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Resonant Electron Capture in Violent Proton-Hydrogen Atom Collisions*
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(Received August 21, 1961)

A new collision chamber design has made possible differential measurements of scattering of protons on
atomic hydrogen target atoms. The scattering takes place in the interior of a furnace where hydrogen gas is
dissociated. Electron capture probability is measured vs proton energy for protons passing nearly through
the center of isolated hydrogen atoms such that the incident particle is scattered through an angle of 3'.
This shows a resonant structure with maxima at energies of 0.78, 1.57, 3.92, and 20.1 kev. A simple model
is presented for looking at these resonances. In the light of this model and previous theoretical work, the
location of the high-energy maximum is unexpectedly low, and this suggests that a phase constant is needed
to achieve agreement between experiment and theory. The H+ on H data presented here are compared with
those for the other combinations, H+ on H2, H+ on He, and He+ on He, which also show resonant electron
capture,

1. INTRODUCTION

ESOXANT electron capture in violent collisions
was first detected by Ziemba and Everhart, ' who

studied the combination He+ on He. The phenomenon
was subsequently studied in several other ion-atom
combinations, notably H+ on He, and H+ on H2, by
Ziemba eI, a/. ' Inasmuch as the greatest theoretical
interest centers around the simplest ion-atom combina, -
tion, protons incident on atomic hydrogen target atoms,
an apparatus was especially designed for this experi-
ment.

There have been total cross-section measurements by
Fite et al.' of electron capture in the collisions of protons
with atomic hydrogen, but their measurements are
concerned with quite a different phenomenon. The total
cross-section is an average over all impact parameters,
and gentle collisions (those with large impact param-
eters) predominate.

The present paper, however, is concerned with
differential measurements and studies only those
particles which have been scattered to an appreciable
angle (arbitrarily set at 3', laboratory coordinates).
This restricts the attention to those rare violent
collisions wherein the incident proton passes practically
through the center of the target hydrogen a,tom. 4Vhen
the electron capture probability is plotted vs the proton
energy, four sharp peaks are found. An explanation is
that the electron is oscillating between two energy levels
where the number of oscillations depends on the
duration of the collision.

Section 2 below describes the apparatus with partic-
ular attention to the target chamber and tests for
atomic hydrogen. Section 3 shows the data for H+ on H
and also compares these with the H+ on H~ data. Section
4 discusses the clata. A simple calculation is made of the
spacing of the peaks which agrees approximately with

*This work was sponsored by the U. S, Army Research 06ice,
Durham.
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the experimental values. A phase constant is introduced,
not predicted theoretically, but required by the experi-
menta, l data.

Ziemba and Russek' have given a theoretical treat-
ment of resonant electron capture in the He+ on He case.
Our interpretation of the present H+ on H case follows
the plan of their treatment in some ways but is a
simplified and possibly more general approach.

2. THE EXPERIMENT

Previous scattering experiments'5 with atomic
hydrogen have used a di%cult and ingeneous technique
wherein an atomic beam is crossed with a beam of
protons or electrons. This method is here quite im-
practical because the density of atomic scattering
centers produced in an atomic beam is far too low for
the present experiment. The di6'erentia1. cross sections
which are measured here are very many times smaller
that the total cross sections measured previously. Our
apparatus is therefore constructed so that the scattering
takes place within a furnace where the density of
scattering centers can be made suKciently large and
where the temperature is high enough so that the
hydrogen gas is almost entirely atomic. This new
arrangement makes feasible differential measurements
of single collisions on atomic hydrogen atoms.

(a) Apparatus and Procedure

The University of Connecticut 200-kv heavy-ion
accelerator was used in this work. Much of the interest-
ing data were to be found at energies below a few kev,
and previously the ion beam had been rather unstable
at these low energies. The difhculty was believed to be
caused by erratic charges on thin oxide layers on metal
surfaces. Therefore, all metal surfaces adjacent to the
ion beam were coated with colloidal graphite or were
gold plated. This modification made the proton beam
stable even to energies as low as 0.7 kev and greatly
reduced the scatter of the data, points. (It was noted,
however, that surfaces coated with colloidal graphite
tend to cause a gaseous discharge of some sort even at

4 F. P. Ziemba and A. Ressek, Phys. Rev. 115, 922 (1959).
~ %.L. Fite and R. T. Brackmann, Phys, Rev. 112, 1141 (1958).
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RESONANT ELECTRON CAPTURE

0.51 mm in diameter, insure that the ion beam passes
through the center of the furnace. The holes in the
tungsten buttons are large enough, so that neither the
original ion beam nor the particles scattered through
angle 8 from the region of b touch these buttons. Holes
c and d are 0.25 mm and 0.61 mm in diameter, respec-
tively, and are located, in turn, 33.1 mm and 60.6 rnm
from the scattering center b.
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FIG. 2. The value of electron capture probability I'0 is plotted
vs the inner furnace temperature for 3' scattering of H+ on
hydrogen at 3.90 kev. At low temperatures the gas within the
furnace is molecular hydrogen, and at high temperatures it is
atomic hydrogen. The hollow points and the solid points represent
two separate data runs taken, respectively, at the beginning and
at the end of the entire experiment.

