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to the thermal expansion almost entirely by virtue of
the effect of the vacancies on the interionic potential.
The additional sites created at the surface do not make
a significant contribution (less than 19,) to the expan-
sion of the crystal, as Fischmeister has noted.

The available expansion data for NaCl are just barely
accurate enough to provide basis for the conclusions

here drawn. It should be kept in mind that the contribu-
tion of the defects is a third-order effect in the measured
variable. Additional careful expansion measurements in
the high-temperature range, both for NaCl and for
other alkali halides, with simultaneous measurement
of the high-temperature electrical conductivity, would
be very desirable.
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The field emission current density j., originating from the conduction band, is derived for an arbitrary
degeneracy (i.e., Fermi energy) at the surface. The theory allows for a difference between the effective and
free electron masses; detailed results being worked out for spherical energy surfaces. Simple formulas for j.
are presented which involve correction factors that are slowly varying functions of the temperature, field F,
and Fermi energy, and have been computed numerically; j. is approximately proportional to the emission
probability of an electron either at the Fermi level or at the bottom of the conduction band for positive or
negative Fermi energies, respectively. Strong deviations from linearity, of a Inj. versus (1/F) plot, require
that the Fermi energy at the surface depend markedly on F. The emission current for the intermediate, or
T-F, range is also considered. The field emission current density j, originating from the valence band is also
discussed. As an example, numerical results are given for germanium. For this case, j, exceeds j, at room
temperature, except when the surface is strongly degenerate # type. The theory is qualitatively consistent
with Allen’s experimental results for a clean germanium surface.

I. INTRODUCTION

I a sufficiently intense electric field is applied normal
to the surface of a metal or semiconductor, electrons
will be emitted, through the surface potential barrier, by
the quantum mechanical tunnelling effect. Since the
fields required for a measurable current emission are in
the range 107 to 108 v/cm, the experimental arrange-
ment usually consists of a fine needle emitter (radius of
curvature of the tip about 10~ c¢m) placed inside an
evacuated chamber, partly lined with a conducting film
which collects the electrons. If the surface of the collec-
tor, or anode, is also treated with a fluorescent material,
characteristic patterns are observed from nearly clean
single crystal emitters (electron field emission micro-
scopel).

The theory of field emission from metals was first
derived by Fowler and Nordheim? in 1928, who showed
that if the temperature is not too high, most of the
emitted electrons originate from a small energy interval
around the Fermi level of the metal. At the other ex-
treme, high temperatures and low fields, electron emis-
sion over the potential barrier, rather than through it,
predominates, i.e., thermionic emission. There is also an
intermediate range of fields and temperatures where the
electrons tunnel through the barrier but come mainly

L E. W. Miiller, Z. Physik 106, 541 (1937).
2R. H. Fowler and L. Nordheim, Proc. Roy. Soc. (London)
A119, 173 (1928).

from energy levels well above the Fermi level in the
metal.® This process has been called 7-F emission by
Dolan and Dyke.* Experimental and theoretical prog-
ress in field emission from metals has recently been
reviewed by Good and Miiller.?

When the theory of field emission from semicon-
ductors was considered by the present author in 1955,¢
there had only been preliminary experimental observa-
tions of this effect, using” Cs;Sb and the photocon-
ductors CdS and CdSe.® Since then there have been
experimental studies of field emission from CdS,? CdSe,?
W,C,10-12 Mo,C,1t SiC,1 AlyOs,t SiOp, ZnS,15 Te,!6
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S. Fliigge (Springer-Verlag, Berlin, 1956), Vol. XXT, p. 176.

6 R. Stratton, Proc. Phys. Soc. (London) B68, 746 (1955). (This
paper will be referred to as I; equations from it will be preceded
by I.) At the time this paper was written the author was unaware
of an earlier publication by N. Morgulis, J. Tech. Phys. (U.S.S.R.)
17, 983 (1947) on field emission from semiconductors. Morgulis
derived the effect of weak field penetration (i.e., assuming classical
statistics) on electron emission from the conduction band and also
gave an approximate estimate for emission from the valence band
which, however, differs from our result in Sec. 6.
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8 L. Apker and E. Taft. Phys. Rev. 88, 1037 (1952).

¢ A. L. Klimin. J. Tech. Phys. (U.S.S.R.) 27, 719 (1957) [trans-
lation: Soviet Phys. (Tech. Phys.) 2, 649 (1957)7].

10T, I. Gorfman, B. G. Smirnov, G. S. Spirin, and G. N. Shippe,
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(Tech. Phys. 2, 2471 (1957)].
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Si,jl620 and Ge.2* Characteristic emission patterns
were observed only in some of the more recent investi-
gations (references 11, 17-20, 23, and 24). The results of
the current emission measurements were usually given
as a plot of the logarithm of the total emitted current
versus the reciprocal of the applied voltage since, at
least for the case of metals, this yields a straight line.
For semiconductors, theory® shows that certain devia-
tions from a straight line are possible and qualitative
comparisons, between the theoretical predictions and
experimental observations, have been made by various
authors. (See, in particular, references 13, 16, and 19.)
However, since theory relates the emitted current
density to the applied field, a detailed knowledge of the
emitter tip geometry is required for a quantitative com-
parison between theory and experiment. Plots of the
logarithm of the emitted current density versus the
reciprocal of the applied field have been given only in
references 14 and 20; most of the other authors quoted
assume that the applied field is proportional to the
voltage, and the current density to the total current, in
their qualitative discussions.

In the present paper the theory presented in I is ex-
tended in several ways. The basic equations for the
emitted current density are given in Sec. 2 and include
a correction which arises if the effective electron mass in
the semiconductor differs from the free electron mass.
Emission from both the conduction and valence bands
are considered. The expression for field emission from
the conduction band is simplified in Secs. 3 and 4
following the method of Murphy and Good? for metals.
The rather complicated conditions given by Murphy
and Good, for which these approximate expressions
apply, are also presented in a simpler form. Formulas
for the emission current, with arbitrary values of the
Fermi energy at the surface, are given which reduce to
the results for extreme degeneracy or nondegeneracy
derived in I.

T-F emission is discussed in Sec. 5. This has previ-
ously been considered by Vasil’ev?® who erroneously

Tverd. Tela 1, 1845 (1959) [translation: Soviet Phys.—Solid State
1, 1691 (1960)7].
18 G. Busch and T. Fisher, Brown Boveri Review 45, 532 (1958).
14 M. 1. Elinson and G. F. Vasil’ev, Radiotekhn. i Elektron. 4,
1718 (1959).
16 W. Bertoldi and C. Kleint, Ann. Physik 4, 388 (1959).
16 Ch. Kleint and R. Fischer, Z. Naturforsch Al14, 753 (1959).
17 L. A. D’asaro, J. Appl. Phys. 29, 33 (1958).
18T, Fischer, Helv. Phys. Acta. 33, 961 (1960).
B R. L. Perry, J. Appl. Phys. 32, 128 (1961).
20 R. L. Perry (unpublished work).
2 M. 1. Elinson and G. F. Vasil’ev, Radiotekhn. i Elektron. 4,
728 (1959).
22 A, I. Klimin, B. N. Sedykh, and I. L. Sokol’skaya, Fiz. Tverd.
’{eglalz), 1851 (1960) [translation: Soviet Phys.—Solid State 2, 1673
1961).
2 F. G. Allen, Proceedings of the International Conference on
.Eerrgic%tductars, Rochester, 1958 [J. Phys. Chem. Solids, 8, 119
1959)7.
2 F. G. Allen (unpublished).
( 25 E) L. Murphy and R. H. Good, Jr., Phys. Rev. 102, 1464
1956).
26 G. F. Vasil’ev, Radiotekhn. i Elektr. 3, 962 (1958).

compared his result with that for nondegenerate sta-
tistics given in I which, however, refers to field emission,
i.e., a different range of fields and temperatures.
Vasil’ev’s result is given in a simpler form for computa-
tions; the conditions for 7-F emission are simplified;
and the effective mass correction is derived.

In Sec. 6, a simplified expression for the current
density emitted from the valence band is given which
will only apply if the hole mass, near the top of the
valence band, is considerably less than the free electron
mass.

The relation between the Fermi energy at the surface
of the semiconductor and the applied field (.e., field
penetration) is discussed in Sec. 7. Detailed results are
worked out for simple surface states models and using
the surface space charge calculations of Kingston and
Neustadter,? with their extension to degenerate sta-
tistics, for Ge at room temperature, by Seiwatz and
Green.2® These calculations are based on the assumption
of a constant Fermi level, i.e., zero current; the condi-
tions under which they may be applied to the present
problem, with a non-zero current, are discussed in
Appendix IIT.

Computed field emission curves, taking n-type Ge as
an example, are discussed in Sec. 8 and compared with
experimental data. A treatment for the possible depend-
ence of the field emission current on the hot-electron
effect by Elinson® is also discussed in Sec. 8.

