It is instructive to
note here that the slope of such a plot of ¢(#) vs solid
angle in the region BCD is (do/dQ)e., the differential
elastic cross section.? At high energies the elastic
scattering is strongly peaked forward, with an angular
distribution characteristic of diffraction scattering.
Most of the elastic scattering is therefore confined to
angles < (kR)™., where & is the wave number of the
incident particle, and R is the radius of the nucleus.
Thus, for 2>(kR)™, the curve for ¢(f) is almost flat
and approximately equal to the inelastic cross section
(region DE in Fig. 1).

Measurements of o(f) in this experiment were made
over this entire range of angles for beryllium, carbon,
aluminum, and copper absorbers, with 3.0-Bev /¢ pions
and protons. For hydrogen, measurements were made
only in the region BC in Fig. 1 because of the large
angles involved. This part of the curve can be extra-
polated to §=0 to give the total nuclear cross section.

The technique used for the hydrogen and heavy-
nuclei measurements were basically the same. Each
measurement consisted of a cycle of runs with target
full (or target in), preceded and followed by target-
empty runs. A complete cycle generally lasted about 4
hr. Successive runs were compared for reproducibility
to check equipment operation. Frequent checks were
also made with a test pulser.

2 There is also a contribution to the slope due to charged
secondary particles produced in inelastic collisions. As 6 is in-

creased, more of these strike the detector and the apparent cross
section decreases.

B. Beam Geometry

The over-all experimental arrangement is shown in
Fig. 2. It is unusual in that the apparatus was set up
on the inside of the Bevatron ring in order to obtain a
positive pion beam of as high momentum as possible.
The production of high-energy particles at the Bevatron
target is strongly peaked forward so that it is necessary
to take off a high-energy beam at a small angle from
the circulating proton beam. The positive secondary
particles are then bent inward toward the center of the
Bevatron by the magnetic field. In this experiment, the
takeoff angles ranged from about 4-10° at 1.4 Bev/c to
—15° at 4.0 Bev/c (positive angles measured outward
away from the center of the Bevatron).

The orbits of the particles in the Bevatron were
determined through an IBM-650 computer program,
together with measured magnetic field profiles. At
each momentum, rays that connect the target and
point P in Fig. 2 were found, essentially by a process
of trial and error. The currents required in the
12X 60-in. bending magnet to deflect these ‘“rays”
through the proper angles were then determined by
wire-orbit measurements.

Concrete shielding, only some of which is shown in
Fig. 2, was used to minimize background in the counters.
Where platform loading limitations prohibited the use
of concrete shielding, paraffin blocks were used. Ex-
tensive magnetic shielding (not shown in Fig. 2)
reduced the stray magnetic field along the beam line
to a negligible value. This stray field without magnetic
shielding varied from a few gauss to a few hundred
gauss, depending on the proximity to the Bevatron
magnet yoke.

Immediately following the 12X 60-in. magnet was
an 8-in.-bore doublet quadrupole whose main function
was to increase the solid angle accepted by the counter
telescope. Following the quadrupole was an 8-ft iron
collimator with a 2-in. bore. This stopped most of the
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beam particles that missed the first monitor counter
(M;) and also provided magnetic shielding for that
part of the beam line closest to the Bevatron magnet.
A second bending magnet with an 18X 36-in. pole tip
was used to bend the beam away from the Bevatron
structure. This considerably simplified the magnetic
shielding problem along the latter part of the beam line.

The uncertainty in the beam momentum is estimated
to be about £29%,. The momentum spread in the beam
was +2.59, about the central momentum. Most of
this spread resulted from the change in the Bevatron’s
magnetic field during the time the proton beam was
spilled onto the target (150 msec).

C. Counter System

The monitor telescope consisted of scintillation
counters M, M., and M ; and a gas Cerenkov counter
C. All scintillators consisted of machined disks of
polystyrene with 3%, terphenyl. Counters M and M,
were each 1.5 in. in diameter; M ; was 1 in. in diameter.
The total length of the monitor telescope was 16 ft.
Construction and operation of the gas Cerenkov
counter have been described elsewhere.? In this experi-
ment it was filled with sulfur hexafluoride to a pressure
of 10 atm (absolute). This gave a threshold velocity of
0.992 ¢ and allowed a complete separation of pions and
protons over the energy range of this experiment. A
quadrupole coincidence in M, M,, C, and M3 was
required for a pion, and a triple coincidence between
M, M,, and M;, with C in anticoincidence, was re-
quired for a proton count.

Absorbers were placed in the beam behind M. The
fraction of the beam transmitted was measured at
three solid angles simultaneously by scintillation
counters .Sy, .S2, and .S3. An additional coincidence in
Sy was required to keep accidentals to a very low rate.
Counter .Sy and the transmission counters .Sy, Ss, and
S; consisted of disks of plastic scintillator 3-in. thick,
viewed edgewise through lucite light pipes by RCA
type 6810A phototubes. The phototubes were carefully
shielded against stray magnetic fields. These counters
ranged in diameter from 4.5 to 12 in. Each was tested
for uniformity of response over its entire area with a
beta source. By suitable treatment of the internal
reflecting surfaces of the counters, it was possible to
reduce the variations in pulse height to less than 15%,
between different parts of the counter. To ensure an
efficiency near 1009, all counters were operated at
voltages such that coincident pulses were about twice
as large as required to drive the coincidence circuits to
saturation.

D. Electronics

Conventional electronic techniques were employed.
The coincidence circuits were of the type described by

3J. H. Atkinson and V. Perez-Mendez, Rev. Sci. Instr. 30, 865
(1959).
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Wenzel*; with the clipping lines used, the resolving
time was about 6X 1079 sec. The output of the monitor
coincidence circuits was used to drive a discriminator-
amplifier that provided a shaped pulse used as an input
to a second coincidence circuit where a coincidence with
Soand Sy (for example) was required. Hewlett-Packard
type 520A prescalers followed by conventional 1000
scalers were employed. These prescalers are capable of
counting up to 107 pulses/sec. Our instantaneous
counting rates ranged from 10%/sec to 10%/sec, de-
pending on the beam energy.