(c) Test for Atomic Hydrogen

Kith this apparatus it was possible to make an in-
direct experimental test for atomic hydrogen. Data
were taken measuring Po for 3' scattering with the
furnace erst at room temperature and then at succes-
sively higher temperatures. This experiment was per-
formed several times, and large differences were found
between the molecular hydrogen and the presumed
atomic hydrogen scattering cases. The data shown in
Fig. 2 illustrate this test. The fraction PD of those
scattered protons which have captured an electron is
plotted vs the temperature of the inner furnace. 'Zhe

data are taken at 3.90 kev, which (as will be seen) is an
energy for which there is a particularly marked diGer-
ence between the molecular and atomic data. The curve
of I'0 vs temperature in Fig. 2 is flat at 52% from room
temperature to about 1500'K, and then it rises rapidly
and again levels out at about 90% at 2400'K and above.
All of the H+ on H data to follow were taken at 2400'K,
and the H+ on H~ comparison curve was run either at
1200'K or at room temperature. In taking the data for
this curve, the mass rate of Qow hydrogen through the
furnace was held constant. At room temperature the
pressure of the gas about to enter the furnace was two
microns. The pressure within the furnace when cold
was necessarily less than this. When the furnace was
heated to 2400'K the density of the scattering centers
dropped threefold, as measured from the number of

particles scattered to 3' with constant incident proton
beam.

The inner furnace temperature could not be measured
directly because the inner region is completely enclosed,
and there was no line-of-sight available to an optical
pyrometer when scattering data were being taken.
However, a preliminary calibration of the furnace
assembly was made with some of the particle detecting
apparatus removed so that an optical pyrometer could
then be used to measure the temperatures of the inner
and outer furnace elements in turn. This established a
calibration of the relation between inner furnace
temperature and outer furnace temperature. Later, in
obtaining the temperatures for Fig. 2, the outer furnace
temperature was measured, and the above calibration
was used to And the corresponding inner furnace
temperature. The temperature conditions of the inner
element are those for which others' have found hydrogen
to be almost entirely dissociated, and we regard Fig. 2
as showing the presence of substantially complete
dissociation of hydrogen in the furnace.

(d) Choice of Scattering Angle

The 3' value of scattering angle 8 was chosen as the
largest feasible angle for these measurements. Of course,
if this angle were made larger, the particles detected
would arise from mort: violent collisions in the sense that
the incident protons would pass even closer to the center
of the target atom. However, the number of scattered
particles drops precipitously with increase in 0 making
measurements dificult and inaccurate. The 3' angle of
the present experiment is considered representative of
violent collisions except at the lowest energies studied.
The low-energy data are slightly aGected by an increase
in impact parameter and this is discussed in Sec. 4c
below.

The values of Po do not depend on scattering angle,
provided that this angle is large enough and the energy
is not too low. The criterion is that the impact param-
eter be small compared to significant atomic dimensions,
and this is largely fulfilled in the present experiment.
This was confirmed experimentally for other light ion-
atom combinations, H+ on He and He+ on He, in
angular data runs (unpublished), and the 3' data for
H+ on H2 presented in Sec. 3 below are substantially
the same as those taken previously' at 5'.

3. DATA

The data for electron capture in violent collisions of
H+ on H are shown in Fig. 3. The electron capture
probability Po is very high at incident proton energies
of 20.1, 3.92, 1.57, and 0.78 kev and very low at 7.69,
2.39, and 1.11 kev. The data for the case H+ on H2 are
also shown. This molecular case was measured earlier as
seen in Fig. 4(b) of reference 2, but the present data is
more accurate because the proton beam in the acceler-
a,tor is now stable at low energies. The molecular data
shows peaks which are much less pronounced than those
in the atomic case although they are nearly in the same
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. TAsr.E L The experimental values of (Ea) in electron volt
Angstroms (for very small values of r0) and the values of the phase
constant P are given for three ion-atom collision combinations.

