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Dependence of Induction and Dispersion Energies at Finite Internuclear Distances*t
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The usual calculations of induction and dispersion energies lead to divergent series in negative powers
of the distance R which have been interpreted as asymptotic expansions. The system composed of a normal
hydrogen and a proton at a finite separation is treated by an extended variation method, leading to Euler
equations for the perturbed wave functions. Solutions in terms of known functions are used to calculate
the two principal terms of the second-order energy for a number of values of R. The method is found to
lead to convergent results for all values of R, and to be compatible with the virial theorem. Extension to
more complex cases and to dispersion is qualitative. A variation calculation, using traditional and other
plausible trial functions with the correct potential, is compared.

The series in negative powers of R are found to be neither quantitatively nor qualitatively good repre-
sentations of induction eftects at chemically interesting distances. Similar behavior is inferred for dispersion.

I. INTRODUCTION
' '%DUCTION and dispersion energies for a system of
& ~ two atoms separated by a distance R are calculated
by second-order perturbation or equivalent variation
methods. The traditional procedures" include assump-
tions mutually consistent only for infinite separation.
The series thus obtained are divergent for all finite
distances. ' Such developments, representing a function
in the sense of Poincare, may be useful for obtaining
numerical values when the coefficients are accurately
known. '4

%e are aware of three fundamental limitations to
the general use of such series in inverse powers of R
for induction and dispersion effects:

1. Accurate values of a number of coefficients must
be available in order to know when to stop. Further-
more, for small and moderate values of the variable,
the series may be useless, the second term being already
as large as the first.

2. An important class of functions possesses no
asymptotic expansion, or more precisely, possesses a
common expansion with all coeKcients identically zero.
Terms of importance for finite arguments, but disap-
pearing more rapidly than any finite power at infinity,
such as the exponential, are in this class. ' For the
incomplete gamma function which will enter our calcu-
lations, there is a one-term approximation asymptotic
to the function, but the error must be determined by
comparing this approximation with the function.

3. Even when a given function is shown to be
represented by a particular asymptotic expansion, it
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does not follow that its derivative is similarly repre-
sented by the derivative of the same expansion. ' The
derivatives of a molecular potential are frequently of
greater interest than its numerical values at selected
polIlts.

The unrestricted variation method outlined below
may be considered an extension of methods developed
by Slater and Kirkwood, ~ by Coulson, ' and by Pople
and Schofield. ' To expose particular facets of this
problem, it will be convenient to consider selected
relevant polarizability calculations; a more complete
survey and critique may be found in Allen's' recent
paper. %e shall be interested in distances of one to ten
atomic units (0.52917&(10 cm) and interaction
energies less than one unit (27.2097 ev), and shall use

these units exclusively. Relativistic eKects (retardation,
etc.) will not be significant.

II. UNRESTRICTED VARIATION METHOD.
POLARIZABILITY OF THE NORMAL

HYDROGEN ATOM

In the presence of the potential V, the wave function
for the unperturbed system 0 0 becomes

where the 4'„shall be made mutually orthogonal and

may be taken as real throughout this paper. Similarly
with the Hamiltonian and energies:

a=Ho+ V,

J-'= I"-'o+~ +&s+ & +
(2)

and, taking the potential as of first order, the wave

functions and energies of nth orders, respectively, we

6E. T. Whittaker and G. N. Watson, A Course of Modern
Analysis (The Macmillan Company, New York, 1948), p. 153.

7 J. C. Slater and J. G. Kirkwood, Phys. Rev. Bi, 686 (1931),
s J. A. Pople and P. S. Schoheld, Phil. Nag. 2, 591 (1957).
' L. C. Allen, Phys. Rev. 118, 167 (1960).



I OU IS CIIOI'IN CUSACHS

separate orders:

E,&olo&=&ololo (4a)

E,(olo) =(ol1lo), (4b)

Ep&0 Io)=&1 I0 Epl 1)+2(OI 1 (4c)

Ep&olo&=&1l1 —E
I 1&, (4d)

E4&OIO&= &2 I
o—Ep

I
2)+2&1 I

I I2&—Ep&1
I » (4e)

0'i may be varied to minimize Ep if (4a) is satisfied:

(Hp —Ep)+i = —V%'p,

from which automatically

Lowdin functions, leads to the exact result in only two
terms. The simple Hassle-Kirkwood form

I=XV, X= constant,

leads to only 4.0.

