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Effect of Virtual Excitation of the 2s State on the Elastic Scattering of
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The elastic scattering of electrons by hydrogen atoms, for electron energies below the first threshold of
excitation of the atom (10.2 ev), is investigated numerically making full allowance for exchange and for the
virtual excitation of the 2s state. Singlet and triplet phases for the s, p, and d partial waves have been ob-
tained. While the calculation is essentially preliminary to a more extensive eigenfunction expansion calcula-
tion for this problem, which would allow for nonspherical distortion of the atom, the results do show that
significant changes from the first exchange approximation may be expected as one includes more states in
the expansion. In particular, just below the n= 2 excitation threshold the singlet s phase and the triplet p
phases begin to increase sharply, and what may be a Wigner cusp shows in the total cross section. Predicted
angular distributions are compared with the recent measurements of Gilbody, Stebbings, and Fite. The
phase shifts are compared with those of the exchange approximation, and also with those of Geltman, who
performed a variational calculation allowing for the virtual excitation of the 2s and 3s states.

INTRODUCTION
' 'N a recent paper Smith and Burke' presented a few
~ ~ preliminary results for the singlet and triplet s
phases for the problem of electron collisions with hydro-
gen atoms, in the so-called strong-coupling approxima-
tion with allowance for exchange, for energies below
the threshold of excitation of the x=2 level of hy-
drogen. It is recalled that in this approximation, the
eigenfunction expansion of the wave function includes
only the 1s and 2s states of atomic hydrogen, with ex-
change being allowed for by symmetrizing and anti-
symmetrizing the trial function for the singlet and
triplet cases, respectively. In this paper the results of
numerical calculations in this approximation over the
entire energy range below the ~z=2 threshold are pre-
sented for the partial waves t=0, 1, and 2.

It is realized that this approximation is but a step
towards a more complete eigenfunction expansion calcu-
lation, including further bound states of the hydrogen
atom (in particular the p states) to allow for the non-
spherical distortion or polarization of the atom. ' The
2p state alone contributes some ss of the polarizability
of hydrogen (e.g. , Castillejo et al.s).

*Work performed under the auspices of U. S. Atomic Energy
Commission (K.S.) and with the support of a grant from the
National Research Council of Canada (R.P.M. and P.A.F.). The
latter also wish to acknowledge the partial support of the Defence
Research Board of Canada, the Ontario Research Foundation, the
Department of Defence Production (Canada), the Geophysics
Directorate of the Air Force Cambridge Research Center, the Air
»rce~OfBce of Scientific Research, and the Ofhce of Naval
Research.

l' Holder of an Ontario Research Foundation Scholarship.' Kenneth Smith and P. G. Burke, Phys. Rev. 123, 174 (1961).' P. G. Burke, V. M. Burke, and H. M. Schey, Second Inter-
national Conference on the Physics of Electronic and Atomic Colli-
sion, University of Colorado, Boulder, June 12-15, 1961 (W. A.
Benjamin Inc. , New York, 1961),paper I 2.'I. Castillejo, I. C. Percival, and M. J. Seaton, Proc. Roy.
Soc. (I ondon) A254, 259 (1960).

In Sec. I the numerical methods of solution of the
coupled integro-differential equations are discussed. The
results are presented in Sec. II, where they are compared
with those of the exchange approximation' and with
those of Geltman, ' who used a variational method to
examine the e6ect of virtual excitation of the 2s and
3s states, making full allowance for exchange. Pre-
dicted angular distributions are compared with those
measured by Gilbody et ul. ,

' and for two energies with
those predicted by the exchange approximation.

I. MATHEMATICAL METHOD

Explicitly, the assumed forms of trial functions in
this approximation are

(rl r2) $1 (rl)FO(r2)+it'2 (rl)I 1(r2)+ (r1 ~ r2) (1)