2. BASIC ELECTRON EMISSION EQUATIONS

Consider an external field F (measured in ev per unit
length) applied perpendicular to the surface of a con-
ductor at x=0 (cf. Fig. 1). Let ¢ be the potential energy
required to raise an electron from the bottom of the
conduction band, just inside the surface, to a point
outside the surface. (The suffix s, which distinguishes
energies measured at the surface from those in the in-
terior, will be omitted until Sec. 7). Then, following
Nordheim,* the probability, that an electron in the con-
duction band, incident on the surface barrier, emerges
from the conductor is given by

4 Y (Y—E ) 7 guFt
ss-enf LI

where E,=p.2/2m, v=(e—1)/(e-+1)}, and electrons in
the conduction band are assumed to have the free elec-
tron mass. Here, ., is the x component of the electron
momentum p, —q is the charge on the electron, v is a
tabulated function® involving elliptic integrals which
arises from the image force correction, and e is the

"’515{) H. Kingston and S. ¥. Neustadter, J. Appl. Phys. 26, 718
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28 R. Seiwatz and M. Green, J. Appl. Phys. 29, 1034 (1958).
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30 I.. Nordheim, Proc. Roy. Soc. (London) A121, 626 (1928).

3 R. E. Burgess, H. Kroemer, and J. M. Houston, Phys. Rev.
40, 515 (1953).
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Fic. 1. Electron potential energy diagram of a semiconductor
surface showing various energies defined in the text. D and 4
represent donor and acceptor surface levels. The image force
correction is not shown on the figure for the sake of simplicity.

dielectric constant. (The factor » absent in Nordheim’s
expression for a metal, gives the image force correction
appropriate to a semiconductor.) The expression for
D(E.) is only valid if its magnitude is considerably less
than one (I). The condition,

D(Ez)<1/e, (2)

suggested by Murphy and Good,* will be adopted as a
suitable criterion.

The restriction to the free electron mass in the con-
duction band can be removed by replacing E, with
E(p)— E,, where

Ei=(p,*+p2)/2m, ©)

and E(p) represents the specific dependence of kinetic
electron energy on momentum for the conductor. This
assumes that the surface potential barrier can be treated
as one dimensional and that the tangential component
of electron momentum is conserved during the transi-
tion, i.e., we merely add the factor exp[Z(p,y+ p.2)/% ]
to the wave function in the usual one dimensional cal-
culation involving the W.K.B. approximation.®® The
electron mass occurring in Egs. (1) [with E, replaced by
E(p)—E,] and (3) is that appropriate to free space
since the argument of the exponential in Eq. (1) involves
an integration over the potential barrier outside the
lattice.

The current density emitted from the conduction
band is given by

o2 D(E—E)  dE
770 ) e[ (E—)/#T] 9.

where { is the Fermi energy at the surface, measured
from the bottom of the conduction band, and dE/dp, is

dP zdpydPn (4)
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the electron velocity perpendicular to the surface. For
spherical energy surfaces (E depends on the magnitude
of p only), the integration over p, and p, can be carried
out by changing to polar coordinates so that, using
Eq. (3),

4dam D(E—E,)
je=a / dE / , (9
0 1 +exp[(E—¢)/AT]

where E,,(E) is the maximum value of E, for a given
value of E. For nonspherical energy surfaces, E, de-
pends on the polar angle and Eq. (5) would be invalid.
The calculation must then proceed from Eq. (4), with
the integral evaluated for a definite orientation of the
emitting surface.

If the variables of integration E and E, are trans-
formed to E, and E,;, where

E,=E—E, 6

the integration over E, can be performed (cf. Appendix
I) and

Fo=q(4mmkT/I?) ] ) dE; In{1+exp[ (¢—E.)/kT]}
0

X {D(E:r)_ [1_Em’(Ez)]D[EI_ Em(Ez)]}: (7)

where the dash on E,, denotes a derivative. Retaining
only the first term D(E,), inside the second set of curly
brackets, leads to the usual expression? for the emitted
current density (denoted by j.) based on the free
electron mass approximation. The remaining term repre-
sents the correction due to an arbitrary dependence of
electron energy on scalar momentum. In particular, for
a parabolic conduction band with an effective mass #z,,
ie., E=p*/2m,,

En(E)= (mn/m)E, (8)

which shows clearly that the correction term vanishes if
mn=m. The final integration over E, will be considered
in the next three sections for various ranges of the
applied field, temperature, and Fermi energy.

Similarly to Eq. (4), the current density emitted from
the valence band is given by

. 2 Dv<~E+E1)
jvz — —
D8 ) Tesp[— (BT E+0)/kT]
oF
X—dp AP, dp., (9)
P

where E is the electron energy measured downwards
from the top of the valence band (cf. Fig. 1) and { is the
corresponding momentum, ¥, is defined similarly to E,
[cf. Eq. (2)], E, is the width of the forbidden energy
gap and D,(E.) is given by the same expression as
D(E.), Eq. (1), except that ¢ is replaced by ¢+E,.
Again assuming spherical energy surfaces for simplicity
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and carrying out the integrations over §, and P, gives

B - Dv("'E""’E’l)
% f af, i :
0 1+exp[— (E+E,+¢)/kT]

where E, is the valence bandwidth. Making a trans-
formation similar to Eq. (6) and a calculation analogous
to that in Appendix I, leads to

Jo=q(4xmkT/ )

10)

Ey
X(/ dE , In{1+exp[ (B .+ E,+¢)/kT ]}

X{—D—E)+[1—En(E)ID.[~ B+ En(B.)]}
+In{1+exp[ (E,+E,+5)/kT ]}

Ey
X / B D,(—EI)dEz). (11)
Ey—Em(Ev)

The final integration over E, will be considered in
Sec. 6.

3. FIELD EMISSION FROM THE CONDUCTION
BAND (FREE ELECTRON MASS)

It will now be shown that, for a sufficiently high field
F and sufficiently low temperature 7', the integral in
Eq. (7) can be simplified by expanding the exponent of
the exponential factor D(E,) about either the Fermi
level or the bottom of the conduction band. The former
is more useful if the Fermi energy is positive, the latter
if it is negative. It will however be shown that the ap-
proximate expressions are equivalent for small values of
the Fermi energy of either sign.

3.1 Positive Fermi Energy

It proves convenient to rewrite the expression for
D(E,) in terms of the constant

U= (32/9) (mg*/#2)v*=96.73* ev, (12)

and the depression of the potential barrier height due to
the image force (Schottky effect®), i.e.,

Vi=qvFi=3.794X10~%F? ev, (13)
where F is in ev cm™. Thus, from Eq. (1),
UNYy—E.)! ¢ ¢
D(E,)=exp[— u/ )]
yi  \-E,

Expanding the argument, B(E,), of the exponential

2 W. Schottky, Physik Z. 15, 872 (1914).

about the Fermi level, it can be shown that?®

—B(Ez)=—bitci(Ea—§)— f(E.—$)? -+, (15)
where
bi=B($)=Uboi/x)/¥2, (16)
a=3UMW/x) /¥, 17)
=30/ x)DH1- /)3T, (18)
ty)=v(y)—3ydv(y)/dy, (19)

is another tabulated function® involving elliptic inte-
grals and x is the work function (x=v¥—¢, cf. Fig. 1).
Substituting for D(E,) in Eq. (7), considering only
the free electron mass term j.o in the present section,
gives
drmkT

—~ b1
B

. (I,
X/ eo1(Ez—) ]nl: 1 +exp<~ ‘) ]dEz; (20)
. kT

provided that the quadratic and higher order terms in
the expansion for B(E,) [Eq. (15)] can be neglected.
As a criterion for this, the condition

J1(E—§)<3, 21

will be adopted, following Murphy and Good.?® The
limits on F and 7T, imposed by this condition and
inequality (2), will be discussed later. A simple trans-
formation yields

Joo=Ae ™ / @R T=D In[1 4, dy,  (22)
¢/ kT

Jeo=g¢

where
A=g4rem(kT)*/h*=120T? amp-cm™2 (23)

Since exp(—¢/kT) is less than one, a more useful form
for 7.0 can be found by using the standard integral®

p/ p? 1 In[14-vV]dv=7/sinpr,
[

and integrating by parts, namely,
Ae™ r wcikT
(clkT)2Lsin (me1kT)

exp(—$/kT)

p(@*T=D In (14-»)dy

jc():

e—°1f<1+clr>—6], (24)

where

G= (kTcy)? f

0

o (—1)mg—ndlkT
= (c1hT)%e % 5, ——m8—— (25)
' n=1 n(n+cikT)

expanding the integral as a power series in exp(—¢/kT).

3 Integrating by parts leads to formula 856.2, H. B. Dwight,
Tables of Integrals, (The Macmillan Company, New York, 1947),
34th ed.
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When T tends to zero, the first term in the square
brackets of Eq. (24) tends to one and G tends to zero,
yielding our previous result Eq. (1.30) [cf. Eq. (1.24)7¢
apart from factors ¢ which we previously replaced by
unity. [£(y) increases from one to 1.1107 as y increases
from zero to one]. For metals, with a large positive
value of the Fermi energy, only the first term in the
square brackets of Eq. (24) need be retained in agree-
ment with the result of Murphy and Good. Vasil’ev?
has derived an expression for j. which is similar to our
Eq. (24) except that G is replaced by two terms in-
volving exp[ — (¢ci¢+¢/kT)] which do not agree with the
corresponding term in Eq. (25).

