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Doublet Splitting in the 1p Shell due to Tensor Interaction*
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The separation of p; and pg orbitals in N f' due to the tensor force has been estimated using second-order
perturbation theory. The estimated splitting of 5.6 Mev is to be compared with an experimental separation
of 6.3 Mev. General relationships needed in computing the doublet splitting due to tensor interaction in
nuclei with a closed shell plus or minus one nucleon are developed.

1. INTRODUCTION

~'UMEROUS authors' " have attempted to cor-
relate the observed doublet separation in nuclei

with the second-order eGects of the tensor interaction
operator

15;~=o;.Ilge,"Il;,—36'; 0'~,

4 2 2 E +&
S„s),t ——5 Q (2E+1) 2 2 E Q Cst. srpxxP

K=0 0 0 0 m=z

X&less(i jkl)Rrr sr(i jkl), (1.5)
where

Srrsr(ijkl) = Q C» sr" gs, (ij)gs, (kl) (15a)
which is known to be present" in the nucleon-nucleon
interaction.

It is easy to demonstrate that the basic effect of the
tensor operator is to produce spin-orbit splitting. From
two Pauli spin operators for particles i and j construct
a tensor of rank 2:

Rrcsr(ijkl)= g C».sr"xR»(ij)R». (kl). (1.5b)

A 9j coefficient with three zeros is easily evaluated:

Ss„(ij)= Q C„„n'tr„'o„&.
p+p'=m

(1 2)
2 2 E
2 2 E
0 0 0 5 (2E+1)'*

(1 6)

Likewise we construct a tensor of rank two from the
unit vector n;, =n:

Rs„(ij)= Q C» "'rt„rt„.
p+ttt, '=m

S;;Sst——P Sx(ijkl) R&(ijkl)
K=O

(1.7)

The tensor operator of Eq. (1.1) may then be expressed
as the dot product of R2 and 52

S' =Ss(ij) Rs(ij) =2- (—1)"Ss-(ij)Rp--(ij)
= (5)b Q„C„„p"'Ss(ij)Rs (ij). (1.4)

Second-order terms will involve the product 5;,5~~
which can be expanded making use of the 9j
coefficient":

If LS coupling holds, evaluation of Eq. (1.7) will

yield matrix elements of the form:

(SLm lsx R„lsLIm)= ( I)"w(zL.sE; SL—)
x(sllgxlls)(LllRxllL), (1.8)

where W(ELSE; SL) is a Racah function,

(Sll~rclls)Csps = (2S+1)'(Ss
I
~xp

I
Ss) (1 ga)
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(LIIRxllL)C~«' '= (2L+1)'(LLIRI«ILL) (1»)
Obviously this matrix element vanishes unless S)~E/2
and L&~E/2. Consequently for a closed shell only the
term with E=0 in Eq. (1.7) is nonvanishing.

The principal effect of the term Str. Rtr (EAO) is to
produce a spin-orbit splitting. To illustrate this consider
the case where E= 1, which produces the doublet
splitting. When 5= —,', one can have J=I-&-,'and the
splitting of these two terms may be characterized by
the ratio of two Racah coeKcients:

W(P =I. .', ]L',E; -',L)——-
W(LI =I +-,' jL—,'E; —;I)

the reduced matrix elements in Eq. (1.8) ret:aining the
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2. GENERAL RELATIONS FOR A SINGLE NUCLEON OR
HOLE ADDED TO A CLOSED SHELL

In a preceding paper'0 we have formulated a pro-
cedure for applying the second-order perturbation
method of Bolsterli and Feenberg" to nuclei with
doubly closed shells, and later" extended this to include
nuclei with closed shells plus a single nucleon. A simple
modification extends the procedure to nuclei with one
hole in a doubly closed shell.

The derivation is contingent on our being able to
write a zero-order wave function as a single determinant
of particle orbitals:

(2 1)

One can then express the matrix elements of any two-
body operator 0» in terms of the density matrices

(alai&)=E u*(a)u (&) (2.2)

same values for both terms. In a like manner the term
with E=2 splits triplets, E=3 quartets, and so on.