(13)

V= 1/R —1/I R—rl,

which may be expanded in two series:

(14)

III. THE HYDROGEN MOLECULE-ION AS
A PERTURBED ATOM

The perturbation of a normal hydrogen atom by a
proton at distance E corresponds to a potential

E'&0 Io) =(o
I
1

I 1&

The formal substitution
V= —Q r"/R"+'P (cos8), Region I: r~(R

n=1
(15a)

V'(+pPVu) =2V+ps. (8)

'Il
y
=uC'p)

followed by transformation of the kinetic operator,
eliminates a term

I (Hp —Ep)+pfu, leading to the
equation at the base of the formalism of Pople and
Schofield. For the one-electron case, it is

= 1/R —g R"/r"+'P (cos8),
n=p

Region II: r&~ R. (15b)

This piecewise expansion is absolutely convergent
almost everywhere. Substitution of (15a) in Eq. (8)
with

7Ve have examined the validity of the polyelectronic
equivalent and find it to be the correct first-order
equation as long as (4a) is satisfied. "

Calculating the uniform field polarizability of the
normal hydrogen atom corresponds to using the
potential

leads to

while

u =g„(r)P„(cos9)

g„(r)= [r"/n+r"+'/(n+1)]1/R"+',

/RP n+2

n=1
(18)

V= —Fr cos8.

Equation (8) sepa. rates on the substitution

U= Pg (r) cos8,

leading to the solution

(9)

(10)

and

therefore
~.= (2m+ 1)!(~+2)/eX2P. ;

(2rs+1)!(m+2)
F..= —P 2

,is)( (2R)sn+p

(19)

(2o)

g(r) = (r+r'/2)

This so far is entirely equivalent to the calculation of
Slater and Kirkwood, ' which in turn agrees with the
solution of the wave equation for an atom in the fiel.d

by Epstein"; the polarizability obtained is 4,5. A close
variation method approximation is the trial function

g(r) =are'", (12)

yielding b=0.195; o.=4.476.
The Raleigh-Schrodinger perturbation theory was

applied to this problem by Tillieu and Guy" who

calculated eleven terms. Estimating the rest of the
discrete spectrum gives only 3.66. The continuum
is therefore not negligible. However, expansion in the
discrete complete set of Laguerre radial functions, first
utilized by Schrodinger and recently revived by
Lowdin, ' for which we propose the name Schrodinger-

"L.C. Cusachs, Compt. rend. 251, 1724 (1.960)."P.S. Epstein, Phys. Rev. 28, 695 (1926).
'2 J. Yillieu and J. Guy, Compt. rend, 236, 2222 (1953)."J.O. Hjrschfelder and P. O. Lowdjn, Mol. Phys. 2, 229 (1959).

However, the integration over r has been carried over
the interval 0 to ~ in calculating n, despite the
restriction on (15a). Brooks' noted the divergence of a
series corresponding to (20), although his method leads
to an incorrect expression for n„. Working with Unsold's
approximation to the second-order energy, he attempted
to remedy this defect in arresting the integration at
r=R. This produces a convergent series in incomplete
gamma functions. Roe" showed that this series no
longer corresponded to the Unsold formula by obtaining
both the sum of Brooks' series and the Unsold expres-
sion in terms of known functions.

A similar series could be obtained here by interrupting
the integration. However, this would be inconsistent
with the method, for the transformation of the kinetic
operator presumed continuous wave functions with
continuous first derivatives. A discontinuous wave
function contributes infinitely to the kinetic energy,
while a discontinuity of the derivative leads only to a

"C~. M. Roe& Php"s. Rev. 88& 659 (1952},
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finite contribution. There is, however, no particular
need to neglect the negative rnultipoles, or series (15b).

The first consequence of using both series of (15) is
that the first-order energy no longer vanishes:

Ez= (1+1/R)e z~. (21)

Next, a solution to Eq. (8) is readily obtained for
region II, such that

gzz(r) = —R" — +
(n+ 1)r"+' nr"

(22)

But the composite function, gz(r), is not yet continuous,

-rn rn+1. —

gz(r) = —+—,
R"+' n n+1

(17)

1

fz(r) roe r e zrttn+ (t 1)—" ~dt (18)

and is not even of the same sign as gzz(r) at R=R.
These are solutions of an inhomogeneous second-order
differential equation; the homogeneous equation ob-
tained by suppressing the potential has two solutions,
one regular in the first region, the other acceptable in
the second, which may be used to make it and its first
derivative continuous at r=R. The solution acceptable
in the first region is

(n —1)! ~-z x'
G„(x)= 1—e *+-

7=0 j!
—G„(ax)= —aG~z(ax),
ds

(27a)

x
t"'—'G„(at)dt= LG„(ax)—G (ax)], znAn. (27b)

Brooks' series could be readily expressed in terms of
these functions. From (26) it is evident that neglect
of the terms of exponential dependence may render
divergent an otherwise convergent series in these
functions.