To study the dependence of j., on the Fermi energy,
Eq. (24) will be rewritten as

Jeo=Ae "Hy(c:kT 5 /kT). (24"

H, has been evaluated as a function of ¢1£7 for various
values of {/kT, using numerical integrations. The re-
sults are shown in Fig. 2 where the numbers on the
curves are the values of {/kT. The dimensionless
quantity ¢,&7T is essentially inversely proportional to F
[cf. Eq. (17)] since ¢(y) is a slowly varying function of
its argument y. Line 4 in Fig. 2 is drawn parallel to
slope of the exponential factor in Eq. (24") for typical
values of the parameters, x=4.2 ev and »=0.94. [This
also neglects the variation of the function v(y).] By
comparison with the slopes of the H; curves it is evident
that the dependence of j. on F arises mainly from the
exponential factor in Eq. (24”). Thus if the work func-
tion x is independent of F, a plot of Inj. versus (1/F)
will yield an approximately straight line for all positive
values of the Fermi energy ; any marked deviations from
a straight line will only occur if x changes with F. The
numerical analysis has also shown that the asymptotic
formula for H3, obtained by taking only the first term in
the series of Eq. (25), is already accurate to about 19},
when ¢/kT equals one.

Murphy and Good have estimated the range of E,
values which give the major contribution to the integral
in Eq. (20) and have shown that the two conditions,
inequalities (2) and (21), are satisfied if

x—V¥:i> kT (1—c:ik D)+ (4V2/37) (v:#/UY), (26)
1=k T>ET (21} @7)

respectively [cf. reference 25, Egs. (57) and (58)]. By a
graphical analysis, they further showed that these con-
ditions limit F to a finite range of values provided T is
below a certain maximum value. Since the conditions
are, however, based on very crude estimates it seems
worthwhile to introduce the following further approxi-
mations which then yield explicit limits for the allowed
range of F values and maximum allowed_temperature.
Inequality (26) can be rewritten as

1 1 vz 2 1P\t
—>cl+—{ 1——[1+——(—) ]j
kT X X 3r \U

(26")
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F16. 2. Dependence of the function H;(c:kT,¢/kT) on kT for
various values of the parameter {/kT, marked on the curves. Line
A is drawn parallel to the factor exp(—b;), in Eq. (24"), for
x=4.2 evand »=0.94.

As F increases from zero, ¢; decreases approximately as
(1/F) while the second term increases from (1/x) and
tends to infinity when F satisfies

W/ [+ (8V2/3m) (Yy/ U)]=1. (28)

Thus the right-hand side of inequality (26’) has a mini-
mum corresponding to a maximum allowable tempera-
ture T'. For T less than T, the inequality will limit F
to a finite range of values. If T is well below T, the
lower limit can be estimated by setting the square
bracket equal to one and the upper limit by neglecting
c1. Thus

3UNETY pie 2[ 1—(kT/x) ]2 (20)
M1—ET/x] X 1+ (4v2/31) (x/U)t)

replacing the small quantity (¢;/U) by (x/U) in the
expression for the upper limit. Now each of the factors
in the square brackets and the function ¢ are close to
unity. Thus, substituting from Egs. (12), (13), and (17)
gives, to a good approximation,

2(2m/W) kT <F < (x/vq)?, (29")
2.6X10%}(T/300) <F <6.95X108(x/»)?, (29")

where F is in ev/cm and x in ev. A more accurate esti-
mate for the limits on F can be obtained by using
inequality (29) with the argument of ¢ determined by
estimating F from the lower limit of inequality (29').
The lower limit on F, given by inequality (29) is
equivalent to our previous estimate derived by a simpler
argument [inequality (I.27) with ¢ instead of x for
negative Fermi energies, cf. next subsection]. The upper
limit is less stringent than our previous estimate [in-
equality (I.5)] since we took E,=0 in inequality (2)
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rather than estimating the largest value of E, for which
it should apply.

The limiting temperature T, can be derived from
inequality (26’) and is approximately given by (as-
suming {~1)

x 3/U\} U\t /4v2 i
) v H ) (5) ]
kT 2\x X T U
For example, if x=4.5 ev and v=1, T,~2900°K. If T
is close to T, inequality (29) overestimates the allowed
range of F values and the original inequality (26) must
be used.

Next, the second condition (27), due to Murphy and
Good, will be considered, rewritten in the form

1/ET>ci[ 14 (2f1)¥ci]. 27)
From Egs. (17) and (18), and using the approximate

identity
v()E() = (1—9?), 31
given by Murphy and Good?® [Eq. (65)],
@)Y =2 (x/ Ui/ x)- (32)
Thus substituting from Eq. (17),
WE>3UNRTI 1+ (RT/2x)Y/1], (33)

replacing (¥i/x) in the small term inside the square
brackets [cf. Eq. (32)] by its lower limit with the
square bracket and ¢ replaced by one. Since kT/x is a
small quantity, the lower limit of ¥; (or F) will be given
by inequality (33) rather than inequality (29) although
the difference between the two is very small.

The two inequalities (26) and (27) were derived by
Murphy and Good for the case of metals, i.e., a large
positive Fermi Energy {. Actually, it is only required
that the integrand of Eq. (20) have its maximum at a
value of E, greater than zero. If the maximum occurs
below zero, i.e., outside the range of integration, the
important range of E, above zero can be estimated by
requiring that the integrand decreases by about a factor
e from its value at E,=0. We then find that the quan-
tity x in inequality (26) should be replaced by ¢ and the
factor (2f1)# in inequality (27) should be replaced by
[(1/2f1)44-¢T if ¢ is negative. The upper limit on F
will become very restrictive when —{ approaches
(2f1)7%. Thus although Eq. (24) for 7 is applicable for
small negative values of { it is preferable to use another
expansion for the integrand in Eq. (7) when ¢ is
negative.

3.2 Negative Fermi Energy

Expanding B(E.) [cf. Eq. (14)] about E,=0, rather
than E,=¢ as in the previous subsection, leads to

_B(Ez)= _bO+COEa:‘”f0E:62' )

where bq, ¢o, and fj are defined similarly to by, ¢1, and fy

(34)
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F16. 3. Dependence of the function Ho(cokT,i/ET) on cokT for
various values of the parameter {/%T, marked on the curves.

[Eqgs. (16) and (18)] except that x is replaced by .
Proceeding as in Sec. 3.1 [Egs. (20) to (25)] we then
find

Jeo=4 exp(—bo+tcof)

exp($/ & T)
X/ y— ek In(14-v)dv  (35)
0

4 ( bt )x 5 e 6)
= X — —_— ) 3
T ) S e D b L— ek T) (

expanding the integral as a power series in exp(¢/ET).
Retaining only the first term in the series gives

Jeo== AL exp(—bo+{/RT)]/ (1—cokT)

=gn(kT/2xm)* exp(—by), (36"

using the relation between the Fermi energy ¢ and
electron density »,

exp(§/kT)=n/Co=3%nk?/ 2uemkT)},

which applies if (—¢/kT) is large compared to one.
Apart from the factor (1—cok7), which we previously
neglected, Egs. (36") and (1.29) are equivalent.

The function Ho(cokT,¢/kT), defined by rewriting
Eq. (35) in the form

j00=A eXp(“‘bO'i_g-/kT)HO(COkT7§/kT)y

has been evaluated as a function of c¢okT" for various
values of {/kT, using numerical integrations. The re-
sults are shown in Fig. 3. Comparing with Fig. 2 it will
be seen that Hy varies even less than H; as kT (or F)
changes so that the dependence of j, on F will be
mainly determined by the exponential factor in Eq.
(36”). Similarly to the case of positive Fermi energy
energies, any marked deviation from a straight line, on
a Inj. versus (1/F) plot, will only occur if ¢ changes
with F. (Note: ¢, being a bulk property, should be
independent of F).

A simple extension of the analysis by Murphy and
Good shows that the conditions on F are again given by

(37)

(36”)
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inequalities (26) and (27) [or their simplified versions
(29) and (33)] except that x must be replaced by ¢
wherever it occurs. The two expressions for 7., derived
separately for positive and negative values of ¢, become
equivalent for small values of . This can best be seen by
comparing Eqs. (22) and (35). The integrals are identi-
cally equal and &y =bo—cof if fof><%. [Cf. Eq. (15) and
inequality (21).]

4. EFFECTIVE MASS CORRECTION

The full expression for the current density j. emitted
from the conduction band [Eq. (7)] will now be con-
sidered when the effective mass m,, differs from the free
electron mass m [cf. Eq. (8)]. Let

Yo=1— (mn/m). (38)

Then D(v.E,) can be expressed in the form of Eq. (14)
for D(E,) with U, ¢ and ¢, replaced by U’, ¢/, and ¢/,
respectively, where

¢'=¢/7n’ ¢il='§[/i/’Yn,

ie.,

U=U/vn
F'=F/vz2. (39)
The correction term in Eq. (7) can thus be calculated in
the same manner as the leading term 7. in the previous
section, by making these replacements, but keeping the
Fermi energy ¢ and £T unaltered.