The vector term:

S&ir(ijkl) = (1/40)'{e&' (a'Xe') ~e'
+a' (+ Xa' )Ma +& ' (&'Xa )Ma'

+e' (o&Xo')~(ri), (1.10a)

Ri,~(ijkl) = (2/5)'*n;,"nI, i (n;, Xn&i) ir, (1.10b)

defined in Eqs. (1.5), has been the object of considerable
attention in the literature. ' " A term of this type is
required to explain the energy levels of nuclei in the
nuclear shell model ""and the problem of whether or
not the second-order tensor term provides a doublet
splitting adequately large and consistently in the right
direction is an old one. ' Another possible source of the
doublet splitting is that a two-body spin-orbit operator
is actually present in the nucleon-nucleon inter-
action. '7 "

The first p shell (5 ««A &«16) would seem to provide
a natural testing ground for a theory of the doublet
splitting since it is in this shell that this eGect is first
required. Furthermore the doublet splitting builds up
in the first p shell, the p;—p; separation being only
about 2.6 Mev for the extra nucleon in He', and 6.3
Mev in X' at the end of the shell. " In this paper we
shall attempt to correlate this building up of the
doublet separation with the second-order eGect of the
tensor operator.
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g (—1)"P, ( atc)

X(1,2,3~ p'Oi. Oio~ a,b,c)dridr2dr 8, (2.3'b)
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i
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Xdridrodrodr4, (2.3c)

where P„(abc)simply permutes a, b, c over 1, 2, 3.
If Po represents a closed shell plus one nucleon (or

hole), the density matrix can be written

(al ~ I &) = P u, *(a)ui(b) +u„*(a)u (b), (2.4)
closed shell

where the positive sign is taken for the additional
nucleon and the negative sign for a hole (if we are
dealing with a hole there is naturally a term with /=e
in our sum). The density matrices in Eqs. (2.3) may
then be expanded in the following manner:

(1,2
~
p'OioOio~ 1,2)

ui*(1)ul, *(2)O, oO, oui(1)ui(2)
closed shell

a2u„*(1){ g ui*(2)OioOioui(2))u„(1). (2.5)
c1osed shell

In Eq. (2.5) we omit the self-energy term:

u„*(1)u„*(2)0i20iou~(1)u„(2), (2.5a)

since the same term appears in (1,2~ p'Oio0&2~ 2, 1) with
opposite sign. Owing to the fact that spurious terms of
this sort properly cancel out of the final expression„we
suppress them from the start.

The results of the spin sums on SM(ijkl) needed in
evaluating the density matrices are displayed in Table
I. In the Appendix we shall discuss a modified form of
the Bolsterli-Feenberg perturbation procedure.

as follows:
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3. APPLICATION TO N'5

In estimating the spin-orbit splitting in N'5 we shall
use the tensor interaction operator:

4 (1 'o1' 'o2)512&, (bio/ro)' exp( —F12/ro ) (3.1)

where J,= —107.29 Mev, ro ——1.54&10 '3 cm, and ~~

and ~2 are isobaric spin operators. This is the tensor
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TABLE I. Density matrix elements of S10(ijkl) needed in the applications. Absent permutations either vanish or are
equivalent to one present by simply symmetry considerations.

X»(0) (~oP
~
Sio(&2t2)

~
~P)X49(~)

(512)»
(5/2)'

X»(49)(~9~~. I/2&~o(12&3) l~/0~7)X»(~)

(5/2)'
(5/2)'—(~/2)'—(5/2)'
(5/2)'
(5/2)'

X»(49)(~O,~o,~o~/7940(&234) ~~p, ~„OO)X»(~)

(5/2)'
(5/2)'—(5/2)'—(5/2)'
(5/2)'
(~/2)'—(5/2)'—(5/2)'

part of a two-body Serber interaction (with repulsive
core) which has been Gttedop to the binding energies of
H', H', and He', the electric quadrupole moment of H',
the rms radii of H' and He4, and the H'—He' Coulomb
energy difference. This interaction was employed" in a
calculation on 0" using second-order perturbation
theory which yielded a total binding energy about 8%
short of the experimental value, and an rms radius
about 7% too small.

The p,—p~ splitting in N" is estimated by computing
the separation of two such holes in 0".One must note
that this differs from doing a proper calculation on N".
The oscillator well depth, which serves as the size
parameter, is taken to be the one which minimizes the
binding energy of 0" (A40=17.25 Mev), instead of
properly deriving the two well depths appropriate to
the p; and p; states of N". In view of the approximation
that is made by terminating the perturbation series at
second-order the distinction between the spin-orbit
splitting in 0"orbitals and actual N" states is probably
not a critical one.