for the singlet and triplet cases respectively. Expanding

4 A set of exchange approximation phases have been presented
by T. L. John, Proc. Phys. Soc. (London) 76, 532 (1960). The
results quoted here, however, have been computed for the pur-
poses of this paper by two of the authors (R.P.M. and P.A.F.).
These agree with the results of John for energies for which com-
parison is directly possible. The l=1 and 2, and where possible,
the l=0 exchange phases were computed by iteration on the
integral equation formulation for the exchange approximation.
Where this method diverged for the 1=0 case (see text), solutions
were obtained by the method of Percival, described by Marriott in
reference 8. These authors (R.P.M. and P.A.F.) acknowledge that
Geltman was correct in his suggestion, in reference 5, that their
published exchange-approximation d phases LCan. J. Phys. 38,
317 (1960)g were too small in absolute value. The errors arose
from an inadequate application of a numerical method, different
from that used in this paper, to solve the integral equations.
While the former approximation gave adequate results for the s
phases and the larger P phases ()0.1 in absolute value, say), it
failed, in the light of later work, to give good results for small
phases.

e Sydney Geltman, Phys. Rev. 119, 1283 (1960).
6 H. B.Gilbody, R. F. Stebbings, and Wade L. Fite, Phys. Rev.

121, 794 (1961}.
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Ii 0 and Ii r as follows:

and

F ~( )=- 2 g +( )~ («») (3)

2s state of hydrogen. For exact solutions of Eqs. (4)
and (5), the Kohn corrections to the approximate
tanql+ are zero, and hence the values obtained are
correct to second order in the difference between the
exact total wave functions and the trial functions. The
total scattering cross section (in units of rrao2) for an
unpolarized electron beam is given by

one obtains, through the Kohn variational principle,
coupled integro-differential equations for the f1+(r) and
gl'(r):

d' l (l+1)—
+k' —— f1+(r,)

dr j~ rl'

= Uoo(rl)f1+(rl) + «2 &00(rl, r2)f1+(r2)

+U01(rl)gl+(rl)~ «2 Idol(rl ro)gl (r~)

=Gl+(rt),

d' 3 l (l+1)—
+k' ——— gl+(r, )

dry' 4 rg'

Ull(rl)gl (r1)~ «2 1111(r1r2)gl (1 2)
0

+Ulo(rl)f1+(rl)& dr2 E10(r„r2)f1+(1,)
0

=el+(r, ).

These equations are of the same form as those used
by Marriotts and by Smith' in discussing excitation of
the 2s level of hydrogen by electron impact. The ex-
plicit form of the potentials V and the kernels E are
given by Erskine and Massey. "k' is the kinetic energy
of the electron in units of 13.6 ev. The unit of length is

uo, the Bohr radius. In the present paper we are inter-
ested in the ease k'(43, i.e., below the n=2 threshold
of excitation. The boundary conditions on f1+(r) and

gP(r) are thus

f1+(r) sin(kr —lor/2)+tanr)1+ cos(kr —lor/2),
~00 (6)

gl+(r) —~1 exp( —Vlr), h 1'=
&
—k'),

0 =—P (2l+1)Lxt sinsrjl++42 sinsril g.
k' l-O

The angular distribution of the scattered electrons may
also be expressed in terms of the phase shifts pl+.

Smith and Burke' have described an iterative nu-

merical method of solution of these equations. It is

recalled that this method involves integrating out from
the origin to some ro, and integrating in from the asymp-
totic region to ro, and the solutions obtained by match-
ing sums of linearly independent solutions. This method
has been used by one of the authors (K.S.) for the l= 0
phase shifts reported here, using an IBM-704. These
results check with those obtained for this approxima-
tion by the IBM-709 code of reference 2."A few /= 1

phase shifts have been obtained by this method, ' and
these agree, at least away from the m= 2 threshold, to
3 or 4 decimal places with the results obtained by the
method described in succeeding paragraphs.

An alternative method, using an IBM-650, has been
used by two of the authors (R.P.M. and P.A.F.), which

is based on an iteration scheme for the integral equation
formulation of the equations and boundary conditions.
The method may be of considerable utility in more
complicated problems as it generally converges very
fast for 1&0. Results have been obtained, and are pre-
sented here, for the 1= 1 and l = 2 phases by this method;
however, for /=0 the method diverges for k&0.3 in the
symmetric case and for k&0.8 in the antisymmetric
case.