Considering the case ¢ <0 first, it can be shown that
corresponding to Eq. (39),

bo'=by, ci'=7vnco, fo'=7af0. (40)
Thus, using Eq. (36",
Jo=A exp(—bot+i/kT)[HolcokT ¢ /kT)
—YuHo(vacok T, /RT)].  (41)
When {>0, the modified work function,
x'=¥'—¢=[x+A=va);1/vn (42)

replaces x in the correction term. It can further be
shown that

b'=by, c'=val1, fi'=7aifs, (43)
where the bars on by, ¢1, and fi indicate that x must be
replaced by [x+ (1—7.,){ Jin their definitions [Eqs. (16)-
(18)]. Since (1—v,)¢ is often considerably less than x
for semiconductors with a partially degenerate surface,
the distinction between &; and by, etc., can usually be
neglected. Using Eq. (24")

].c=A[6_bXH1 (ClkT,f/kT)
—%Yn €Xp ('_ Bl)Hl ('YnélkT,g‘/kT)]'
The conditions on F can be deduced by making the

necessary substitutions from Eqs. (34), (42), and (43)
into conditions (24) and (33).

(44)

5. THE INTERMEDIATE RANGE OR
T-F EMISSION

It will now be assumed that most of the emitted
electrons come from energy levels well above the Fermi
level but still below the top of the barrier so that they
must tunnel through the barrier, rather than going over
it as in thermionic emission. It will shortly be shown
that this occurs for fields which are below the lower
limit for field emission, discussed in Sec. 3.

Vasil’ev? has already derived the expression for the
emitted current density j.o (assuming the free electron
mass) for this intermediate range. The calculation will
be briefly repeated for three reasons. First, the final ex-
pression for j.o will be given in a form more amenable to
numerical evaluation than Vasil’ev’s expression. Then
the very complicated conditions for the intermediate
range given by Vasil’ev, following Murphy and Good,?®
will be simplified, leading to explicit expressions for the
upper and lower limit on the field. This shows clearly
that Vasil’ev’s comparison of his result wlth the present
author’s earlier field emission calculation is irrelevant
since the two results apply in different field ranges.
Finally the effective mass correction for the emitted
current density will be derived.

The emitted current density from the conduction
band, assuming a free electron mass for the present is
given by [cf. Egs. (7) and (14)]

kT ir [ [ T )} (45)
0= e expl ———B(E,) [dE,, (4
A [) PL%r
if
exp[(E.—{)/kTT>1. (46)

The integrand will have a maximum at a value E,, of E,
which satisfies the equation [cf. Eq. (15)]

emkT=1, 7

where ¢, is given by Eq. (17), for ¢;, with x replaced by
(¥ —En). From inequality (46) it follows that ¢, must
be less than ¢i. Thus Eq. (47) will only be satisfied if
cikT is greater than one. This is essentially the converse
of the previous condition which gave the lower limit on
F [cf. inequality (27")] for field emission.

Expanding about E,=E,, gives

B(E:c)‘l"Ez/kT:bm+5mEm+fm(Ez_Em)2' "y (48)

where b, and },, are given by Egs. (16) and (17) with x
replaced by ¥ —E,. Substituting into Eq. (45) then

leads to

B (e
0=——exp| ——b,,——
1=k P\ AT

r\}
X(};> {1+erf(E.fxaY)}. (49)

This is equivalent to Vasil’ev’s?® Eq. (15) as may be
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verified by substituting for f, from Eq. (18) [using
Eq. (31)], exp¢/kT from Eq. (37), U from Eq. (12), ¢
from Eq. (13), and 4 from Eq. (23). {Vasil’ev’s state-
ment that if E,,=0, Eq. (49) reduces to our earlier result
(1.29) [cf. Eq. (36")] is incorrect due to the additional
factor [(w/fo)}/2kT7] which then occurs in Eq. (49).}

Explicit values of j. for a given value of F and T can
be derived by solving Eq. (47) for E,, and substituting
into Eq. (49) or Vasil’ev’s result. A more useful form of
Eq. (50) can be derived by introducing the dimensionless
quantity

Pr=(4/2T0WA U RT)* 1« F2/T". (50)

Then
fnt=[2(t.)%TPT, (51)
E,=y—3kTP/t,2, (52)
b =2Vn/tn?) P2, (53)

using Egs. (16)-(18), (31), and (47). Substituting into
Eq. (49) then gives

Jeo=A (3wtn) P exp{— (x/kT)+ P}

where the function
0(y)=3t"2(y)—20()t3(y), (55)

has been tabulated by Murphy and Good.?s The suffix
m on ¢t and @ denotes that these quantities have the
argument

Yn=Vi/ @—En). (56)

For a given value of P, y,, can be determined by combin-
ing Egs. (50) and (52) in the form

tw2/ym=PY(12kT/U)t. (57)

The advantage of Eq. (54) over Eq. (49) is that, since
0 and ?,, are slowly varying functions of y.,, the solution
of the subsidiary Eq. (57) need not be known with great
accuracy. Use of Eq. (49) however requires an accurate
solution for E,, from the subsidiary Eq. (47).

It will shortly be shown that the argument of the
error function in Eq. (54) is large if the Fermi energy is
large. The error function can then be replaced by one
and Eq. (53) reduces to the result for metals given by
Murphy and Good.?® [Their Eq. (75).] Since the error
function lies between zero and one for any value of the
Fermi energy, j.o is approximately proportional to the
exponential factor. Thus, if x is independent of F, a plot
of Inj versus F2 will give an approximately straight line
since 0,, is a slowly varying function. Alternatively, a
plot of Inj., versus (1/F) will give a curve which is
convex towards the origin.

Murphy and Good?® have shown that the conditions
for which inequalities (2) and (46) will be satisfied are
approximately

Y—En>yit+kTd*(d—1)7, (58)

where
w2 ‘pl% V2 tm(‘p" Em)*
S AL e : (59)
3r UT = Vb
and
x> xg¥/ bl kT (1—g/t) ™, (60)
where
g=3/ U%T, (61)

respectively [cf. reference 26, inequalities (62) and (69);
71 is the value of £(y) when y=y./x]. These will now be
further simplified by making additional approximations.

Eliminating (y—E,,) between inequality (58) and
Eq. (59) leads to

[(@¥/8t.2)d—1](d—1)d—*>1, (62)

where
1= (4V2/3x)}(kT/U)}, (63)

is a small dimensionless quantity equal to about 0.05 at
room temperature. The left-hand side of inequality (62)
is positive if d is less than 2V2¢,/m or greater than one
and negative if d is between these roots. Now #,, is itself
a function of d; its argument is 8¢,.2/7%d? [cf. Eq. (54)].
Thus when d equals 2v2t,,/m, the argument of ¢, is one,
so that £,=1.1107 and the corresponding value of d is
1.0001. Hence the two roots actually coalesce at d=1
and inequality (62) will be satisfied if

d>1+GDH00). (64)

[The other possibility, d<1—(3l)}, can be rejected
since it implies ;> — E,, which is impossible. ] Substi-
tuting from Egs. (12), (13), (59), and (63) gives

WzmquV 2/3 4 h1/3k1/6T1/6
>(To) e 1
hZ
or

F>2.2X10852/3(T/300)43[14-0.21 (T//300)1/6 /52137,

e 65
3\/27r1/3,,n116q2/31/2/3], (65)

where F is in ev/cm:
The second condition given by Murphy and Good
[inequality (59)] can be rewritten as

(g+1n) (g—1m) (§—10)/tw’tr> T /x. (66)

Let #,+38 be the value of g for which the two sides of
this inequality are equal. Then

(RT/x) =25 (tn— 1)/ tud14-8*Bbm— 1)/ u2i+O (),  (67)

(Note: kT/x is always small). In Appendix II it is
shown that (¢,—f1) is considerably less than § and that &
is negative. Hence inequality (60) will be satisfied if

g <tm—1tn(kT/2x)* 40 (KT/x). (68)

{The other possibility, g>tn+im(ET/2x)}, can be re-
jected since g is approximately equal to (1/¢:ikT) [cf.
Eq. (17)7] which must be less than one as pointed out in
connection with Eq. (47).} Substituting from Eq. (61)
gives

2<3U R TIa[1— (BT/220)1], (69)
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i.e., essentially the inverse of the condition [inequality
(33)] which gives the lower limit on F for the field
emission range [cf. Eq. (29') for the explicit condition
on the field].

The quantity P [Eq. (50)]is equal to (x/3kT)%g [cf.
Eq. (61)]. Since g is approximately less than one, the
argument of the error function in Eq. (54) will be
greater than about 3¢ (xkT)—%. For metals this quantity
is sufficiently large to make the error function equal one
as was implicitly assumed by Murphy and Good.