The p;—p; sepa, ration is given by the expression:

(3~a /@po) (5 (~—2 7/2 2~ 0 7/2+~ 2 7/2)

+35 (& 0 9/2 +2 9/2) 10(B—2 7/2 B0 7/2+B2 7/2)

—35(1+42 )Bp 9/2+35 (1+cd)B2 9/2

+ (315/2) n4 (1+4422+ 2no) B2,g/2+ (315/2)n'B4, g/2

+5 (C—2 7/2
—(:2 7/2) } (3 2)

where 422= (@/Mo~ ')

/+9 —
&t (1+2422)2—4424/2]

—od[, (3.2a)

(&+4—&L (1+2Q2) 2—424@]
—

&d$, (3.2b)

and

t'+'-'(1+22)-2"Ch

= (1+2422)-2"/(8+k). (3.2c)

The second-order energy shift 8 (—AopS=E —Ep) is
taken to be zero, which means that we are calculating
the second-order energy shift in the Rayleigh-
Schrodinger perturbation expansion, not the Brillouin-
Wigner. Our computed separation is 5.6 Mev to be
compared with the experimental value of 6.3 Mev.

4. CONCLUSIONS

A similar calculation for the doublet splitting in
He' was reported in a previous paper. "The separation
derived for that case was considerably too large (3.4
Mev compared to 2.6 Mev by experiment). Since un-
realistic assumptions were made concerning the size
parameter (He' is unbound) which would favor a large
splitting, this result is not in too poor agreement with
the observed value. At least two authors' ' have at-
tempted more realistic phase shift calculations on the
He' system. Strong temptation exists in doing the
phase-shift calculation to consider the scattering of a
neutron from an undistorted n particle. Such a re-
striction will yield a low estimate of the doublet
splitting. The presence of a neutron in the p shell
restricts the con6guration mixing in the n-particle core
due to the Pauli exclusion principle, and this restriction
plays a decisive role in the spin-orbit splitting. ' Nagata
et a/. ' have pointed out that after such effects are
included in the phase-shift calculations, the tensor
interaction is capable of accounting for a major portion
of the doublet splitting in He'.

The estimation of the doublet splitting in N" de-
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scribed in the preceding section is about 11% short of
the observed value, a strong indication that a sub-
stantial part of this splitting may be due to the tensor-
even interaction. This calculation does not clear up the
problem of whether the tensor or the two-body spin-
orbit interaction is primarily responsible for the doublet
splitting in complex nuclei. Instead it presents a Inore
basic problem of whether the even or odd terms produce
the observed splittings. A strong spin-orbit odd inter-
action is required to explain the polarization found in
proton-proton scattering, ""and such a term probably
makes a substantial contribution" to the doublet
separation. This difFiculty has previously been en-
countered by Brueckner et al.23 who were forced to set
the spin-orbit even terms equal to zero in order not to
overestimate the doublet splitting. The possibility
exists that second-order terms in the spin-orbit inter-
action yield terms opposite in sign from the tensor
force, producing some cancellation. "

In evaluating the right-hand side of Eq. (3.2) it is
convenient to expand the integrands into a power
series in t', obtaining after integration an expression of
the form

A„
~=i 8+2m

(4.1)

It is important to note that spurious terms in 1/5 and
1/(8 —2) arise in some of the integrations, but properly
cancel in the final result. Equation (4.1) is that part
of the usual second-order perturbation expansion:

jV jV„
(4 2)

LV"(E—H o)-' Vio7oo,

LV"(&—&o) 'Vo47oo,

(4.3b)

(4.3c)

J. W. Clark. , Ann. Phys. 11, 483 (1960).
23 K. A. Brueckner, A. M. Lockett, and M. Rotenberg, Phys.

Rev. 121, 255 (1961)."E. I'eenberg (private communication).

which contributes to the doublet splitting. Strict
observance of the Pauli principle is insured by the fact
that the zero-order wavefunction is properly anti-
symmetric, and the interaction operator (V=+;&; U;;)
is symmetric in the coordinates of all nucleons. Spurious
terms which violate the Pauli principle arise in parts
of the calculation since a term of the type

t Vio(E—Ho) 'Vio7oo, (4.3a)

evaluates the contribution to the second-order energy
shift from a "part" of the operator V, and this "part"
is not properly symmetric. Hence in the above term
one may have contributions from states where two
nucleons in the 1p shell are demoted to the 1s shell.
When the additional contributions from the three-
and four-particle terms,

are included, such spurious contributions vanish
identically.

When these spurious terms are deducted, it is found
that the main contribution (7.6 Mev) to the doublet
splitting arises from the three-body terms. The two-
body terms yieM 0.3 Mev, while the four-body terms
give —2.3 Mev. Consequently the present calculation
verifies the idea that it is the three-body terms which
are of primary importance in evaluating the doublet
splitting, as has long been emphasized by Feingold. ' 4

The increase of the doublet splitting in N" over He'
results simply from the additional terms due to inter-
action of the hole with the entire 1p shell.