The second solution to the homogeneous equation is
a finite series in negative powers of r:

n! ~+z (2n j)—!2&r&

fzz(r) =
(2n)!r"+' i-0 (n+1 —j)!j! (28)

The second-order energy appears as a fourfold series.
The terms arising from (17) and (22) are found to be
bounded by convergent series for all E, vanishing at
R=O. The terms arising from (19) and (28) are messy;
convergence of the over-all expression is inferred
indirectly.

Pieced together, the radial factors for the dipole
perburbation are

n—1 n —1
= r "e'" Q (—1)'G„+,~z(2r).

j=o

G„(x) is an incomplete gamma function" such that

(19) gz (d) = L(r+r'/2) Cr—e+'"Gz (2r) ],—R'

1
gzz(d)=R 1—S +—+1

2r2 r

(29a)

(29b)

G„(x)= e "t" 'dt— with
20 C=3(R+1)'e—'~ (30a)

5=1—6(R+1)LGz(2R) —Gz(2R)]. (30b)
—x'

=o (s+n)s!
The energy expression contains only functions already
defined,

(22)
Ez(2) = —-z, {4RGz(2R)+2R'Gz(2R)

+R)3 (31)

=(n —1)!e "P.=o (n+v)!
2R Gz Gz(2R) +2Re LR $(1It is easily established that this is a case of the confluent

hypergeometric function of the first kind with the The corresponding quadrupole terms are:
following convenient properties:

G.(x) =
n

x«n gz (q) =— —+——Dr'e'"(G4(2r) —Gz (2r)], (32a)
(23) Rz

—+ (n 1)!/xn x))—n
1 1 1 1 1

(24) gzz(q) =R'- —+——& —+ +—+— (32b)

(25)
where

D= 10(R+1)(1+R+3R')e '", (33a)

T= 1—30(R+1)(Gz(2R)—2G4(2R)+Gz(2R)]. (33b)

( h)n~

G„(x+h)= P G(.+„)(x),
mm ~!

"L. C. Cusachs, dissertation, Northwestern University, 1961.
(unpub1ished) .
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TABLE I. Dipole term (columns I to VI) and quadrupole term (columns VII to XI). (I) Dipole contribution to second-order energy
predicted by limiting function, a&/2R4. P—Es(d) j. (II) Dipole contribution to second-order energy calculated by method of this paper;—AE~(d). (III) Ratio, II/I. (IV) Dipole contribution to second-order energy predicted by two parameter variation function, using
correct potential. (V) Dipole contribution to second-order energy predicted by Hassd-Kirkwood type linear variation function with
correct potential. (VI) Ratio, IV/I. (VII) Quadrupole contribution to second-order energy predicted by limiting function, o2/2E:
L
—Es"(q)]. (VIII) Quadrupole contribution to second-order energy calculated by method of this paper; —AE2(q). (IX) Ratio,

VIII/VII. (X) Ratio of quadrupole to dipole energies, predicted by limiting functions, VII/I. (XI) Ratio of quadrupole to dipole
energies, predicted by method of' this paper, VIII/II. All of the energies are negative.

R (a.u. ) I
1.5 0.4444
2.0 0.1406
3.0 0.02778
4.0 0.008789
5,0 0.003600
7.5 0.0007111

0.07093
0.04908
0.01974
0.007931
0.003502
0.0007106

0.1596
0.3490
0.7105
0.9023
0.9726
0.9993

IV

~ ~ ~

0.04755
0.01924
0.007843
0.003492

V

~ ~ ~

0.4730
0.01873
0.007272
0.003146

~ ~ ~

VI

~ ~ ~

0.3382
0.6926
0.8924
0.9700

~ ~ ~

VII

0.6584
0.1172
0.01029
0.001831
0.0004800
0.0000453

VIII

0.01259
0.008589
0.003429
0.001156
0.0004231
0.00004175

IX
0.01912
0.07329
0.3332
0.6312
0.8815
0.9216

1.4815
0.8333
0.3708
0.2083
0.1333
0.0637

XI
0.1775
0.1750
0.1737
0.1457
0.1208
0.05875

so anally:

Es, —fsRGr(2—R—)+ (4/5)R'Gs(2R)]

+ssDLGs(2R) 2G4(2R)+Gs(2R)]

-4R' 4R4Ei( —2R)
~
—2B

15 9

[2R'+5R+4]. (34)
45

Numerical values of these terms for several values of R
are displayed in Table I. Also in the table are the values
of the asymptotic forms:

E "(d)= 9/4R'= ———,
' /R',

Es"(q) = —15/2R' = ——,'n, /Rs

(35)

(36)

Within the framework of the ordinary variation method
there is a consistent procedure which also yields
convergent results. A trial function corresponding to

g(r) =C,+C,r+C,r'+ (3&)

may be used with the correct potential. Column IV of
Table I corresponds to using C» and C~ while column V
uses C~ alone —the usual linear approximation of
Kirkwood. One or two additional parameters add very
little, while greatly complicating the solution.