The two basic inequalities (58) and (60), quoted from
reference 26, were derived for metals. Inequality (58)
[or its simplified version (65)] actually holds for all
values of the Fermi energy. For a sufficiently large
negative value of the Fermi energy, inequality (46), will
be satisfied for all values of the field. The upper limit on
F will then be given by the condition that E, must be
greater than zero. From Eq. (52) [using Eq. (50)] it can
be seen that this merely requires that x be replaced by ¢
in inequality (69), the term in square brackets being
omitted.

The complete expression for the emitted current
density 7, including the effective mass correction, can be
derived by replacing the parameters in Eq. (54) ac-
cording to the prescription in Sec. 4 [Egs. (34) and
(42)7. In particular

P'=P/v., (70)
and if Eq. (54) is rewritten as
jc():AHzEX/kT,t///kT,P], (71)

then

J=A{H:x/kTY/kT,P]
_'YwH2[{X+('Yn—' 1)?}/71!]311; \b/'YnkT; P/’Yn%:l}' (72)

6. FIELD EMISSION FROM THE VALENCE BAND

It will first of all be assumed that the hole Fermi level
at the surface is several 27" above the top of the valence
band, i.e., (E,4¢)/kT is considerably greater than one
and the hole distribution is non-degenerate. If further
E.(E.) is sufficiently small compared to £, then the
first integral in Eq. (11) is over a region near the top of
the valence band, and the upper limit £, may be taken
as infinity, since D,(—E ) decreases very rapidly as E ,
increases from zero. Similarly, the second integral,
which is over a region near the bottom of the valence
band, may be neglected. We thus assume that

Eu(B )= (mp/mE., ma/m<1, (73)

where m,, is the effective hole mass near the top of the
valence band, the only region from which electron
emission is important. Expanding about E,=0,

D,,(—E-x)=exp(~bv—C»E:c—f»Ez2"'), (74)

where b,, ¢,, and f, are given by Egs. (16), (17), and
(18) for by, c¢1, and fi, with x replaced by y+E,.
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Substituting into Eq. (11), taking y,=1—m,/m, gives

PP / 4B (B 4B, 4-3)/ (RTY:
(]

X[~exp(—alz)+v, exp(—rpe.l)], (75)
provided that
fiB 2<% (76)
Thus, evaluating the integral
Jo=Ae P (c.kT)2(y,—1). (7

Since 4 is proportional to 7%, j, is independent of tem-
perature as would be expected.

The main contribution to the integral in Eq. (75)
comes from values of £, in the range 0 to (1/v,¢,). Thus
inequality (76) will be satisfied if

(2fw)%<cv7m (78)

or, substituting from Egs. (12), (13), (17), (18), and
31), if

F <4(2m/1)'t,"y,* Y+ E,)}
<2.0X10%4y,2 @+ E,)3,

(78)
(78")

where F is in ev/cm and ¥+ E, in ev.

If (m,/m) is not less than one, contributions from
lower lying portions of the valence band cannot be
neglected. The calculation for j, then requires a detailed
knowledge of the relation between electron energy and
momentum over an appreciable portion of the valence
band.

The calculation has only been carried out for a com-
pletely filled valence band since only the rather unlikely
occurrence of a strongly degenerate p-type surface would
lead to a result substantially different from Eq. (77). It
would however be an easy matter to extend the calcula-
tion, for an arbitrary Fermi energy, along similar lines
to Sec. 3. In particular, for a degenerate p-type surface,
the predominant exponential factor in Eq. (77) would
have b, replaced by b, [cf. Eq. (16)].

It seems reasonable to suppose that emission from the
valence band will predominate over that from the con-
duction band if the Fermi energy is large and negative
(few electrons in the conduction band) and vice versa if
the Fermi energy is large and positive. It is however not
possible to give a simple criterion for the Fermi energy
at which the two emissions will be comparable due to the
complicated dependence of the two emission currents on
various parameters.

An approximate derivation by Morgulis (cf. reference
6) gave j, proportional to exp(—b,!), where b,! differs
from b, [cf. Eq. (77)] by having y+ E ,+ 3aE, instead of
Y+E,; in the defining Eq. (16). (The coefficient of
proportionality was not evaluated.) The parameter «
was taken as approximately one.
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7. SURFACE SPACE-CHARGE REGION

In the previous sections, the emitted current density
was derived in terms of the Fermi energy and work
function at the surface of the semiconductor. The rela-
tion between these parameters (written with a suffix s
in future) and the bulk parameters of the semiconductor
will now be considered. Let F, be the internal field at the
surface, taken as positive if it acts in the opposite
direction to F. Then

F+eFy=—4ngo, (79)

where g, is the surface charge density arising from sur-
face states. It is also useful to introduce the following
special values of F, F,, and o4, namely,

eF jo=—4mqo 5, (79a)
and

Fi=—4wqoy, (79b)

the latter giving the flat band condition.

The expressions for the emitted current density from
the conduction band involve the Fermi energy ¢, at the
surface as a parameter. If F; and o, are known as
functions of {, then ¢, can be calculated from Eq. (79),
for a given value of F. The dependence of F; and o, on
¢s will be derived on the assumption that the Fermi
level, for both electrons and holes, does not change
appreciably in the space charge region and also defines
the occupancy of the surface states. This assumption is
discussed in Appendix ITI where it is shown that it
should apply for semiconductors whose bulk electron
density is sufficiently high and in the absence of field
emission from the surface states. (It is intended to in-
vestigate other cases, where the assumption does not
apply, in future work.)

With the assumption of a constant Fermi level it is
possible to derive the relation between F, and {, by
solving Poisson’s equation in the space-charge region.
In Paper I we considered an n-type semiconductor and
neglected the contribution to the space charge from
holes. This is reasonable for a material with a large
energy gap such as SiC [E;=2.9 ev(a) or 2.2 ev(8)],
which was chosen as an example for the computations.
Detailed results were only worked out for the extreme
cases corresponding to |{s—¢s|/kT very much greater
than one. ({5 is the value of the Fermi energy in the
bulk material.) In the present paper we consider the
calculation for arbitrary values of {; and also include the
space charge contribution due to holes which is im-
portant for materials with narrower energy gaps such as
Si and Ge. Following Kingston and Neustadter,” the
relation between F, and {, can be written in the form

Fs: (kT/LD)FKN (ub)ué): (80)
where
uy=(§o—5)/ kT, u,=($—$)/kT,
Lp= (kT /8m¢g?n;), (81)

is the Debye length, #; is the electron density, {; the
Fermi energy of the intrinsic semiconductor, and
Fxrx (#5,45) has been computed for various values of the
arguments. (See reference 34 for an extension of
Kingston and Neustadter’s computed results to higher
values of %, and #,.) Equation (80) only applies if the
iree carrier distributions are nondegenerate and if the
impurities are fully ionized. This requires that —¢,,
Ey,4¢, and the separation between each impurity level
and the Fermi level, are all greater than about 3%T.
Seiwatz and Green?® have extended the calculations by
removing these restrictions. It is then not possible to
derive F, from a universal function as in Eq. (80); the
energy gap, impurity levels, density of states masses and
the temperature must be specified. As an example,
Seiwatz and Green?® considered n-type Ge at 300°K
[donor activation energy 0.1 ev, E,;=0.65 ev, (m,/m)
=0.412, (m,/m)¥=0.216] and calculated Fxy, as de-
fined by Eq. (80), for this specific case. It turns out that
the value of Fxy is approximately independent of #, if
0<%#3<6 and |u,|>12. The computed field emission
curves, presented in the next section, are based on the
particular parameters assumed by Seiwatz and Green?®
so that the results of their calculation may be used.

For extreme degeneracy, i.e., when {,/kT is very
much greater than one, the simple relation, previously
derived in I

g‘s:x(EFS)MSJ
1/15\2/5  }8/5
8e
8\ 2¢ M35
(m/mn)3!5

e2/5

(82)
4,708 X 1077 ev'/5 cm*/3,

may be used.?® The values of {/kT for which this equa-
tion is reasonably accurate can be estimated by com-
paring with the exact result given by Seiwatz and
Green.?® For a given value of F,, {;, deduced from Eq.
(82), will be too large, by less than 69, if ¢,/kT is
greater than about 3 (Note: {;/kT=—12.9). However,
for a given value of {,, F; deduced from Eq. (82) will be
too small, by about 409, if {,/kT is about 3. For a better
than 6%, accuracy in this case, {,/kT must be greater
than about 9.
The surface charge density is given by

UO:QE(Nd"‘nd)'—(Na—Pa)]’ (83)

where N4 is the density of donor type surface states,
occupied by n4 electrons and N, is the density of ac-
ceptive type surface states, occupied by p, holes. In
general, the right-hand side of Eq. (83) will be summed

#C. E. Young, J. Appl. Phys. 32, 324 (1961).