Several extra coincidence units and scalers were used
to monitor various types of accidentals. Generally
these were quite low. In particular, the accidental rate
in the Cerenkov counter never exceeded 29, of the
counting rate for pions.

E. Hydrogen Target and Other Absorbers Used

The liquid hydrogen target used consisted of a 48-in.-
long Mylar vessel 4-in. in diameter. Liquid hydrogen
was supplied by gravity feed from a large reservoir
directly above the target vessel. Both reservoir and
target vessel were surrounded by a heat shield at liquid
nitrogen temperature and enclosed in a vacuum. The
construction of the target is described in detail in
reference 5.

The density of liquid hydrogen at its normal boiling
point is 0.0710 g/cm?, from data in reference 6. From
this should be subtracted the density of hydrogen gas
in the empty target. The temperature of the gas was
assumed to be that of the liquid, 20.3°K. The density
of hydrogen gas at this temperature is 0.0013 g/cm?.6

The other absorbers used were machined blocks of
beryllium, graphite, aluminum, and copper, whose
purity exceeded 99%,. The thicknesses of the absorbers
(listed in Table II) were chosen so that multiple
Coulomb scattering corrections would be small for the
smallest angles at which measurements were planned.

III. TREATMENT OF DATA: CORRECTIONS

A. Calculation of Cross Sections and
Statistical Errors

The apparent cross section o (f) for a given geometry
was calculated from

o=—(1/nx) In[(S/M)r/(S/M)£], 2)

where (S/M)r and (S/M)g represent the ratios of
surviving pions (or protons) to monitor counts with
target full or target empty, respectively. The numbers

4 William A. Wenzel, University of California Radiation
Laboratory Report UCRL-8000, 1957 (unpublished). The
Lawrence Radiation Laboratory Counting Handbook, UCRL-
3307 Rev., describes all the counting equipment used in this
experiment.

5D. D. Newhart, V. Perez-Mendez, and W. L. Pope, Lawrence
Radiation Laboratory Report UCRL-8857, 1959 (unpublished).

8 H. W. Woolley, R. B. Scott, and F. G. Brickwedde, J. Re-
search Nat. Bur. Standards 41, 379 (1948).
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of monitor counts and of surviving pions both were
corrected for accidentals where necessary. As mentioned
previously, these corrections were quite small.

The standard deviation in ¢ is given by

Ao= (1/nx)[1/Sr—1/Mp+1/Sg—1/MzP. (3)

The statistical errors in the cross sections were generally
approximately 19,. Statistical analysis of the repro-
ducibility of repeated runs showed a small fluctuation
outside of that expected from counting statistics. The
probable error in a single measurement was found to
be +1.49% in addition to the statistical error.

B. Corrections for Multiple Coulomb Scattering

When the angle subtended by the transmission
counter is made small, the observed cross sections rise
sharply because of the loss of particles by multiple
Coulomb scattering in the absorber. Where necessary,
corrections were applied to the data by using the method
described by Sternheimer.” He assumes that the
Coulomb scattering has a Gaussian distribution in
angle with an rms space angle

erms= (ES/ﬁPC) (L/Lrad)%, (4)

where Eg=21 Mev, p and B¢ are the momentum and
velocity, respectively, and L/L.q is the thickness of
the absorber in radiation lengths. In attempting to
correct the experimental points most affected by
Coulomb scattering, we found that if this value of
0:ms was used the corrections were too large—the
corrected values of o(f) fell well below the trend
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F1G. 3. Cerenkov counter index-of-refraction curve
at 1.8 Bev/c.

7 R. M. Sternheimer, Rev. Sci. Instr. 25, 1070 (1954).
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established by the points at large § where no corrections
were necessary. We found that the value of 6;ns from
Eq. (4) had to be reduced by 309, to obtain good
over-all agreement.?

Even with this modification the results were not
always completely satisfactory, so that these corrections
were assigned an error of +259%, or more, depending
on how well the beam distribution at the transmission
counters was known. These corrections were important
only in the low-energy hydrogen data when the solid
angle subtended by the transmission counter was small.
It was found that %o corrections were necessary to the
heavy-element data at any angles at which measure-
ments were made. Furthermore, the effect of the large
error assigned to the Coulomb scattering corrections to
the hydrogen data was to minimize the statistical
weight of the small-angle points, so that the latter had
little effect on the extrapolated total cross sections (see
next Section).

C. Extrapolation of the Hydrogen Data to
Obtain the Total Cross Section

For hydrogen, only the total cross sections for nuclear
scattering were to be measured. To obtain an accurate
value it is desirable that the solid angle subtended by
the transmission counter be as small as possible, so
that nearly all the particles undergoing nuclear scat-
tering are removed from the beam. An effective lower
limit is set by multiple Coulomb scattering at small
angles, however; so in practice a small correction must
be applied to the measured cross sections because of
the nonzero solid angle subtended by the counter. This
was done by taking measurements at several solid
angles and extrapolating the measured cross sections
to zero solid angle. A linear dependence on solid angle
was assumed. From the discussion in Sec. II-A, the
slope of the extrapolation is (do/dQ)e plus a contri-
bution due to the detection of charged secondaries.
Neither term is expected to vary significantly over the
range of angles involved (0° to 2°).

Data were taken at six solid angles ranging from
0.6X10~% to 4.2X 1073 sr as measured from the center
of the hydrogen. After corrections for multiple Coulomb
scattering were made, no significant deviation from
the expected linear dependence on solid angle was
observed. The extrapolation yielded total cross sections
about 29, higher than the experimental points at
intermediate solid angles.