The integral equations equivalent to the integro-
differential Eqs. (4) and (5) plus the boundary condi-
tions (6) may be written as follows:

f1+(r1)=ul(krt) — dr2 Zl(rl, rs)G1 (r2),

gl (rl) dr2 @l (rl r2)+1 (r2)

with f1+(0)=0, and gl+(0) =0.
The damped exponential behavior of gl+(r) follows

from the energetic impossibility of real excitation of the 2 1 (rl, rs) = Nl (kr&) el (kr~)/k, (10)

where the Green's functions Zl and Zl' are given by

VW. Kohn, Phys. Rev. 74, 1763 (1948); B. M. Bransden,
A. Dalgarno, T. L. John, and M. J. Seaton, Proc. Phys. Soc.
(London) 71, 877 (1958).

R. Marriott, Proc. Phys. Soc. (London} 72, 121 (1958}.' Kenneth Smith, Phys. Rev. 120, 845 (1960).' G. A. Erskine and H. S. W. Massey, Proc. Roy. Soc.
(London) A212, 521 (1952).

&1'(rl,r2) =pl(v1«)ql(sir&)/v1,

with r~ the lesser of r~ and r2, and r» the greater. The
functions Nl(x), nl(x), pl(x) and ql(x) are given by the

"P. G. Burke (private communication).



ELASTI C SCATTE RI N G QF ELECTRONS B Y ATOM I C H

relations~

N((x) = (s-x/2) V(+., (x),
s~(&) = (—1)'(s&/2)'~ —(~+1)(&) (12)

P((x) = (s.x/2)'*I~i(x), g((x) = (2x/s-)~Kt„i(g). (13)

The phase shifts are given by the integrals

1
tang(+= —— drs N((krs)G(+(rs)

k p

The iteration procedure starts by evaluating H&+(r)
with the fq+(r) obtained from the exchange approxima-
tion and with gg+(r)=—0. This value of IIq+(r) is sub-
stituted into Eq. (9) to yield a new g&+(r), which in
turn may be used to recalculate P~+(r) This .process is
repeated, with f~+(r) remaining fixed, until g~+(r)
converges. With this final value of g~+(r) remaining fixed
in the evaluation of G~+(r) a similar iteration process is
carried out with Eq. (8) to obtain a new f&+(r). The
entire procedure as outlined above is repeated (usually
once or twice is sufhcient) until Eqs. (8) and (9) are
both simultaneously satisfied to the required accuracy.
The integrals are necessarily cut o6 at some finite value
of r (=15);however it is possible to apply at each stage
corrections in terms of the approximate asymptotic
forms of the fg+(r) and gq+(r).

II. RESULTS

Tables I—III display s, p, and d phases calculated
(a) in the exchange approximation, (b) including 2s
virtual excitation, and (c) by Geltman. ' Comparison
of the present results with those of Geltman' suggest

TABLE I. 1=0 phase shifts in radians, k~ is the electron
energy in units of 13.6 ev.

(Triplet) (Singlet)
Ex- Vir- Gelt- Ex- Vir- Gelt-

k' change tual 2s man change tual 2s man

0.0.
0.01
0.05
0.075
0.1
0.2
0.3
0.4
0.45
0.5
0.5286
0.6
0.6474
0.7
0.7225
0.8
0.8314
0.85
0.8544
0.8602

0.0
0.0010
0.0025
0.0056
0.01
0.04
0.09
0.16
0.2025
0.25
0.2794
0.36
0.4191
0.49
0.5220
0.64
0.6912
0.7225
0.73
0.74

2.35 2.33 2.350 8.10
3.108
3.022
2.916

2.908 2.901 2.396
2.679 2.6797 2.679 1.870
2.461 2.4609 1.508
2.257 2.2575 2.257 1.239

2.1619
2.070 2.0704 1.031
2.020 2.0193 0.9807
1.901 1.901 0.8690
1.826 1.8245 0.8055
1.749 1.7529 0.7441
1.720 1.7196 0.7205
1.614 1.616 1.616 0.6512
1.574 1.5775 0.6279
1.552 1.5546 0.6153
1.548 1.5493 0.6124
1.541 1.5397 0.6087

7.5
3.065
2.767
2.591
2.404
1.8776
1.5190
1.2569
1.1417
1.0406
0.9965

0.8284

0.7516
0.6977
0.6877
0.6934
0.7004
0.732b '