35 The value of A given by Eq. (I.25) or contains arithmetical
errors. Also the first factor 2 in Eq. (I.18) should be deleted and
the following numerical factors should be replaced: 16 by 8 in
Egs. (1.25) and (1.26), 0.78 by 0.55 in Eq. (1.26) and 1.2X10° by
8.6X10% in Eq. (I.26a).
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TasrE I. Parameters selected for the calculated dependence of

the Fermi energy at the surface on the applied field (see Figs.
4 and 5).
Fy (107 Fq (105 N, (108
ev/cm) (¢s0—8b)/kT  ev/cm) cm™3) E. kT o/kT
1 —12 1.65 0.55 9.4 165
3 -7 1.81 1.83 16.0 170
3 —12 0.26 1.67 10.6 165
3 —18 1.65 1.67 2.6 159
5 —-12 1.65 2.66 111
3.95 —18.8 2.4 oo (R 158

or integrated over a discrete or continuous distribution
of surface levels, respectively. The quantities #4 and pq
are given by

na/Na=[1+exp{— ¢+Ed)/kT} 7, (84)
po/No=[1+exp{(cc+E,—EJ)/kT}]7,  (85)

where Eg is the donor and E, the acceptor surface state
activation energy (cf. Fig. 1). (These are effective
activation energies which include a term &7 Ing, where g
is a measure of the state degeneracy. For a doubly
degenerate center, g equals 0.5.)

The surface states model considered in I consisted
of a single donor and a single acceptor level with
(Ej+ts—E,)/kT always greater than one so that p,
was zero. In the present paper two alternative distribu-
tions of surface levels are considered which may apply
for a clean Ge surface.?6-38

First only a single acceptor surface level will be
assumed. Then from Egs. (79), (83), and (85)

os=—gN J1+exp{(E.~E,—{,)/kT} T, (86)
FteFy oy 1-exp{(EamE,—tu)/kT)
Fro ow Atoxpl(Ba—Es—t)/kT) -
Fi ou 14exp{(BamEo—tu)/kT)

Foo 0s 1+exp{(Ea—E,—¢0)/kT}

where {4 is the value of {, when F=0. As a specific
example, n-type Ge, at room temperature, will be con-
sidered wlth %3 equal to 6, or {»/kT=—6.9, i.e., a bulk
electron density of about 10'® cm™2. If {0 and F are also
specified, ¢, can be evaluated as a function of F from
Egs. (80) (using references 27 and 28) and Eq. (87). The
three values of F; selected (cf. Table I) are such that the
electron distribution at the surface is either non-
degenerate (F;=5X107 ev/cm), degenerate (F,=1X107
ev/cm) or changes from nondegenerate to degenerate
(F1=3.10" ev/cm) as F increases from 2 to 4X107
ev/cm, the range for which field emission currents will

36 W, Portnoy and P. Handler, University of Illinois, Electrical
Engineering Research Laboratory, Technical Report No. 2, 1959
(unpublished).

37 P, Handler and W. Portnoy, Phys. Rev. 116, 516 (1959).

38 P, Handler, J. Phys. Chem. Solids 14, 1 (1960).
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Fi6. 4. Dependence of the reduced Fermi energy at the surface
(ts/FT) on the applied field F for a single surface acceptor level.
The numbers, in parenthesis, on the curves refer to the value of F,
and (¢s0—¢w)/kT respectively, for the five cases listed in Table I.
Calculation for #-type germanium at room temperature.

be calculated. The calculated dependence of {,/kT on
F, for each of the five cases listed in Table I, is shown in
Fig. 4. The effect of different initial barrier heights is
illustrated by the three values of ({,0—¢»)/kT chosen in
association with F1=3X107 ev/cm. (The curves for the
two higher barriers coincide for fields greater than that
for the flat band conditions). The rapid variation of ¢,
when F is near F; becomes more pronounced as the
initial barrier height is increased. The two cases corre-
sponding to F1=1X107 ev/cm and F;=5X10" ev/cm
have been worked out for only one initial barrier height
each; the shape of the curves for other barrier heights
will be similar to those for F1=3X10" ev/cm except for
the different values of F for which the flat band condi-
tion occurs.

As is to be expected, the first point of inflexion, as F
increases from zero, on each of the curves, occurs for a
value of ¢, close to E,— E,, i.e., when the Fermi level
coincides with the surface state level.

The derived quantities Fo [from Eq. (80)], E./kT
[from Eq. (87a) using E,/kT=25.27, and N, [from
Egs. (79a) and (86)] are also listed in Table I. (The
column y,/kT will be discussed in the next section.) The
flat band condition will only occur in the selected field
emission range if N, is about 2X10% ¢cm=2. (This con-
clusion is not confined to n-type Ge.) If N, is greater
than about 2X10% cm™2, any initial internal surface
barrier is sustained, although somewhat lowered, in the
field emission range. If N, is less than about 1107
cm~2, field penetration will lead to a degenerate ac-
cumulation region at the surface, the value of ¢, being
only slightly dependent on the value of N..

Next, a continuous distribution, or band of acceptor
surface levels will be considered. Then

Ea2

[1+exp{(E.+E,—¢)/RT} I
' XIUE )dEa,

0= —(
a

(88)
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Fic. 5. Dependence of the reduced Fermi energy at the surface
(¢s/kT) on the applied field F for the surface states model proposed
by Handler,?® for #-type germanium at room temperature.

where 9U(E,) is the density of states per unit energy and
the band edges are at E,; and E,.. Such a model has
been suggested for Ge® with 9U(E,) assumed to be
constant and equal to about 4X10¥ cm—2 ev—! and
(—Ea+tEy+¢s0)/kT approximately equal to 2. Thus,
taking the upper limit as infinity,

os=—qWkT In[14+exp s+ E,—Ea)/kT].  (89)

Proceeding as for the previous case of a single level leads
to the derived parameters in the last line of Table I and
the dependence of {; on F, shown in Fig. 5. Since the flat
band condition occurs near the upper limit of the pre-
viously selected field emission range, the calculation has
been extended to higher values of F. By comparing Figs.
5and 6 it can be seen that the continuous distribution of
surface states leads to a far more gradual variation of ¢,
as F passes through the flat band condition.

8. RESULTS AND DISCUSSIONS

The field emission current j, from the conduction
band, for a given value of the applied field F, was
derived in Secs. 3 and 4 in terms of a field-dependent
surface Fermi energy ({;) or work function (x,). Thus,
with the results of the last section, j. can be evaluated
as a function of F. Besides the parameters required for
the surface space charge calculation, (bulk Fermi
energy, impurity level, energy gap, density of states
masses, dielectric constant, and temperature), the con-
duction band edge potential ¢, (cf. Fig. 1) and a suitable
effective electron mass, for the tunneling probability,
must be specified.

Figures 6 and 7 show computed conduction band field
emission curves based on the particular example of
n-type Ge considered by Seiwatz and Green?® in their
surface space-charge calculation. The effective mass
which enters into the tunneling probability, calculated
for spherical energy surfaces in Sec. 2, has been assumed
equal to the inertial mass® of the ellipsoidal, conduction
band, energy surfaces® of Ge, i.e. m,/m=0.12. Various

3 C. Herring, Bell System Tech. J. 34, 237 (1957).
4 F. Herman, Proc. Inst. Radio Engrs. 43, 1703 (1957).

experimental determinations of the work function, (xs0)
for a Ge surface, produced either by cleaving in a high
vacuum,” or by argon ion bombardment,” or by evapo-
ration of a film onto a metallic substitute,® all gave
values close to 4.75 ev. No appreciable variation in x,o
was observed for a wide range of doping levels and
temperatures.* This indicates that a sufficiently large
density of surface states was primarily responsible for
the magnitude of xo. Since xs0 equals ¥,— {40, the value
of ¥, was taken as (4.75+s0) ev, for each of the ex-
amples listed in Table L.

Field emission curves for the case of a single, acceptor
surface level are shown in Fig. 6. Curve (18,3), which
shows a rapid increase in j, as F increases though the
value of F; (flat band condition), is similar to our previ-
ously calculated (cf. I) field emission curve. The rapid
increase in j,, for F near Fy, is progressively reduced in
curves (12,3) and (7,3) as the initial barrier height is
lowered. This reflects the similar behavior of the Fermi
energy at the surface (cf. Fig. 4). Curves (12,1) and
(12,5) are essentially straight lines since neither x, nor
{s, respectively, are rapidly changing functions of F.
[The fact that curve (12,1) is actually a straight line, to
the accuracy of the figure, is accidental and depends on
the particular set of parameters assumed. | The shape of
the five curves beyond the range of fields considered in
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F1e. 6. Conduction band field emission curves [logj, versus
(1/F)] for a single surface acceptor energy level. The numbers, in
parenthesis, on the curves refer to the value of F; and (¢s0—¢5) /BT
respectively, for the five cases listed in Table I calculation for
n-type germanium at room temperature.