D. Contamination in the Beam
1. Contamination in the Pion Beam

The gas Cerenkov counter provided a very useful
means for determining muon and electron contami-
8W. H. Barkas and A. H. Rosenfeld, Lawrence Radiation
Laboratory Report UCRL-8030-Rev, 1961, (unpublished) sug-

gest that the rms Coulomb scattering angle given by Eq. (4)
should be reduced by 209, to agree with the Moliere theory.
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nation in the beam. If the gas pressure in the counter
is raised gradually from a low value, first the electrons
begin to count, then the muons, and later the pions.
In this case, because of the small difference in velocities,
it was possible to separate the muons and pions only
at the lower energies. Figure 3 shows the ratio of
M M.CM; coincidences to M. M,M3 coincidences
plotted against the index of refraction of the gas in
the counter, for a beam momentum of 1.8 Bev/c. The
threshold for 1.8-Bev/¢ muons and pions is also in-
dicated. It is apparent that the muon contamination
is small, probably less than 19 of the number of pions.
The tail on the curve at low indices of refraction is
presumably due to electrons.

a. Calculation of the muon contamination. A curve
such as in Fig. 3 indicates only the fraction of muons
formed before the last bending magnet and thus having
approximately the same momentum as the pions.
Muons formed after the last bending magnet have a
large spread in momentum and so do not cause a sharp
rise in the index-of-refraction curve. For this reason,
the total muon contamination in the beam at each
energy was determined by calculation. To do this, the
beam line was broken up into segments. The proba-
bility that a pion will decay between points X; and X,
is given by

N(X1)—DN(X3)=No[exp(—X1/N)—exp(—X2/N)], (5)

where A=yc7 is the mean life in centimeters. It was
then necessary to determine the probability that the
muon would come off in such a direction that it would
pass through the counter system. The contributions of
all segments were then summed to get the fraction of
muons in the beam.

Because of the complication caused by the Bevatron’s
magnetic field and the quadrupole, it was possible to
calculate the contribution from the region before the
last bending magnet only approximately. However, it
was found that the total yield from this region was less
than 0.2%. This low-yield figure is supported by the
Cerenkov counter curve.

The calculation for the region following the last
bending magnet was much simpler. Because there is
no momentum selection, it is only necessary to calculate
the solid angle subtended by the “limiting aperture”
of the system (either M ; or the transmission counter).
This solid angle is then transformed into the c.m.
system of the decaying pion. Since the decay is isotropic
in this system, the probability of the muons’ passing
through the counters is just 1/4x times this solid angle.
The only important simplification in these calculations
was to neglect the finite diameter of the beam. The
maximum correction in the pion cross sections was 29,
which justifies such a simplification.

b. Calculation of the electron contamination. Another
contaminant in the pion beam at low energies was
electrons. From Fig. 3 we can estimate their number
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at about 3%, of the number of pions at 1.8 Bev/c, the
energy at which the Cerenkov counter pressure curve
was taken. No measurements were made at other
momenta because of limitations on running time.

The major source of these electrons is the decay of
7% mesons produced in the Bevatron target. These
mesons decay almost immediately into two gamma rays,
either of which can in turn produce an electron pair in
the target material. The probability of producing a
pair is roughly proportional to the available path length
L in the target material.

It was possible to calculate the electron contami-
nation in the beam at each momentum by using theo-
retical estimates of the yield of pions produced in the
Bevatron target.® Briefly, the theoretical curves for =°
production were used to estimate the spectrum of
high-energy gamma rays. This was in turn used to
calculate the electron yield from pair production
relative to that of positive pions. The average path
length L was calculated by using theoretical curves
for the distribution of the proton flux striking the
target.l® The contribution of Dalitz pairs, estimated
to be several percent of the total electron yield, was
neglected.

The calculated values of the electron contamination
ranged from 0 to 3% of the pion flux. For the conditions
under which the Cerenkov counter curve (Fig. 3) was
taken, the electron contamination was calculated to be
2.7%, in good agreement with the value of 3%, esti-
mated from Fig. 3. An uncertainty of 509, was
assigned to the calculated values.

2. Contamination in the Proton Beam

Any beam particle that did not count in the Cerenkov
counter was classed as a “proton.” This would include
K+ mesons and heavier particles. Data of Burrowes
et al. at 1.75 Bev/c indicate a yield of approximately
six K+ mesons per 10* protons incident on their target,
with a momentum acceptance of +29%,, and an esti-
mated solid angle of 0.5X 1073 sr.* Comparing this
value with the proton yields observed at 1.73 Bev/c
in this experiment, one obtains a ratio >10° protons
per K*. This ratio can be expected to be still larger at
higher energies._

If the gas Cerenkov counter and the associated
anticoincidence circuits were not 1009, efficient in
removing pions from the proton channels, the result
would be an effective pion contamination in the
“proton beam.” No experimental means of checking
this was available, though the flatness of the index-of-
refraction curve (Fig. 3) at high indices indicates that
this counter is nearly 1009, efficient when operated in

® D. Morgan, Atomic Energy Research Establishment (Harwell)
Report R3242, 1960 (unpublished).

0J. W. Burren, Atomic Energy Research Establishment
(Harwell) Report M521, 1959 (unpublished).

1 H. C. Burrowes, D. O. Caldwell, D. H. Frisch, D. A. Hill,

D. M. Ritson, and R. A. Schluter, Phys. Rev. Letters 2, 117
(1959).
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I'16. 4. Total #*-p and p-p cross sections. Data of other experimenters (reference 12) are shown for comparison.

coincidence. The efficiency in anticoincidence was
therefore assumed to be 1009,_;%1%%, and the errors
in the proton total cross sections increased corre-
spondingly.

E. A Summary of the Sources of Error Considered
in Assigning Errors to the Cross Sections

The following sources of error were taken into account
in assigning errors to the fotal cross sections. All errors
were combined in quadrature.

(a) Statistical errors in the measurements were
considered. These were generally quite small (=19%).
The quoted errors also include the fluctuation outside
of statistics which was observed in the data.

(b) At each energy and solid angle all the runs were
averaged and the errors combined. The cross sections
were then corrected for multiple Coulomb scattering,
and the uncertainty in this correction was combined
with the other errors.

(c) The uncertainty in the extrapolation to zero
solid angle was taken to be equal to the uncertainty in
slope multiplied by the average solid angle.