8.220

2.389
1.834
1.489
1.201

0.8406

0.5862

' The k =0 entries are the scattering lengths in units of ao '.
b The convergence of the iterative procedure was slow for this energy.' A value of 0.834 was obtained for the singlet l =0 phase for k~ 0.745;

this value should be regarded as provisional, as the convergence was indeed
slow.

that for the p and d waves, the inclusion of the 3s
state leads to no essential change in the phases. The
zero-energy scattering lengths, A p+= 7.5 and Ap = 2.33,
are still significantly greater than their corresponding
upper limits of A p+= 6.23 and A p

= 1.91."It is interest-
ing to note the beginning of a sharp rise in the l=0
singlet and the /= 1 triplet phases just below the thresh-
old of excitation (k'=0.75, k=0.866). Newton" has

TABLE II. l= 1 phase shifts in radians. k2 is the electron energy in units of 13.6 ev.

0.1
0.15
0.2
0.3
0.4
0.5
0.5286
0.6
0.6474
0.7
0.7225
0.8
0.8314
0.85
0.8544
0.8602

0.01
0.0225
0.04
0.09
0.16
0.25
0.2794
0.36
0.4191
0.49
0.5220
0.64
0.6912
0.7225
0.73
0.74

Exchange

0.0022
0.0072
0.0166
0.0511
0.1050
0.1694
0.1879
0.2318
0.2579
0.2833
0.2929
0.3204
0.3292
0.3339
0.3349
0.3362

(Triplet)
Virtual 2s

0.0040
0.0129
0.0281
0.0771
0.1422
0.2105
0.2289
0.2717
0.2968
0.3206
0.3304
0.3608
0.3783
0.411
0.438
0.95~

Geltman

0.0048

0.0277

0.1412

0.2774

0.3624

Exchange

—0.0012—0.0036—0.0084—0.0240—0.0461—0.0703—0.0769—0.0920—0.1003—0.1076—0.1101—0.1154—0.1160—0.1160—0.1160—0.1159

{Singlet)
Virtual 2s

—0.0003—0.0014—0.0040—0.0162—0.0380—0.0646—0.0722—0.0894—0.0989—0.1071—0.1097—0.1140—0.1133—0.1120—0.1115—0.1109

Geltman

+0.0008

—0.0027

—0.0395

—0.0901

—0.1158

a See text; while the process was slow, the iteration on the integral equations converged in the sense that the f& {r) and gi (r) functions from the final
stage agreed to five figures with the output of the previous stage. This is not to say that the result is accurate to five figures; taking account of truncation
error the result is estimated to be good to possibly 2 figures. The method of Smith and Burke (reference 1), which was used to compute the values in Table I
(virtual 2s approximation), converges extremely slowly for the triplet p wave near the n =2 excitation threshold, and gives for this phase 0.41 for k2 =0.74,
and 0.47 for k 0.745. While the convergence criterion was satisfied, further iterations beyond this stage gave phases apparently diverging from the above
values.

"N. W. McLachlan, Bessel Fnneteons for Engineers (Oxford University Press, New York, 1955), 2nd ed.
'3 I. Rosenberg, L. Spruch, and T. O' Malley, Phys. Rev. 119, 165 (1960).
'4 Roger G. ¹wton, Ann. Phys. 4, 29 (1958).
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l ABLE III. 1=2 phase shifts in radians. k' is the electron energy in units of 13.6 ev.

0.3
0.4
0.5
0.5286
0.6
0.6474
0.7
0.7225
0.8
0.8314
o.g5
0.8544
0.8602

0.09
0.16
0.25
0.2794
0.36
0.4191
0.49
0.5220
0.64
0.6912
0.7225
0.73
0.74

Exchange

0.0008
0.0029
0.0070
0.0086
0.0135
0.0175
0.0223
0.0246
0.0327
0.0362
0.0383
0.0388
0.0395

(Triplet)
Virtual 2s

0.0010
0.0034
0.0081
0.0099
0.0154
0.0197
0.0251
0.0276
0.0366
0.0406
0.0430
0.0436
0.0444

Geltman

0.0034

0.0148

0.0365

Exchange

—0.0005
—0.0017—0.0039
—0.0047—0.0070—0.0087—0.0106—0.0114—0.0139
—0.0148—0.0152
—0.0154—0.0155

(Singlet)
Virtual 2s

—0.0005—0.0016—0.0038—0.0046
—0.0069—0.0086—0.0105—0.0113—0,0138—0.0147—0.015l
—0.0153—0.0154

Geltman

—0.0016

—0.0070

—0.0140

TABLE IV. Differential cross section for energy 7.1 ev (k'
=0.5220) in units of mu02 per steradian, as given by the exchange
approximation and the virtual 2s approximation, with and with-
out the d-wave contributions.

