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The elastic scattering of electrons by hydrogen atoms, for electron energies below the first threshold of
excitation of the atom (10.2 ev), is investigated numerically making full allowance for exchange and for the
virtual excitation of the 2s state. Singlet and triplet phases for the s, p, and d partial waves have been ob-
tained. While the calculation is essentially preliminary to a more extensive eigenfunction expansion calcula-
tion for this problem, which would allow for nonspherical distortion of the atom, the results do show that
significant changes from the first exchange approximation may be expected as one includes more states in
the expansion. In particular, just below the n=2 excitation threshold the singlet s phase and the triplet p
phases begin to increase sharply, and what may be a Wigner cusp shows in the total cross section. Predicted
angular distributions are compared with the recent measurements of Gilbody, Stebbings, and Fite. The
phase shifts are compared with those of the exchange approximation, and also with those of Geltman, who
performed a variational calculation allowing for the virtual excitation of the 2s and 3s states.

INTRODUCTION

N a recent paper Smith and Burke! presented a few
preliminary results for the singlet and triplet s
phases for the problem of electron collisions with hydro-
gen atoms, in the so-called strong-coupling approxima-
tion with allowance for exchange, for energies below
the threshold of excitation of the #=2 level of hy-
drogen. It is recalled that in this approximation, the
eigenfunction expansion of the wave function includes
only the 1s and 2s states of atomic hydrogen, with ex-
change being allowed for by symmetrizing and anti-
symmetrizing the trial function for the singlet and
triplet cases, respectively. In this paper the results of
numerical calculations in this approximation over the
entire energy range below the n=2 threshold are pre-
sented for the partial waves (=0, 1, and 2.

It is realized that this approximation is but a step
towards a more complete eigenfunction expansion calcu-
lation, including further bound states of the hydrogen
atom (in particular the p states) to allow for the non-
spherical distortion or polarization of the atom.? The
2p state alone contributes some 2 of the polarizability
of hydrogen (e.g., Castillejo ef al.3).
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latter also wish to acknowledge the partial support of the Defence
Research Board of Canada, the Ontario Research Foundation, the
Department of Defence Production (Canada), the Geophysics
Directorate of the Air Force Cambridge Research Center, the Air
Force 4Office of Scientific Research, and the Office of Naval
Research.
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In Sec. I the numerical methods of solution of the
coupled integro-differential equations are discussed. The
results are presented in Sec. IT, where they are compared
with those of the exchange approximation* and with
those of Geltman,’ who used a variational method to
examine the effect of virtual excitation of the 2s and
3s states, making full allowance for exchange. Pre-
dicted angular distributions are compared with those
measured by Gilbody et @l.,% and for two energies with
those predicted by the exchange approximation.

1. MATHEMATICAL METHOD

Explicitly, the assumed forms of trial functions in
this approximation are

WE(11,15) =1, (11) Fo(19) +a, (1) Fa(ra) £ (119 13), (1)

for the singlet and triplet cases respectively. Expanding

4 A set of exchange approximation phases have been presented
by T. L. John, Proc. Phys. Soc. (London) 76, 532 (1960). The
results quoted here, however, have been computed for the pur-
poses of this paper by two of the authors (R.P.M. and P.A.F.).
These agree with the results of John for energies for which com-
parison is directly possible. The /=1 and 2, and where possible,
the /=0 exchange phases were computed by iteration on the
integral equation formulation for the exchange approximation.
Where this method diverged for the =0 case (see text), solutions
were obtained by the method of Percival, described by Marriott in
reference 8. These authors (R.P.M. and P.A.F.) acknowledge that
Geltman was correct in his suggestion, in reference 5, that their
published exchange-approximation d phases [Can. J. Phys. 38,
317 (1960)] were too small in absolute value. The errors arose
from an inadequate application of a numerical method, different
from that used in this paper, to solve the integral equations.
While the former approximation gave adequate results for the s
phases and the larger p phases (>0.1 in absolute value, say), it
faﬁled, in the light of later work, to give good results for small

ases.

X Sydney Geltman, Phys. Rev. 119, 1283 (1960).

6 H. B. Gilbody, R. F. Stebbings, and Wade L. Fite, Phys. Rev.
121, 794 (1961).
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Fy and F; as follows:

1 »
Fox(r)=- Y fi£(r) Pi(cosd), (2
7 =0
and
1
Flﬂ:(r)z-— Z gli(T)Pl(COSl?), (3)
7 1=0

one obtains, through the Kohn variational principle,’
coupled integro-differential equations for the fi(») and

gzi(r):
1(i+1)

dZ
E
d?’ 12 v 1

= Voo(f’l)fzi(ﬁ):l:/ drs Koo(ri,re) fit(re)

Jfl (r1)

+ Vm(”l)é’ﬁ(h):‘:/ drs Koy (r1,72) g1 (r2)
=G=E(r), (4)

l:d2 e 3 I1+1)
d1’12 4 1’1 ]gl (rl)