(d) The final error in the pion cross section also
includes the uncertainty in the electron contamination
in the beam. Errors introduced by the uncertainty in
the muon contamination in the pion beam and K*
contamination in the proton beam were considered
negligible.

(e) Errors in the proton total cross sections also
include the uncertainty in the efficiency of the gas
Cerenkov counter and associated electronics, as de-
scribed in the previous section.

Errors in the heavy-nuclei cross sections include only
statistical errors, and errors due to the fluctuations
outside of statistics, as described above. Systematic
errors that raise or lower all the data points together
are not included in the quoted errors. These are thought
to be £29%.

IV. EXPERIMENTAL RESULTS

A. Total Cross Sections for Positive Pions and
Protons on Hydrogen in the Momentum
Range 1.4 to 4.0 Bev/c

The measured wt-p and p-p total cross sections are
listed in Table I, and plotted in Fig. 4 as a function of
beam momentum. Smooth curves have been drawn to
show the gross features of the momentum dependence.
Results from other experimenters are also shown for
comparison.!? In general, the agreement is good in
regions where an overlap occurs.

12 (a) F. Chen, C. Leavitt, and A. Shapiro, Phys. Rev. 99, 857
(1955). (b) G. von Dardel, D. H. Frisch, R. Mermod, R. H.
Milburn, P. A. Piroué, M. Vivargent, G. Weber, and K. Winter,
Phys. Rev. Letters 5, 333 (1960). (c) J. C. Brisson, J. Detoeuf,
P, Falk-Vairant, Van Rossum, and G. Valladas, Nuovo cimento
19, 210 (1961). (d) Thomas J. Devlin, Burton J. Moyer, and

Victor Perez-Mendez, preceding article. Preliminary data appear
in Phys. Rev. Letters 4, 242 (1960).
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TasLE L. Total #*,p and p,p cross sections.

Momentum a(xt,p) a(p,p)
(Bev/c) (mb) (mb)
1.42 39.54+0.50 46.2_g 45108
1.60 36.5+£0.97 47.5_g, 611102
1.73 30.3+£0.42 46.2_. 451082
1.89 29.0+0.75 46.8_¢.657151
2.05 28.3:+0.63 45.3_¢. 471112
2.47 29.24-0.57 45.1_¢, 451083
2.97 29.540.53 44.5_g 491016
3.58 28.640.46 43.240.43
4.00 27.840.53 41.63-0.62

B. Cross Sections for Positive Pions and Protons on
Be, C, Al, and Cu at 3.0 Bev/c

The measured cross sections for 3.0-Bev/¢ pions and
protons are given in Table IT as a function of AQ, the
solid angle subtended by the transmission counter as
seen from the center of the absorber. The estimated
errors are also indicated. The minimum values of AQ
were such that corrections for multiple Coulomb
scattering were still negligible, and the maximum values
were such that most of the diffraction scattering was
included in the cone subtended by the counter.

Some of the beryllium measurements were made with
two different absorber thicknesses as a check on the
method. The results are listed separately in Table II,
but the two sets of measurements were combined when
the data were fitted.

The pion cross sections have been corrected for
muon and electron contamination as described in Sec.
III-D. The method used to obtain total and absorption
cross sections from the heavy-nuclei data is discussed in
Sec. VI-B.

V. OPTICAL MODEL ANALYSIS OF THE
NUCLEAR CROSS SECTIONS

A. Introduction

By ‘“‘optical model” we mean that model in which
the nucleus is represented by a potential well. This
potential may have both a real and an imaginary part
as well as spin-orbit terms, though the latter are not
considered here. With this description, the many-body
problem of a particle scattering on a nucleus is replaced
by a soluble two-body interaction. Much theoretical
work along these lines has been directed toward calcu-
lating these potentials, starting with a knowledge of
the more fundamental interaction with individual
nucleons. An early result was a relation between the
nuclear potential integrated over the volume of the
nucleus, and the amplitude for scattering by free
nucleons. With reasonable assumptions concerning the
extent and shape of the nuclear potential, we were able
to compare the optical-model predictions with our
experimental results. The method used and the results
will be discussed in this section. In Part B the relation
between the integrated optical potential and the ampli-
tude for scattering by free nucleons is given, and the
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integrated potentials are calculated for 3.0-Bev/¢ pions
and protons. Part C describes how optical potentials
yielding cross sections that best fit the experimental
data were obtained. Because it is impossible to calculate
the best-fit potentials directly from the experimental
cross sections without using questionable approxi-
mations, it was necessary to first “guess” a potential
and then calculate cross sections that were in turn
compared with the experimental values. The cross
sections were calculated by an essentially exact solution
of the relativistic Schrédinger equation. In Part D we
present the best-fit potentials and compare them with
the predicted values obtained in Part B.

B. Calculation of the Integrated Optical Potentials
from the Interaction with Free Nucleons
1. General

For a given particle incident on a nucleus, it can be
shown that the optical potential integrated over the

TasLE II. Heavy-element cross sections at 3.0 Bev/c.

7+ P
AQ o Ao [ Ao
Run (msr) (mb) (mb) (mb) (mb)
Beryllium (16.5 g/cm?)
1 1.64 226.9 4.40 283.3 1.82
1 3.09 215.7 3.90 265.3 1.64
1 391 209.0 3.30 258.3 1.61
2 5.26 197.5 5.96 252.4 1.62
2 10.47 180.3 6.45 224.4 1.47
2 14.11 167.5 5.59 212.4 1.38
3 11.54 178.0 1.97 221.2 1.52
3 24.5 154.7 2.01 186.3 1.50
3 35.6 141.6 1.61 1719 1.48
Beryllium (8.24 g/cm?)
1 5.26 199.9 4.88 252.9 4.70
1 10.47 181.2 4.54 223.5 5.58
1 14.11 171.9 4.53 211.8 4.48
Carbon (17.1 g/cm?)
1 1.64 267.9 3.85 341.2 2.66
1 3.09 247.4 4.10 3124 3.50
1 3.91 235.7 3.60 302.0 3.18
2 5.26 237.7 2.78 297.7 2.24
2 10.47 210.0 2.00 257.5 1.82
2 14.11 195.1 2.78 242.8 1.63
3 11.54 216.7 7.25 265.0 6.30
3 24.5 193.9 12.5 224.9 5.80
3 35.6 176.2 6.73 210.9 4.50
Aluminum (12.0 g/cm?)
1 1.49 542 12.2 658 7.6
1 2.80 488 14.7 582 8.4
1 3.92 447 12.2 542 6.9
2 5.61 439 14.0 504 6.8
2 11.39 386 17.4 431 8.8
2 19.5 355 14.6 400 6.3
Copper (6.80 g/cm?)
1 1.49 1009 34.3 1209 10.0
1 2.80 832 36.6 986 9.9
1 3.52 772 34.7 947 8.6
2 2.29 900 27.0 1091 8.8
2 4.41 724 34.2 909 13.8
2 5.66 716 26.1 881 7.8
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nuclear volume is proportional to the forward amplitude
for scattering by free nucleons (as averaged over all
the nucleons in the nucleus).’®** The relation is