Brooks and Roe were concerned with using the
second-order energy to explain the difference between
the results of the simple LCAO calculation of the
molecular energy of H2+ and the accurate solution of
the wave equation for that system. Ke note that our
calculation, to third order

second-order perturbation were included; from Table II
we see that it is better to include the terms of third
order which may be calculated with the perturbed func-
tions available.

Using these same perturbed functions as trial func-
tions in an ordinary variation calculation, we simul-
taneously varied a linear coefficient X and rescaled,
obtaining hE =—0.05946, rf (scale factor) = 1.1484,
X=1.4757. %ith neither scaling nor variation of a
coefficient, this leads to —0.04726. This suggests that
retention of more terms and higher orders would lead
to a one-center expansion for the hydrogen molecule
ion, rather than to an energy common to both attractive
and repulsive states.

IV. DISCUSSION ENERGY. QUALITATIVE
FEATURES

The interaction of two atoms on the same electro-
static model introduces a perturbation operator, in
standard notation:

V= 1/R —1/rs. —1/r, s+1/r„, (38)

where only three of the four variables can be inde-
pendent. Usually one eliminates r&2, since

(39)
so that

V=1/R+1/~ R—rt, +tss~ —1/rs, —1/r&s. (40)

The last three terms are then expanded in terms of E,
r&, and r». The subscripts a and b may then be dropped;
the expansion requires four series. "

The traditional procedure is to consider only the
first term of the first series, valid if

AE= Et+AEs+AEs, (37) r, +rs&~R. (41)

predicts a binding energy of 0.0594 a.u. (atomic units)
at the equilibrium separation. This is close to the refer-
ence calculation cited by Brooks and by Roe, which
predicts a D, of only 0.0648 a.u. The known value is
0.1026 a.u. There would necessarily be some slight im-

provement if the higher order multipole terms of the

In this region, one calculates a coe%cient d such that

lim Es(d,d) = —d/R'. (42)

"R. J. Buehler and J. O. Hirschfelder, Phys. Rev. 83, 628
(1951).
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TABLE II. Relative importance of terms at R=2 a.u. Energies
of second and third order as well as binding energy with potential
and wave functions truncated at (a) dipole term, (b) quadrupole
term, (c) octapole term. Some integrals were evaluated by nu-
merical methods with possible error at the third signi6cant figure.

DER bE3 bE

(a) —0.04908 —0.00400 —0.01760 b E=Ei+bEp+bE3
(b } —0.05766 —0.01452 —0.04471
(c) —0.06020 —0.02222 —0.05494 E1(E=2) =+0.02747

Hirschfelder and Lowdin, 13 using the Schrodinger-
Lowdin functions, obtained the precise value of d for
two normal hydrogen atoms 6.499026. The linear ap-
proximation and simplified perturbation calculations
both lead to 6.0. The equations determining the
optimum perturbed functions are no longer separable,
so the direct method used here in the simpler problem
is no longer practical. It is interesting that the quadratic
variation function, which gives the correct uniform
field polarizability

g(r) = Crr+Csr', (43)

is still a rather fair approximation, corresponding to a
coeKcient d of 6.4821428, obtained by Hirschfelder
and Lowdin at an intermediate stage of their accurate
calculation, conhrmed less precisely by direct variation
calculation.

Analogy with the induction calculation suggests that
a complete solution would be only moderately more
complex, in particular would require piecing together
solutions which would differ if the radial variable
appeared as a positive or negative power in the potential
in a variation calculation. A much more practical
approach seems to be the extension to hnite separation
of the elegant method of Hirschfelder and Lowdin. 13

%e should expect a more marked deviation from inverse
power dependence at the same distance than in the
induction case, since the interval of convergence of
the 6rst series is more restrictive:

rather than
r,+re &~ R, (41)

R R—r1

1m&—2r1y n&—2r2dy 2' 1 (44)

which becomes

(15a)

It further seems evident that an ordinary variation
calculation using the correct potential must lead to a
6nite second-order energy at all separations. Such a
calculation would lead to integrals more messy than
difFicult, such as

)The equivalence of m and n can be shown using the
recurrence relation: xGs(x) = (k —1)Gs r(x) —e .j This
calculation would furnish only a lower bound to the
magnitude of the interaction, bearing the same relation
to the full solution as curve B of Fig. 1 does to curve A.