TABLE II. A comparison of the experimental and calculated
values of (Ea) for the successive peaks of Fig. 4.

Combination

8+on H
H+ on He
He+ on He

(Ea)
(ev-A)

63.7+1
84.6+1
102+3

(0.28+0.01)x
(0.26&0.02)7r
(0,23+0.08)m

Spacing Experimental
fdenti6cation (Ea)
Subscript n (ev-A)

63.7
63.6
61.8
60.0
54.5

Calculated
(Ea)

(ev-A)

70.0
69.6
68.9
67.8
66.0

Average
fp

(A)

0.041
0.073
0.114
0.162
0.219

supposed that the proton whose velocity corresponded
to the highest energy peak in I'0 had sufFicient time
during the collision for just half an oscillation cycle, and
this would correspond to P=O. The experimental value
of /=0. 28 corresponds to 0.78 of a cycle for this first
transition.

It is not clear to the present authors that Eq. (134)
of reference 9, which was the basis for all previous
work4' should be critized for its omission of E~, E~,
and P which appear in Eq. (6). It is quite likely that the
present experiment does not entirely duplicate the
conditions required for the validity of their Eq. (134)
and that Bates, Massey, and Stewart did not envisage
its exact application to the present situation. "

Three ion-atom combinations showing pronounced
resonant electron capture eBects have been studied to
date, and Table I summarizes the experimental results.
The values of (Ea) and P for the He+ on He and for the
H+ on He cases were obtained by a re-analysis of the
original data used for Fig. 4(a) and 4(c) of reference 2.

(c) Behavior at Low Energies

At low energies, moving to the right in Fig. 4, the
spacings of the peaks becomes progressively wider, and
this corresponds to a decrease in (Ea). The experimental
values of (Ea), obtained using Eq. (2) with the velocities
corresponding to successive peaks (valleys), are listed
in Table II, where each (Ea) value is identified accord-
ing to its subscript n in Fig. 4.

The observed decrease in (Ea) at low energies may
be predicted theoretically. When the scattering angle
is held fixed, the distance rs in Fig. 5(b) increases at
low energies. Each peak (valley) has its own ro value,
and this is readily estimated using classical orbits with
allowance for electron screening. "'4 The average value
of re is tabulated for each pair of peaks (valleys) in
question. Using E(s) from Eq. (5), the integral of Eq.
(3) was evaluated numerically for each corresponding

"Note added in proof. A paper by D. R. Bates and R.
McCarroll )Proc. Roy. Soc. (London) A245, 1'IS (1958)j has
come to our attention. This improved general formulation of ion-
atom collision theory has evident applications to the present
experiment.

'3E. Everhart, G. Stone, and R. J. Carbone, Phys. Rev. 99,
1287 (1955).

'4 G. H. Lane and E. Everhart, Phys. Rev. 117, 920 (1960).
Equation (6) of this reference is used with the screening length
arbitrarily at a=0.53&(10 8 cm.

average rs value, and these calculated values of (Ea)
are shown in Table II for comparison with the experi-
mental values. There is qualitative agreement for the
decrease in (Ea). However, the calculated values exceed
the experimental values by 6 to 8 ev-A in most cases.

(d) He+ on He and H+ on He

There may be some difhculties in applying the present
simple treatment to other combinations. For example,
in the He+ on He case, as the two atoms approach
closely, the system should have the electronic wave
functions of Be+, whose ionization potential is only
18 ev. The difference between any symmetric and any
antisymmetric wave functions for the outer electron
cannot be larger than this. It would therefore seem
impossible, using a reasonable interaction length, for
an integral as in Eq. (3) to attain a value of 102 ev-A
which is the experimental result. The Ziemba-Russck
paper4 treating this problem did achieve reasonable
agreement with experiment, but did not justify their
assumed value of E(s) which reached 107 ev at E=O.
However, the total electronic energy of Be+ is 388 ev
and those of the separated particles, He+ and He, total
133 ev, leaving a change of energy of 255 ev during the
collision. Thus, if the energies and oscillations of all
three electrons contribute to the eGect, there is sufIIicient
interaction energy over a reasonable path length to
agree with the experimental value of 102 ev-A given
in Table I.

The I+ on He case is more hopeful. At nearly rezo
separation the system should have the wave functions
of Li+, which has an ionization potential of 75 ev. In
this case it is possible for E(s) to reach nearly this
magnitude. With a reasonable interaction length it is
quite possible that the integral of Eq. (3) could be near
85 ev-A which is the experimental value for this
combination.
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