1 2rh? Ep*
— ]W“) 1)d3r=— e
A M E,

x[—j«fp<o>+(1—%)fn<0>], ©)

where W®(r) is the first-order optical potential at a
point r in the nucleus, E, the total energy of the
incident pion (or proton) in the laboratory system,
Er* the total energy in the pion-nucleon (or proton-
nucleon) c.m. system, and M the nucleon mass; f,(0)
and f,(0) are the c.m. forward scattering amplitudes
for scattering by free protons and free neutrons,
respectively.

Equation (6) must be corrected to take into account
the effects of the Pauli exclusion principle, which can
raise or lower the effective potentials depending on the
energy of the incident particle. At low energies it acts
to inhibit collisions with small momentum transfers,
thus decreasing the potentials (in absolute value). At
high energies this effect is small and is overshadowed
by another that tends to increase the optical potentials.
The latter effect is the mutual repulsion of nucleons at
small distances, which keeps them apart and makes
them more effective as scattering targets. At 3.0 Bev/c
the over-all effect is an increase in the potentials of
approximately 15%,.

For small nuclei, Eq. (6) must be further corrected
for terms of order 1/4 which appear in a more careful
derivation. These terms do not appear in the Born
approximation, and we shall hopefully neglect them.
We shall also neglect a correction to the pion-nucleus
potentials due to the possibility of direct absorption
by two or more nucleons in the nucleus in reactions of
the type mt+p+n— p+p. These reactions are im-
portant at low energies, but are not expected to play
a significant role at 3.0 Bev/c. Corrections to the
proton-nucleus potentials due to the identity of the
incident and target particles are also expected to be
small.’®

2. Calculation of Potentials for Pion-Nucleus
Scattering

For positive pions, we have f,=f(z"p), and
fa=f(ztm)= f(7~,p) by charge symmetry. Cronin has
used the total cross sections of this and other experi-
ments to calculate from dispersion relations the real
parts of the forward scattering amplitudes for pion

18 R, Lipperheide and D. S. Saxon, Phys. Rev. 120, 1458 (1960).

4 R, M. Frank, J. L. Gammel, and K. M. Watson, Phys. Rev.
101, 891 (1956).

15 W, B. Riesenfeld and K. M. Watson, Phys. Rev. 102, 1157
(1956).
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scattering.!® Extrapolating his results slightly to 3.0
Bev/c, and transforming to the c.m. system, we have

Re[ f(zt,p)]=—0.095, Re[f(n~,p)]=—0.26 fermi.
Using or(zt,p) =or(7~,p) = 2.9 fermi2, we have

Im[f(rt,p)]=Im[f(x,p) = (k/47m)or=1.29 fermi.
This yields for Z/A ~% the first-order potential

1 g
Z /W(” (r)d*r=(39.5—2861) Mev-fermi®.  (7)

The real part of the potential is therefore small and
repulsive.

The first-order potentials must be corrected for
nuclear correlation brought about by the effects of the
exclusion principle. According to Watson and Zemach,!
the optical potential correct to second order is

WO = (UO—i| VO [)(14iAr+Ar), ®)

where UW—¢|V®| is the first-order potential. For
B=1 we have

Ap=—UOR/hc; Ap=—VOR,/he. 9)

The correlation length R, is a measure of the cor-
relation of nucleon positions in the nucleus. Its value
can be calculated for particular models of the nucleus.
For a degenerate Fermi gas model, R,~ —0.4 fermi.!’
(Negative values of R, correspond to an over-all
repulsive interaction.) Using the Brueckner model, we
get R.~—0.63 fermi.!® We shall use the latter value.
From Eq. (7), assuming a square-well potential of
radius 1.24% we find U®=+435.5, |V®|=39.5. This
yields Ag=—0.02 and A;=+-0.125, and the integrated
optical potential for pions, correct to second order, is

1
Z /W(Z)(r)d%': (38.8—3237) Mev-fermid. (10)

3. Calculation of the Proton-Nucleus Optical
Potentials

For p-p and p-n scattering, little is known about the
real part of the forward scattering amplitudes at high
energies. The most accurate data seem to be those of
Preston ef al.,*® who find, at 3.8 Bev/c,

Re[f(p,p) ]| S0.1XIm[ f(p,p]].

No data are available yet on Re[ f(p,7)]. We therefore
assume, for both p-p and p-» scattering, |Re f|<<|Imf],
so that for proton scattering the real part of the optical
potential is small compared with the imaginary part.

16 JTames W. Cronin, Phys. Rev. 118, 824 (1960).
17 K. M. Watson and C. Zemach, Nuovo cimento 10, 452 (1958).
(I;ZT)' K. Fowler and K. M. Watson, Nuclear Phys. 13, 549
9).
18 W. M. Preston, Richard Wilson, and J. C. Street, Phys. Rev.
118, 579 (1960).
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TasrE TII. Well parameters and predicted potentials.
o a 2y * Pions Protons
Nucleus (fermis) (fermis) (fermis) Uy(Mev) Vo(Mev) Us(Mev) Vo(Mev)
Be 0.429 0.84 3.03 16.5 —137.6 =~0 —200
C 2.25 0.45 2.41 7.0 —58.1 ~0 —85
Al 3.01 0.60 3.22 6.6 —54.9 ~0 —80
Cu 4.26 0.53 3.84 6.6 —54.9 k ~0 —80

Since the fits to the experimental data are quite in-
sensitive to the real potential when it is small, the above
assumption is sufficient for our pruposes.