4 D. Haneman, J. Phys. Chem. Solids 11, 205 (1959).

(1;2517.) A. Dillon, Jr., and H. E. Farnsworth, J. Appl. Phys. 28, 174
2 L.-Apker, E. Taft, and J. Dickey, Phys. Rev. 74, 1462 (1948).
“F. G. Allen, Ph.D. thesis, Howard University, 1955 or Cruft

Laboratory Technical Report No. 237,f (unpublished).
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Fig. 6, is obvious. Curve (12,1) decreases sharply for
smaller F, near F=1X107 ev/cm and curve (12,5) in-
creases sharply for larger F, near F=5X107 ev/cm. In
the opposite direction both curves, and all the other
curves, continue as approximately straight lines.

The field emission curve for the case of a linear dis-
tribution of surface states is shown in Fig. 7. Just as for
the case of a single surface level, there is a point of
inflexion for F near F;. However, the variation of the
slope is far more gradual than for the curves, with
F1=3X107 ev/cm, in Fig. 6. More complicated distri-
butions of surface states, than either of the simple cases
treated in this paper, will lead to correspondingly more
complicated field emission curves which may show more
than one point of inflexion.

The field emission current from the valence band in
Ge has been calculated from Eq. (77) and is also
plotted in Fig. 7. Contributions from light-hole mass
(myp/m=0.043) and heavy-hole mass (m,/m=0.35)
states have been added together, the former being
predominant.

By comparing Figs. 6 and 7, it will be seen that, for
our model of Ge, field emission from the valence band
predominates over field emission from the conduction
band except when F; (or the surface states density N,)
is sufficiently low to permit strong field penetration, as
exemplified by curve (12,1) in Fig. 6. The calculated
conduction band field emission curves, for the other
cases, have nevertheless been presented in detail since
they are of interest for other semiconductors, with a
wider energy gap than Ge.

The most reliable experimental determination of field
emission from a clean Ge surface is that due to Allen
who observed the characteristic symmetrical pattern.
He was, however, unable to determine the geometry of
the Ge emitter tip so that his experimental results are
given as the dependence of the total emitted J on the
applied voltage V. Allen finds that?

I=Cexp(—W/V), (90)

where C=32 amp and W=9.4X10* v. We now make a
crude estimate to see whether Allen’s data are consistent
with field emission from the valence band. For the
latter one can write

Jv=c exp(—w/F), (91)

where ¢= 5.8 X10" amp-cm™2, and w=7.3X108 ev-cm™,
can be determined from Fig. 7. In the absence of any
information about the emitter geometry, it will be
assumed that

V/F=W/w=r/8, I/j=rQ=C/c, (92)

where 7 is the (minimum) radius of curvature of the
apex of the tip, 8 is a numerical factor, typically*
around %, and 72Q is the emitting area. Use of the
Fowler-Nordheim equation has shown?*s that Q should be

4 E. E. Martin, H. W. Pitman, and F. M. Charbonnier, Wright
Air Development Center, Air Research and Development Com-

8ﬁind, United States Air Force, Wright-Patterson Air Force Base,
o.
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Fic. 7. Field emission from the conduction band (curve .A),
assuming the surface states model proposed, for #-type germanium
at room temperature, by Handler,® and from the valence band
(curve B).

in the range of about 1 to 4 for representative tip shapes.
Substituting numerical values into Eq. (92) leads to
r=2.6X10"5 cm and 2=238.3 with 8=2%. Due to the un-
certain value of 3, the experimental results cannot be
considered as inconsistent with emission from the
valence band simply because Q is greater than 4.

Allen’s experimental results, Eq. (90), can also be
compared with the conduction band field emission curve
(12,1) in Fig. 6 for which ¢=1.1X10"° amp cm™? and
0=06.3X108 ev-cm™.. Thus, using Eq. (92) and Allen’s
experimental values for C and W, r=2.9X107% cm and
Q=23.3 which makes conduction band emission slightly
more plausible than valence band emission. However,
Allen’s data are definitely inconsistent with the straight-
line portions of any of the other curves in Fig. 6. The
determination of the temperature dependence, if any, of
the emission current would have been of interest since
field emission from the conduction band depends on the
temperature [unless the surface is extremely degenerate
and Eq. (82) applies] while field emission from the
valence band does not.

Klimin, Sedykh, and Sokol’skaya?? also measured I as
a function of V for Ge and gave results at several tem-
peratures from 295°K to 630°K. They reported that
they were unable to obtain the characteristic emission
patterns and that their emitters were probably covered
by an oxide layer. (Our calculation is thus not really
applicable since the surface states distribution is more
complex and tunneling through the oxide layer should
be considered unless it is very thin.) At 295°K, their
experimental results obey Eq. (90) with C=0.23 amp
and W=23.8X 10* v. Comparing this with emission from
the valence band gives 7=1.0X10"5 cm and ©=0.037.
Alternatively, comparing with the conduction band field
emission curve (12,1) in Fig. 6 gives r=1.2X105 cm
and ©=0.15. Both values of © are too low, which sug-
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gests a decrease in tunneling probability arising from
the oxide layer; however, conduction band emission is
again somewhat more likely. This is consistent with the
experimental finding that I, at a given V, increases as
the temperature rises. It is of interest that at the highest
value of ¥V employed, namely 4X10? v, J became inde-
pendent of 7. This suggests strong field penetration,
leading to an extremely degenerate surface electron
distribution so that the temperature-independent Eq.
(82), for ¢,, applies.

Elinson and Vasil’ev’s?' room temperature data (cf.
their Fig. 2) also fits Eq. (90) (with C=0.66 amp and
W=6.0X10* v) over a portion of the applied voltage
range. The absence of a symmetrical emission pattern
again indicated that an oxide layer covered the emitter
surface. An attempt to fit the data to either valence
band emission or the conduction band emission curve
(12,1) gives 7 values of 1.6XX107% cm and 1.9X1075 cm,
and Q values of 0.043 and 0.17, respectively. These re-
sults are close to those deduced from the measurements
of Klimin, Sedykh, and Sokol’skaya.?? Elinson and
Vasil’ev also measured the field emission current at
1023°K and obtained a curve which was convex towards
the origin on a InJ against 1/V plot. They concluded
that this was in qualitative agreement with 7-F emis-
sion from the conduction band. If their data are re-
plotted as InJ versus V2 a straight line is found for V
greater than about 4.6 X 10° v. However, comparing this
with Eq. (54), it turns out that the deduced range of F
values would be too small for 7-F emission, i.e., in-
equality (65) is not obeyed. This is not intended as a
stringent test of whether 7-F emission applies since it
neglects the field dependence of other factors in Eq.
(54), but it indicates that a more quantitative analysis
is needed to identify the nature of a measured emission
current.

Elinson® has pointed out that, for sufficiently high
emission currents, the hot-electron?® and Poole-Frenkel*”
effects become important. He calculated the electron
temperature 7.(F;) and the increased free electron
density n'(F3), for a partially ionized semiconductor,
in terms of the “internal electric field Fy'’. Since the
calculation is carried out as though Fy were a constant
field, acting across a uniform semiconductor, Elinson
presumably neglects the presence of a surface space
charge barrier, arising from field penetration. The ex-
pressions for #;'(F3) and T,(F}) are inserted into Eq.
(36") for 7.0 which is then equated with the expression
gny'Fyu where u is the electron mobility, assumed to be
independent of ;. (This is an unnecessary restriction
since the dependence of u on T(F3) is known for the
simple scattering mechanisms considered by Elinson).
Thus F3 can be determined and j.o derived as an explicit
function of the applied field F.

Elinson’s calculation for n, (F3) and T'(F3) really

46 For a recent review on the hot electron effect see S. H. Koenig,
J. Phys. Chem. Solids 8, 227 (1959).
47 Ta. Frenkel, J. Exptl. Theoret. Phys. 8, 1893 (1938).

refers to the ohmic bulk region, outside the surface
space-charge region. Thus the variation of these quanti-
ties, across the surface space region, must be derived
before the field emission current can be determined by
one of the appropriate results from Secs. 3 or 4. It is for
example quite possible that the hot electron and Poole-
Frenkel effects are important in the bulk region but may
be neglected near the surface, if it is strongly degenerate.
Elinson maintained that his theory explained the non-
linearity, in the direction of increased currents at the
high-voltage ends of the log/— (1/V) plots, observed
for Al,O3,** SiO,, and Ge.* However, such an explana-
tion is still open to question until the field penetration
effect is incorporated into Elinson’s theory.

APPENDIX 1
IFrom the definitions of E,, and E it follows that

Em—l(El)"‘ElgEng"‘El,

where E,~1(x) is the inverse of the function E,(x) and
we have replaced the upper limit on E by 4 which will
ultimately be taken as infinity. Since the Wronskian of
the transformation is unity,

4 Em(E) A—T(4)

/ dE/ dE,- - ——9/ ar,
0 0 0
4

El(Ex) A—Ez
xf B, -+ dE,/ dE.-- -, (A1)
0 A—Em(A) 0

where E,(E,) is the solution of
E,=E,(E,)—E,.
Thus, carrying out the integration over E,
AamkT[ A Em(D
e [ @
h? 0
| { 1+exp[(§—E)/kT] }
n

(A.2)

1+exp[(§——E,)/kT]]
14-exp[({—4)/kT]

damkT 4 {—E,
= [/ di,D(E,) ln{ l—i—exp< > }
0 kT

h3

A—EHO(A)
0

A
—{—/ dE, D(E,) In{
A—Em(4)

(g-'_Ez”—E-L(E:c)):l}

X ln{ 14- exp‘:—w—-————
kT

A

—-/ dE.D(E,) ln{lJrexpl:
A—En(4)

s
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When A4 tends to infinity, the third integral tends to
zero due to the exponential factor. In the second integral
the variable of integration E is replaced by

E§=E.+E\(E,)=E-[E(E.)];
therefore
E.=8—E.(8).