V. CONCLUSIONS

B„(s,R)s' "E„(1,sR), (46)

and it appears from Burns' work that a similar rela-
tion holds for large isoelectronic systems. Thus the
second-order dipole term, or even the whole second-
and third-order energies might be approximated by
incomplete gamma functions and exponentials as sug-
gested by Brooks and on intuitive grounds by Frost
and Woodson. '8

A major difhculty of electrostatic models is their
reconciliation with the virial theorem. For a molecular
system in the Born-Oppenheimer approximation, it
takes the form"

or

RdW, /dR+2W. = V., (47a)

RdW, /dR+2T, +V, =O, (47b)

The series in inverse powers of E usually used for
induction energies do not appear to be either qualita-
tively nor quantitatively good representations of this
effect at chemically interesting distances. A similar
behavior is to be expected for dispersion energies. The
essential divergence of such series is a direct consequence
of the incompatibility of the assumptions used in

obtaining them. Brooks recognized the divergence, but
failed to obtain an acceptable remedy because of his

neglect to the multipoles of negative order and because
of the limitations of the Unsold formula. Papers by
Sternheimer and colleagues and by Burns'~ indicate an
awareness that both series must be used to represent
the perturbing potential for induction calculations.
Burns compares a numerical solution of Sternheimer's
equations with a variation of parameters approach.

In semiempirical calculations on the simple ionic
model, the repulsive potential is usually inferred by
difference or arbitrarily assigned a high inverse power.
A consistent term would correspond to the 6rst-order
energy of the sample calculation. Such a term could be
readily calculated from the wave functions presently
available for many ions. To the extent that the model
is applicable there, one should expect a very serious
deviation from inverse power behavior at about the
equilibrium separation. The mth order energy for a
hydrogenic atom of charge s perturbed by charge at
distance E is

Rn+1 Q ( 1)v Rm—v

(re v)!-
E.~'

~
—2R

Xg G~t(2R)—
g+1~ t e+j+1

(45)

17 R. M. Sternheimer, Phys. Rev. 95, 736 (1954);H. M. Foley,
R. M. Sternheimer, and D. Tyco, Phys. Rev. 9B, 734 (1953);
G. Burns, Phys. Rev. 115, 357 (1959); G. Burns, J. Chem.
Phys. 31, 1253 (1959).' A. A. Frost and J. H. Woodson, J. Am. Chem. Soc. 80,
2615 (1958).

'9 W. L. Clinton, J. Chem. Phys. 33, 1603 (1960).
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It is also known that the variation of a scale factor in
a molecular energy calculation is sufFicient to satisfy
(48). Unfortunately, (47) will in general only be
satisfied when it reduces to (48). In the calculation of
Sec. III, the well-known 6rst-order energy is entirely
potential; (47) will probably not be satisfied for any
finite E. At the second order, 4'~ was varied to minimize
E2 ln

z, =(halo —zoll)+2&ollll) (4c)

Since the two terms of the right-hand side represent
corrections to the kinetic and potential energies, respec-
tively, varying even a linear parameter assures that
(48) will hold for the second order. If the first-order
perturbation fails to satisfy (47), the second order will
not correct this. At the third order there are only
potential terms; then (48) will be satisfied through
third order if E3 is the negative of E~. This is our
reason for preferring the third-order terms calculable
with our perturbed functions already obtained to
examining higher second-order terms. Rough calculation
of Table III is compatible with this conjecture. For

where TV, is the molecular energy in the approximation.
At the equilibrium distance it takes the we11-known
form

(48)

higher orders of perturbation, kinetic terms will enter
only on even order, but there will be a variety of poten-
tial terms. In this formulation, it is possible to satisfy
(48) at the equilibrium, even possible that (47) be
generally satisfied.

A particularly attractive domain for application of
the extended electrostatic model is in the estimation of
the level splitting of partially occupied shells of com-
plexes. Here the availability of isoelectronic sequences
overs a possibility of eliminating or reducing the effect
of uncertainties in the numerical values of uniform
field polarizabilities. The isoelectronic polarizability
relationships found by Pauling" in early work appear

'L. PauEing, Proc. Roy. Soc. (London) A114, 191 (1927).
to be con6rmed by recent calculations for large ions.
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