Using or(p,p)=44.5 mb at 3.0 Bev/c (from Table I),
and or(n,p)=41.5 mb,2 we obtain, from Eq. (6),

1
- / VO (r)d¥r= —400 Mev-fermi3, (11)
|

for Z=A/2.

If we assume that Eqgs. (8) and (9) for the second-
order potential are correct for protons as well as pions,
then neglecting Ar we have

1
_ /V(2> (r)d?*r= —470 Mev-fermi?.
A

C. Method Used in Fitting the Experimental Data
1. Shape of the Potential Well

In fitting the experimental data a process of trial
and error was used. A potential well was chosen, and
cross sections calculated. These cross sections were
compared with the experimental ones, and the process
repeated until good fits were obtained.

In this method it is necessary to assume a shape for
the nuclear potential well. In the past, a square-well
potential was usually chosen to simplify calculations.
This shape, however, is quite unrealistic and usually
leads to unsatisfactory agreement with experiment.?!
Data from electron-scattering experiments are con-
sistent with a nuclear density distribution having a
Fermi shape.?? Since the shape of the optical potential
is expected to resemble that of the nuclear density
distribution, a Fermi well was used in fitting the data
of this experiment. It was further assumed that both
the real and imaginary parts of the potential have the
same shape. The potential W (r) therefore has the form

UitV
Wr)=U@)+iV(r)=— —, (12)
1+e(r—ro)/a

where 7, is the radius at which the potential drops to
(Uo+1iV,)/2 and a is a parameter determining the rate
of falloff. For a<<r,, the well is almost “‘square.”

2 John H. Atkinson, Ph.D. thesis, Lawrence Radiation Labo-
ratory Report UCRL-8966, 1959 (unpublished).

21 Herman Feshbach, Ann. Rev. Nuclear Sci. 8, 49 (1958).

22 Robert Hofstadter, (a) Revs. Modern Phys. 28, 214 (1956).
(b) Ann. Rev. Nuclear Sci. 7, 231 (1957).

In the initial attempts to fit the data, it became
apparent that good fits could be obtained over a wide
range of values of the parameters Uy, V, 7o, and @, if
all were allowed to vary. Increasing 7o could be com-
pensated for by decreasing U, and V,; decreasing a
could be compensated by decreasing U, with respect
to Vo. It was therefore decided to fix 7o and a at the
values obtained in the electron-scattering experiments.
The values used are listed in Table III, which also
lists the values of Uy and V¢ that yield the integrated
potentials of Eqs. (10) and (11). The electron-scattering
data for beryllium were fitted with a modified expo-
nential density distribution??; however, it was found
that this could be well approximated by a Fermi
distribution with a suitable choice of 7y and a. Figure
5 shows U (r)/U, for the potential distributions used in
fitting the data. The modified exponential shape used
in fitting the beryllium electron-scattering data is also
shown. Note that for beryllium U () must be multiplied
by (0.62)~! to normalize U(r)/U, to unity at the origin.

2. Computer Program Used in Calculating the
Optical-Model Cross Sections

The program used to calculate the cross sections is a
modification of that described by Bjorklund et al.?® The
original version of this program solves the Schrédinger
equation for a complex nuclear potential plus a Coulomb
potential corresponding to a nucleus with a uniform

1.0

0 1 2 3 4 5 6 7
rx10"3(cm)—

I'16. 5. Form factors for potential wells used in fitting data;

p(r)=[14etrrole]

2 F. Bjorklund, I. Blandford, and S. Fernbach, Phys. Rev.
108, 795 (1957).
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charge distribution of radius 7,:
Ucowr= (Ze2/2ry)[8— (r/70)?] for <y,
Ucour=2Ze*/r

The resulting wave equation must be integrated
numerically for each angular momentum state. The
complex phase shifts are then determined by matching
the resulting wave functions to Coulomb wave functions
at the edge of the nucleus. The differential cross sections
for scattering at any angle and the total inelastic cross
sections can then be calculated.

The original version was modified to treat relativistic
particles as follows:

(a) The original
Schrodinger equation,

1dys d\ I(+1)
42
r2dr\ dr r?
It was assumed that the scattering of both pions and

protons could be described by the Klein-Gordon
equation,?

13
for r>r. (13)

program solved the radial

]R= 2m[T—W(r)]R. (14)

1dy d 1(l+1)
L0
r2dr\ dr r?

the Dirac equation is the proper wave

}R= [(E—W(r))*—m?]R. (15)

Actually,

Ioo . T T T T T T
C
¢ 100}~ Be
| Al Pions

Cu

lo 1 1 1 1 1 1

"40 50 60 70 80 90 100
|Vo| (Mev)

F16. 6. x2 vs Vo when Uy~0 for 3.0-Bev/c pions incident on
several nuclei. V(r=0)=0.62 V, has been plotted for Be for
easier comparison with the other nuclei. The predicted values
from Table III are |V (r=0)| =137.6X0.62=85 Mev for Be, and
| Vo| =58.1, 54.9, and 54.9 Mev for C, Al, and Cu, respectively.

247, 1. Schiff, Quanium Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), Chap. 12.
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equation for protons; however, if spin effects are
neglected, the Dirac equation reduces to the Klein-
Gordon equation.”® Neglecting terms in (W/E)? com-
pared to unity, we can rewrite Eq. (15) as

1 dy d\ I(+1)
L)
r*dr\ dr r?

where p?=E?—m? Equation (16) has the same form
as Eq. (14) with 2 mT replaced by p? and m replaced
by E.

(b) The original version had to be modified to treat
problems in which angular momentum states with
1=~100 were important. The relativistic version allows
Imax £ 200. Running time for the 3.0-Bev/c problems
was 10-20 min.