Scattering
angle

Exchange
s+P s+P+d

Virtual 2s

S+P s+P+tS

discussed, and given examples of, such behavior in
phase shifts for energies approaching a threshold.

Tables IV and V show the differential cross sections
given by the exchange and 2s virtual excitation approxi-
mations, for the energies 7.1 ev and 9.4 ev, the two
largest energies for which Gilbody et a/. ' performed
measurements. It is clear that the contribution of the
d waves should not be ignored in discussion of the angu-
lar distribution. Figure 1 shows the present calculated
angular distributions for the energies 3.8, 5.7, 7.1, and
9.4 ev, together with the measured points of Gilbody
et al. ' The gratifying agreement for the two highest
energies should perhaps be regarded with some reserva-
tion in view of the great difhculty of the experiment and
the stated experimental errors, and the incompleteness
of the present physical approximation.

As pointed out by Temkin and Lamkin, "a measure-
ment of the spin-Qip cross section ' will help to dis-
tinguish between sets of published phases. In Table VI
are shown these cross sections together with the total
elastic scattering cross sections for various energies as

given by the exchange approximation and by the 2s
virtual excitation approximation. Figure 2 shows the
total elastic cross section as a function of energy: below
the n=2 threshold the values are those from the 2s
virtual excitation approximation, reported here; above
the threshold the values are those obtained by Smith. '

Particularly noticeable is the occurrence at the n= 2

excitation threshold of what may be a signer cusp in

the cross section. These cusps, and other threshold be-
haviors, have also been discussed by Newton. " The
sharp rise is attributable to the contributions of the
singlet s wave and the triplet p wave, the behavior of
whose phase shifts near threshold has been noted earlier.
The numerical methods used in the present calculations
either do not work satisfactorily or are very slowly

convergent near the threshold for the partial waves

just mentioned. For example, while a representative
normal p-wave calculation took 1 hr on an IBM 650,
the triplet p-wave calculation at As=0. 74 took 10 hr
before convergence was satisfactory, and even then it
was found necessary at certain iteration stages to multi-

ply gr (r) by a suitable constant to speed convergence.

TABLE V. Differential cross section for energy 9.4 ev (k'
=0.6912) in units of s.oos per steradian, as given by the exchange
approximation and the virtual 2s approximation, with and without
the d-wave contributions.

00
15'
30'
45'
60'
75
90'

105'
120'
135'
150'
165
180

0.941
0.914
0.842
0.741
0.637
0.555
0.514
0.520
0.570
0.646
0.725
0.784
0.806

1.025
0.987
0.884
0.754
0.634
0.555
0.527
0.541
0.579
0.623
0.660
0.683
0.691

1.082
1.048
0.955
0.824
0.684
0.578
0.518
0.519
0.574
0.662
0.756
0.827
O.g54

1.191
1.141
1.010
0.840
0.683
0.576
0.532
0.542
0.584
0.635
0.679
0.707
0.716

"A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
"mr = (I/4k')2& 0"(2l+I) sin'(vg+ —

vg ) in units of s.uo'.

Scattering
angle

00
15'
30'
45'
60'
75'
90'

105'
120'
135
150'
165
180'

0.904
0.875
0.795
0.682
0.560
0.454
0.385
0.361
0.380
0.427
0.483
0.527
0.544

1.034
0.9g7
0.863
0.703
0.553
0.445
0.390
0.377
0.388
0.405
0.419
0.427
0.430

Exchange

s+P s+P+d
1.072
1.035
0.930
0.782
0.623
0.484
0.392
0.358
0.379
0.438
0.509
0.565
0.586

1.236
1.176
1.016
0.809
0.614
0.472
0.397
0.378
0.390
0.411
0.430
0.441
0.445

Virtual 2s

s+P s+P+d
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TABLE VI. Partial and total elastic cross sections and s i - '
s an sprn-flip cross section (in units of sacs).