In evaluating the series in Eq. (4.1) one must take
about fifteen terms in order to ensure two-place ac-
curacy. The first term alone contributes only 2.3 Mev,
which emphasizes the advantage of generating the
entire series by the Bolsterli-Feenberg method. Calcu-
lations which do not include several terms in this series,
or which suppress the three-body terms, must yield
results much smaller than the experimental value.

In conclusion we would like to mention two obvious
deficiencies in the calculation described in this paper
other than the restriction of second-order perturbation
theory. The radial dependence of the tensor interaction
is not well established. Yukawa shapes, square wells,
and straight Gaussians are often used and yield rea-
sonable results. The form used here is fitted to the
properties of nuclei in the is shell, and closely resembles
the shape of the Gartenhaus" potential. Though by
modifying the radial shape of the interaction one may
reduce the derived doublet splitting, it is doubtful that
one would reduce it so substantially that one couM not
conclude that the tensor interaction makes a major
contribution. The size parameter used is the one derived
from a calculation on 0",and known to give too small a
radius. Arima and Teresawa" have pointed out that it
may make sense to use and oscillator well depth pa-
rameter which yields too small a radius to a given order
of perturbation theory since higher orders will yield a
larger radius for the same parameter. The well
parameter tends to increase through the 1p shell, "
and the value used is probably reasonable. At any rate,
it, is more consistent to use a parameter derived with
the force used than to simply try to fit the Xi"—0"
Coulomb energy difference. An additional source of
error may lie in using the same size parameter in the
1s shell and the 1p shell. It is not reasonable that the
1s shell expands to the size indicated (about a 20%
increase in rms radius) by equating these parameters,
and shrinking the 1s shell would reinforce the doublet
splitting. No attempt to include such a modihcation
was made since little is dednitely known about the
proper values that one should use. However, a modified
form of the Bolsterli-Feenberg perturbation procedure

2~ S. Gartenhaus, Phys. Rev. 100, 900 (1955)."R.Hoiotadter, Ann. Rev. Nuclear Sci. 7, 231 l1957l.
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which couM incorporate this effect is presented in the
Appendix.
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APPENDIX. A MODIFIED FORM OF THE
BOLSTERLI-FEENBERG PERTURBATION

PROCEDURE , I (~.l wl~-) I'
+P' —+third order term. (A.6)

The zero-order Hamiltonian is taken to be a sum of
single-particle harmonic oscillator Hamiltonians with a E t. ,A 6, 1 b d

'
tEquation jA.6j easily may be expressed in terms o

uniform displacement in energy: matrix elements of zero-order functions:
~ 4

Hp ——-', Aa& P (P +q )+U,

with eigenfunctions and eigenvalues deined by

(A1) Z=(P, IH, —Wl P,)

(p pI Ho —I'-'IA)(AI wl p o)—2
jV

Hpf =E„P.

The perturbation operator is

W= Q V;;——',A(o(Q qP —Ag') —U,

(A.2)

(A.3)

+(hapl W(E—Hp) 'Wl happ)

-1(~.
l
wl ~.) I'(~—~.)-'

+third order term. (A.7)

The energy denominator in Eq. (A.7) may be evaluated
where V;; is the nuclear interaction operator, and by employing the operator
Q= g q;/A. This Hamiltonian is of just the same form
used by Bolsterli and Feenberg. The trial function is expL —p(p'+q')jf(q)
taken to be

, ("III'i~-)—
q'= —

p p+Q'
sV Ii —E„ (A.4)

= (k/2m')' f(v)

This prescription differs from the usual one in that pp
is not to be identified with fp (the oscillator ground
state); rather, yp may be any function of the nucleon
coordinates which obeys the boundary and symmetry
conditions of the problem. In particular, for 0 pp
could be taken as a determinant of oscillator orbitals
with depth parameters different from that in Eq. (A.1),
and naturally different parameters for the 1s and 1p
orbitals.

Substitution of (A.4) into the expression.

&&exp ——(q'+p' —2kq v) dv, (A.g)
2g

(where g=tanh2p, and k=cosh2p), with only minor
complications due to the fact that (pp is not an eigen-
function of Hp.

This modification has the advantage of additional
variational flexibility since one can minimize the energy
with respect to the parameters in yp as well as Lu, and
it may be useful if 1s- and 1p-shell parameters are in
reality significantly diferent.