As a check on the new version, another program was
written independently to calculate the scattering by a
real “square well” using analytical solutions. A com-
parison of the two programs for 3.0-Bev/c¢ pions showed
agreement to approximately 0.29,, when the fall-off
parameter ¢ was made small in the Fermi-well case to
approximate a square well.

}R= [p—2EW (r)IR, (16)

3. Method Used in Comparing the Calculated Cross
Sections with the Experimental Data

If we neglect the finite angular resolution of the
counter telescope, it is expected that the measured
cross section ¢ (f) will have the following dependence
on the angle § subtended by the edge of the transmission
counter?S:

=7 g1 (8)
0(0)’—:/ AV +0,—2mn(1—cosh). (17)
[

—f Q'

The first term is the cross section for elastic scattering
at angles greater than 6; the second represents the loss
of particles due to all inelastic processes (absorption).
The third term results from inelastic events that give
rise to charged secondary particles that count in the
transmission counter and so lower the apparent cross
section. We assume that for angles at which measure-
ments were made (0°<0<6°) the differential cross
section for producing charged secondaries, 9, is approxi-
mately constant, so that this term is proportional to
the solid angle subtended by the transmission counter,
2w (1—cosf). The proportionality constant 5 can be
determined for each pair of Uy and V, by a least-squares
fit to the data, with the restriction that 5 be positive.

If the finite angular resolution of the counter system
is taken into account, Eq. (17) must be replaced by

"dael(o’)
o (6)= / RO o= 2mn(1—cost), (19
0

25 K. Gatha and R. Riddell, Jr., Phys. Rev. 86, 1035 (1952).

26 This method of fitting the data is similar to that used by
_'{. W7 Cronin, R. Cool, and A. Abashian, Phys. Rev. 107, 1121

1957).
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F16. 7. x2 vs Vo when U,=0 for 3.0-Bev/c protons incident on
several nuclei. For easier comparison with the other nuclei,
V(r=0)=0.62 V, has been plotted for Be. The predicted values
from Table III are |V (r=0)| =200X0.62=124 Mev for Be, and
| Vo] =85, 80, and 80 Mev for C, Al, and Cu, respectively.

where ®(6,0') is the probability that a particle scattered
at an angle ¢ will miss the transmission counter.
®(6,0') was calculated for each value of 6 and ¢, by
using the measured distributions of beam particles at
the transmission counters.

In fitting the experimental data to the functional
form given in Eq. (18), all calculations were carried
out in the c.m. system of the incident particle and the
target nucleus. This merely involved transforming the
angle 6 to its corresponding angle ¢* in the c.m. system.

For each pair of Uy and V,, a value of x? was deter-

mined, where
. N o'measi_ U'calci 2
=) e 2R
=1 Ao meas

For a “good fit,” x? is approximately equal to the
number of experimental points minus the number of
fitted parameters.

(19)

D. Results of the Analysis: Comparison of the
Best-Fit Potentials with the Predicted Ones

Figures 6 and 7 show plots of x? vs Vo for Ue=0 as
theory predicts. ¥V (r=0)=0.62 V¢ has been plotted for
beryllium for easier comparison with the other nuclei
studied. Considering the uncertainty in the predicted
values, the best-fit values of V, are generally in good
agreement with the predicted ones. The predicted
potentials seem to be slightly low in the case of pion-
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nucleus scattering. There also seems to be a substantial
disagreement between the predicted potentials and the
best-fit values for both pions and protons incident on
copper. This is as yet unexplained.

If U, is kept fixed, the minimum values of x?* are
expected to be about 7 for Be and C, and about 4 for
Al and Cu, corresponding to the two fitted parameters
Vo and 7. The values obtained were generally somewhat
larger. The explanation for this is discussed below.

The variation of x? with U, was also studied. Figure
8 shows a plot of x* vs U, for positive pions scattered
by Be, C, Al, and Cu nuclei. For each value of U, the
imaginary potential ¥, was adjusted to give a minimum
in x2. It can be seen that the fits are improved somewhat
if U, is made approximately equal to V, in absolute
value. The predicted values of U, from Table IIT are
indicated by arrows. As mentioned previously, the fits
are not sensitive to Uy when U, is small. Results for
the case of incident protons are quite similar. When
Ue was allowed to vary, the minimum values of x2
tended to be smaller than might be expected statisti-
cally. This is probably due to a slight overestimation
of the experimental errors.

It is apparent from Fig. 8 that except for beryllium
the large values of U, are only slightly favored statisti-
cally over the predicted ones. The magnitude of this
discrepancy is further illustrated in Fig. 9 which com-
pares the experimental cross sections for pions on
beryllium with the calculated ones for U,=0 (the

10.0g= E
E T+ Be 3
10 & t =
g 3
o.‘ 1 1 1 1 1 1
100g=
E \/v—\_,/ e a
- i N
10 E
2 -
Xm]n o.l | L 1 1 1 L
K 100E
= e Al
1.0 | =
= t 3
- .
0.l | It L L 1 1
100
— TT*+Cu
1.0
t
ol I I 1 I 1 T
) =100 -50 (o] 50 100 150

U, (Mev)

F16. 8. The minimum values of x2/k for each Ul. « is the number
of degrees of freedom in the fit (6 for Be and C, 3 for Al and Cu).
For easier comparison with the other nuclei U(r=0)=0.62 U, is
plotted for Be.
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F16. 9. Examples of fits to the experimental data. Uy=0 is the
predicted value of Uy; 6* is the angle in the pion-nucleus center-
of-mass system.

predicted value), and also for the best-fit value of U,.
Even in this case, where the high values of Ug are most
favored statistically, the discrepancy could be removed
completely if the experimental cross sections at inter-
mediate angles were raised approximately 29, or if
the small-angle points were lowered about the same
amount (this latter alternative would also involve
readjusting the best-fit values of Vy and 7).

It is therefore quite possible that this discrepancy
arises from a small systematic error in the cross-section
measurements, or to some deficiency in the method used
in fitting the data. Possible explanations are discussed
in detail below.