The integral is then equal to

/0 ’ d&[l—%]D[é—- 8.4(8)]

Xln[l-l—exp(%;)]. (A4)

Combining it with the first integral and letting A tend
to infinity then leads to Eq. (7) in Sec. 2.

APPENDIX II
The quantity

tm—ti=t[s/ W—En) 1=t/ @:i—$)]

~[y2di(y)/dyly=viso(En—1)/¥i.  (A.S)
Now, from Egs. (50), (52), and (61),
Em_g‘:\b_X(g2/ltm2>“§‘z —X(25/tm), (A6)

from which it follows that § is negative since E, is
greater than {. Also, substituting into (A.5), we have

tm— b~ —[ydt/dy]256/ . (A.T)

Now both y and dé(y)/dy are considerably less than one
while ¢,, is of order one. Thus #,—1; is very small com-
pared to —a.

APPENDIX III

Various cases of field emission from semiconductors
will now be considered to determine when the assump-
tion of a constant Fermi level is reasonable. It will first
be assumed that electron emission occurs only from the
conduction band. (j,=0). Let 7, be the current density,
n the electron density, u, the electron mobility, and ¢,
the quasi-Fermi level for electrons at a point & in the
space charge region. Then

jn=nﬂnd¢n/dx- (AS)

The current density 7, will be less than, or equal to, j.
depending on whether or not there is an appreciable hole
current at any point in the space-charge region. The
change in ¢,, across the space-charge region is given by

0

Apn= (Fn/1410)dx,

—L

(A.9)

where L is a suitably defined measure of the space-
charge region thickness. The variation of ¢, may be
neglected if

0
AbuET or  jo(ETun) / / dx/n. (A.10)
—L

The integral will be estimated by substituting the value
for n, assuming a constant Fermi level, which is reason-
able if the inequality is obeyed. Thus?”

- / dx/n= (Lp/n ,:)fu‘ [e*/Frx(us,us)Jdu, (A.11)

J~L

where n, is the intrinsic electron density, Lp is the
Debye length [cf. Eq. (81)] and the function Fxy is
defined by Eq. (80). For a retarding potential barrier
(—&>—Fb or u;&Lnp), the integral can be approxi-
mated by the expression

(Lp/m) [e‘ "‘/FKN (% b,u,)]= kT/ang,

using Eq. (80) and taking 7, as the value of # at the
surface. Substituting into inequality (A.10) for j., from
Eq. (30") and for the integral, from Eq. (A.12), gives

e K u/ (kT /2mm)rq F . (A13)

For n-type germanium at room temperature the expres-
sion in square brackets is about 5X10~% ev— cm, F, is
typically of order 10° ev/cm or greater and b, exceeds 10
for the examples considered in Sec. 8. Thus the inequality
is extremely well satisfied.

There will be a Fermi level variation outside the space-
charge region arising from the current flow across the
Ohmic (spreading) resistance region in the bulk. This is
however accompanied by an equal potential variation
and does not lead to any change in carrier density. The
separation between the bulk region and space-charge
region is of course somewhat arbitrary. In particular,
when the barrier height becomes very small, i.e., #,
tends u», the integral in Eq. (A.11) may be taken to be
L/ny where 7 is the bulk density of electrons and L is
of the order of a Debye length. Thus inequality (A.10)
becomes

(A.12)

JeLkTunns/L, (A.14)
or, substituting for j, from Eq. (36'),
e K u/ (kT/2xm)iq [kT/L], (A.15)

which, similarly to Eq. (A.13), is well satisfied.

When the surface distribution of electrons is degener-
ate, due to field penetration, the Fermi level variation,
across that part of the space-charge region which is
degenerate, should be negligible, due to its high con-
ductivity. The Fermi level variation, across that part
of the space-charge region which is nondegenerate, will
also be negligible if inequality (A.14) is satisfied where
L is again of the order of a Debye length. For example,
if . is as much as 10® amp-cm~2 (the highest value
considered in Fig. 6), inequality (A.14) will be satisfied
if n; exceeds 105 cm™3, for room temperature germanium.

By drawing quasi-Fermi level diagrams, for the space
charge region, it can be shown that the total variation
of the quasi-Fermi level for holes ¢ is less than that for
electrons in the present case (7,=0 and n-type bulk
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material). Hence, it too can be neglected. [There will
actually be an electron-hole generation region, just in-
side the surface, with (¢,—¢n) positive, followed by a
recombination region, with (¢,—¢») negative.]

For p-type bulk material (still assuming 7,=0), the
quasi-Fermi level variations, at least for electrons, will
not be negligible when %,>%3) and the methods used in
Sec. 7 will not apply. Here, there must be an electron-
hole generation region, the electrons diffusing towards
the surface and then being emitted while the holes
diffuse away from the surface, towards the bulk region.
For a sufficiently high value of j,, the carrier generation
may have to be enhanced by avalanche carrier multi-
plication.

Next, the case of predominant electron emission from
the valence band will be considered. Here, there will be a
recombination region near the surface. For p-type bulk
material only, this is followed by a generation region.
The expression for 7, will only be affected by the Fermi
energy for the hole distribution at the surface if it is
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degenerate. The only situation where this is likely to
occur is for an initially degenerate p-type surface with a
sufficiently high density of surface states to prevent
appreciable field penetration. If this is associated with a
p-type bulk region, Ag, should be negligible as was A¢n
for the case of predominant conduction band emission
from n-type material.

For those cases where the separation between the
electron and hole Fermi levels at the surface is negligible
(i.e., no net generation or recombination), they will also
coincide with the Fermi level for surface states, provided
there is no appreciable field emission from the surface
states.

The probability that an electron in a surface state,
incident on the surface barrier, be emitted is approxi-
mately given by Eq. (1) with ¢ suitably defined. How-
ever, to compare the probabilities, per unit time, for
field emission and emission into the conduction or
valence bands, requires some knowledge of the surface-
state wave functions.
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Magnetic, Thermal, and Optical Properties of the F Center in NaH}*

W. L. Wirriams]
Department of Physics, Dartmouth College, Hanover, New Hampshire
(Received August 11, 1961)

Thermal and optical bleaching and microwave saturation effects on the isotropic resolved electron para-
magnetic resonance hyperfine structure of the F center in NaH have been studied. The results indicate
that the thermal bleaching is a monomolecular process with an associated activation energy er=0.38 ev. A
model similar to the print-out effect in silver halides is proposed for the bleaching mechanism. The wave-
length of maximum optical absorption is 3.22 ev. The value of the characteristic spin relaxation time (7:72)*
is 1.7X107% second. The g value for the F-center electron is 2.00254-0.0003.

I. INTRODUCTION

HE resolved isotropic hyperfine structure of the
electron paramagnetic resonance absorption of

F centers in NaH was recently observed.! This paper
reports the results of further measurements of the
properties of this F center. Section II describes the ex-
perimental details. The results of thermal bleaching
measurements, discussed in Sec. III, indicate that the
F-center destruction is a monomolecular process. The
thermal activation energy for this process is determined
and a model involving the growth of colloidal sodium
is proposed which is similar to the print-out effect in
silver halides. Section IV is a description of the optical

t Research supported by a grant from the National Science
Foundation.

* This work is based upon a thesis submitted by the author to
the Department of Physics, Dartmouth College, in partial ful-
fillment of the requirements for the M.A. degree.

f Present address: Josiah Willard Gibbs Research Labora-
tories, Yale University, New Haven, Connecticut.

1W. T. Doyle and W. L. Williams, Phys. Rev. Letters 6, 537
(1961).

bleaching measurements which give a value for Ao, the
wavelength of maximum optical absorption. An order
of magnitude result for the characteristic spin relaxa-
tion time (7:17:)% obtained from saturation measure-
ments, is given in Sec. V. The F-electron g value, de-
termined using the Breit-Rabi equation to second
order, is given in Section VI. Section VII is a brief
summary of the results.

II. EXPERIMENTAL

All the measurements described here were made
using a conventional superheterodyne paramagnetic
resonance spectrometer employing phase-sensitive de-
tection. The microwave frequency is approximately
9.1 kMc/sec. The sample cavity is rectangular and
operates in the TE;o mode. The dc magnetic field is
modulated at 560 cps. The microwave frequency was
measured with a cavity wavemeter calibrated against
WWYV using a frequency multiplier. The magnetic field