Kinetic
(ev)

0.00
0.14
0.54
1.2
2.2
3.4
3.8
5.7
7.1
8.7
9.4
9.8
99

10.1

energy
k'

0.00
0.01
0.04
0.09
0.16
0.25
0.2794
0.4191
0.5220
0.64
0,6912
0.7225
0.73
0.74

72.5
62.3
37.6
24.3
16.9
12.2
11.2
8.00
6.51
5.32
4.92
4.72
4.68
4.65'

0.01
0.18
0.60
1.16
1.62
1.71
1.91
1.88
1.81.
1.83
2.04
2.27
8.1'

0.000
0.000
0.000
0.001
0.004
0.006
0.015
0.023
0.033
0.037
0.040
0,041
0.042

Virtual 2s

72.5
62.3
37.8
24.9
18.0
13.8
13.0
9.92
8.42
7.17
6.79
6.79
6.99

12,8

Kxchange-

82.2
62.1
37.8
24.5
17.5
13.3
12.4
9.42
7.98
6.74
6.28
6.04
5.98
5.90

Virtual 2s
0'f

6.68
5.68
3.24
1.89
1.26
0.957
0.889
0.688
0.589
0.496
0.466
0.463
0.479
0 95a

Exchange
4ff

8.27
6.00
3.28
1.89
1.23
0.913
0.850
0.655
0.562
0.476
0 AA. ll

0.426
0.422
0.416

& See footnote b of Tablable I, and footnote a of Table II.
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The subject of transition probabilities induced by random perturbations is treated. The expression for
average transition rates between two energy levels is derived for the general case when the frequency
spectrum of the perturbation and the distribution of the energy levels have comparable widths. The general
expression takes an especially simple form for the special cases where the frequency bandwidth of the
perturbation Hamiltonian is either much larger or much smaller than that of the energy level distribution.
The formulas are applied, by way of illustration, to a number of physical problems.

INTRODUCTION

'HIS paper attempts to present, from a unified
point of view, the effect of random perturbations

on transitions between two energy levels. It is shown
that the degree of randomness of a given perturbation
is characterized by Qi/Qs, the ratio of the spectral
bandwidth of the perturbation to the width of the
energy level distribution. The theory has a strong
bearing on the case of motional narrowing of resonance
lines, which has been studied in detail by Bloembergen
et al. ' Some of the features of the motional narrowing
theory are rederived as a special case.

THEORY

The starting point for erst-order time-dependent
perturbation theory is usually the equation'

ai(t) = (ih) ' Hk,„'(t')e'"""'dt',
0

where
I a&(f) I' is the probability of finding the system at

time t in an energy state 5&, if at t=0 when the pertur-
bation is turned on it is known to possess the energy E, .
Hs '(i) is the matrix element of the perturbation
Hamiltonian connecting the two states, and
= (Es—E„)/h.

If E& and E are not sharp well-de6ned energy levels,
we must introduce a distribution function p(pcs ), where
p(tc)d&c=g(E)dZ is the probability of finding the energy
difference ~I, within the range or~~d~. The total
transition probability per unit time to this group of

states is

d
~(&)=—2 I

as(&) I'~ — p(~s-)d~~-I as(&) I', (2)
dt dt

where

p (tc km) dtc km, = 1

00

dt — p(res„)docs„I as(t) I', (3)
dt

where (2) was used. This reduces to

00

(m)= lim-
T~00 T

p(~s )d»-I as(&) I'. (4)

Utilizing Eq. (1) we note that

I
as@') I'

T h2T
Hs '(1')

Consider now a case in which the perturbation
H&„'(t) is a random stationary process. (An example
would be the eGects of thermal vibrations of a crystal
lattice at the site of a single atom. ) From (1) it follows
that there will be statistical Auctuations in m so that we

may define an average transition probability per unit
time as

T

(ttt) = lim — w(f)di
'T ~00

0

t + (p) Ad m( t' st")df tditt—' N. Bloembergen and R. V. Pound, Phys. Rev. 95, 8 (1954).' See, for instance, L. I. Schiff, Qttanttttn Mechanics (McGraw-
Hill Book Company, Inc. , New York, 1955), 2nd ed. , p. 197. By changing variables so that t"—t'= 7. and t'= t, we