VI. DISCUSSION OF RESULTS

A. Total Cross Sections for Scattering by
Hydrogen

A striking aspect of the n*-p total cross section
plotted in Fig. 4 is its near constancy above 2 Bev/c.
This is interesting in view of a theorem due to
Pomeranchuk stating that if the total cross sections
for a particle and its antiparticle on hydrogen approach
constant values at high energies, these limits must be
equal.?” The available data for 7= scattering show a
similar flattening at high energies at approximately the
same value.?P

The p-p cross sections in the momentum range of this
experiment show no sign of approaching a constant

271. Pomeranchuk, J. Exptl. Theoret. Phys. (U.S.S.R.) 34,
725 (1958) [translation: Soviet Phys.—JETP 34, 499 (1958)7].
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value. At 4.0 Bev/c the §-p cross section is still 30 mb
higher than the p-p cross section. Recent measurements
at the CERN accelerator indicate that the difference
decreases to 10 mb at 10.7 Bev/c.1?»

B. Discussion of the Fitted Values of the
Optical Potentials

The discrepancy between the best-fit experimental
values of the real potential and the calculated ones is
considerably outside the uncertainty in the calculated
potentials. There are several possible explanations for
this result.

(a) When the falloff parameter ¢ was made smaller,
good fits were obtained with considerably lower real
potentials. To obtain agreement with the predicted
values of Uy, it was necessary to reduce a¢ almost to
zero. It is quite difficult, however, to reconcile this with
current theories regarding the structure of the nucleus.
The variation of the best-fit values of the real potential
(integrated) with r, was also studied, and it was found
that the fitted values were insensitive to small changes
m 7g.

(b) The neglect of spin-orbit coupling might explain
the discrepancy in the proton scattering results.
Furthermore, since all the nuclei studied except carbon
had nuclear spins,?® the most general optical potential
for both pions and protons includes a term proportional
to L-I, where L is the angular momentum of the incident
particle and I the nuclear spin. Both this and the spin-
orbit term, however, would be of relative order 1/4,
while the observed discrepancy does not seem to
depend on 4.

(c) In comparison of the experimental cross sections
with the calculated ones as given by Eq. (18), it was
assumed that u, the differential cross section for the
production of charged secondaries, was constant over
the range of angles studied. This assumption, though
necessary, is open to question. Drell has in fact sug-
gested that at high energies the production of secondary
particles from inelastic collisions is strongly peaked
forward at lab angles <m/E,, where m is the pion mass
and F, the total energy of the incident particle in the
laboratory system.?® At 3.0 Bev/c this characteristic
angle is = 3°. It can be seen from Fig. 9 that this effect
need not be large to explain the observed discrepancy.

In view of the above discussion, and because the
fits were found to be rather insensitive to U, we
conclude that there is no real disagreement between the
results of this experiment and the values of the real
potential predicted from the optical model and dis-
persion relations. A definitive test could be made if
the differential elastic cross sections were measured
directly. For both pions and protons, the experimentally
determined values of the imaginary optical potential

28 Be? has spin I=%; Al?" has spin I=4%; Cu® and Cu® have
spin §.
» S 1. Drell, Phys. Rev. Letters 5, 342 (1960).
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TabLE IV. Pion-nucleus absorption and elastic cross sections.

Wikner
This experiment (3.0-Bev/c 7+) (4.3-Bev/c )

Vo (Mev) Ta Tel Oa Tel

r+Be 154 + 9.0 192+ 8 41.54 3.5 1774 9 125418
r4C 59.6+ 4.0 2133+ 8 66.6x 7 2194 8 167422
m+Al  58.54 4.1 428 ;515 160_5,™ 470410 356441
74+Cu  69.0_5,0713:5 790_a6t41  445_,3+60 725425 895493
p+Be 109 + 6 236+ 4 64.8+ 2.4

»+C 843+ 43 2604 6 107 x 6

p+Al  81.54 6.5 50316 236 +17

p+Cu 120 +24 914444 620 65

are generally in quite good agreement with the predicted
ones. There is possibly a disagreement in the case of
scattering on copper.

Two quantities of considerable interest are the total
nuclear cross section or and the absorption cross section
oq. For heavy nuclej, it is difficult to measure the total
cross section at high energies because Rutherford
scattering is large over the major part of the diffraction
pattern. However, once optical-well parameters that
fit the experimental data are determined, it is possible
to define the total nuclear cross section in terms of these.
To do this, we simply “turn off” the Coulomb inter-
action and calculate the total cross section for the
potential well with no Coulomb potential. For light
nuclei this is the same as obtained by extrapolating
the measured cross sections to 0°, as is usually done.

The absorption cross section can also be defined in
terms of the best-fit parameters. The total elastic
scattering cross section o is then or-o,. The values of
g, and oe thus obtained are listed in Table IV. The
best-fit values of Vi when Uy is restricted to be small
are also summaried there.

The errors in the values of V, given in Table IV are
such that at the upper and lower limits x? is three times
the minimum value. The upper and lower limits on o,
and oe are the values corresponding to the upper and
lower limits on V.
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For comparison with our results, Table IV also lists
the values of o, and oe; found by Wikner for the scat-
tering of 4.3-Bev/c¢ negative pions.® His results for o,
are in good agreement with ours, but his values of oe
are more than twice as large. Wikner’s analysis with a
square-well potential showed that his data indicated
the real potential to be somewhat larger than the
imaginary one. Our data, on the other hand, are con-
sistent with a real potential U,=0, if a square well is
assumed.

If this apparent change in the total elastic cross
sections were verified by subsequent experiments, it
would constitute a violation of charge symmetry at
high energies. The only alternative possible is that the
real potential increases dramatically between 3.0 and
4.3 Bev/c. Since present data show that the total pion-
nucleon cross sections are essentially constant in this
energy range, this presumes a breakdown of the pion-
nucleon dispersion relations. A check on Wikner’s
measurements with improved techniques now available
will be necessary before any definite conclusion is
possible.
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