=V11(7’1)g1i(7’1):l:/ drs Ku(ﬁ,rz)gzi(m)
0

+ Vw(h)fzi(h):i:/ drs Km(h,”z)fzi(rz)
=H*(ry). (%)

These equations are of the same form as those used
by Marriott® and by Smith® in discussing excitation of
the 2s level of hydrogen by electron impact. The ex-
plicit form of the potentials ¥ and the kernels K are
given by Erskine and Massey.!? £% is the kinetic energy
of the electron in units of 13.6 ev. The unit of length is
ao, the Bohr radius. In the present paper we are inter-
ested in the case k2<%, i.e., below the =2 threshold
of excitation. The boundary conditions on fi*(r) and
g:/%(r) are thus

fiE (r)':a00 sin (kr—lm/2)+tann* cos(kr—Ir/2), ©
g () ~

- Avexp(=vr), (ri*=i—F),

with f;#(0)=0, and g,+(0)=0.
The damped exponential behavior of g;*(r) follows
from the energetic impossibility of real excitation of the

7W. Kohn, Phys. Rev. 74, 1763 (1948); B. M. Bransden,
A. Dalgarno, T. L. John, and M. J. Seaton, Proc. Phys. Soc.
(London) 71, 877 (1958).
8R. Marnott Proc. Phys. Soc. (London) 72, 121 (1958).
9 Kenneth Smlth Phys. Rev. 120, 845( 60)
0G. A. Erskine and H. S. . Massey, Proc. Roy. Soc.
(London) A212, 521 (1952).
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2s state of hydrogen. For exact solutions of Egs. (4)
and (5), the Kohn corrections to the approximate
tanm;= are zero, and hence the values obtained are
correct to second order in the difference between the
exact total wave functions and the trial functions. The
total scattering cross section (in units of ma¢?) for an
unpolarized electron beam is given by

4 o
o=—13 (241} sin’y;t+4 sin’n;].
k’ 1=0

The angular distribution of the scattered electrons may
also be expressed in terms of the phase shifts 7;*.

Smith and Burke' have described an iterative nu-
merical method of solution of these equations. It is
recalled that this method involves integrating out from
the origin to some 7o, and integrating in from the asymp-
totic region to 7o, and the solutions obtained by match-
ing sums of linearly independent solutions. This method
has been used by one of the authors (K.S.) for the /=0
phase shifts reported here, using an IBM-704. These
results check with those obtained for this approxima-
tion by the IBM-709 code of reference 2. A few I=1
phase shifts have been obtained by this method,! and
these agree, at least away from the »=2 threshold, to
3 or 4 decimal places with the results obtained by the
method described in succeeding paragraphs.

An alternative method, using an IBM-650, has been
used by two of the authors (R.P.M. and P.A.F.), which
is based on an iteration scheme for the integral equation
formulation of the equations and boundary conditions.
The method may be of considerable utility in more
complicated problems as it generally converges very
fast for I>0. Results have been obtained, and are pre-
sented here, for the /=1 and /=2 phases by this method ;
however, for /=0 the method diverges for £50.3 in the
symmetric case and for £20.8 in the antisymmetric
case.

The integral equations equivalent to the integro-
differential Eqs. (4) and (5) plus the boundary condi-
tions (6) may be written as follows:

i) =) — / dry £4rr)GiE (), (8)
g (r)=— / dry 0 (rur ) Hi(r), ©)

where the Green’s functions £; and £7* are given by

Li(ri,re) =ui(krvi(krs)/k, (10)
and

(11)

with 7« the lesser of #; and 72, and 7> the greater. The
functions u;(x), v:(x), p:(x) and g:(x) are given by the

L8 (r,re) = pi(yrOg(vrs)/v1,

11 P, G. Burke (private communication).
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relations!?
() = (w/2)W 143 (),
vi(x)= (= 1)} (ra/2)WV_q (x), (12)
pu(x)= (wx/2)113(x), qu(x)=(2x/m)*K13(x).  (13)
The phase shifts are given by the integrals
1 00
tane= / drow(bro)Get(ra).  (14)
0

The iteration procedure starts by evaluating H*(r)
with the f;%(r) obtained from the exchange approxima-
tion and with g;£(r)=0. This value of H;(7) is sub-
stituted into Eq. (9) to yield a new g;*(r), which in
turn may be used to recalculate H;®(r). This process is
repeated, with f;=(r) remaining fixed, until g;*()
converges. With this final value of g;*(r) remaining fixed
in the evaluation of Gi%(r) a similar iteration process is
carried out with Eq. (8) to obtain a new f;=(r). The
entire procedure as outlined above is repeated (usually
once or twice is sufficient) until Egs. (8) and (9) are
both simultaneously satisfied to the required accuracy.
The integrals are necessarily cut off at some finite value
of » (=15) ; however it is possible to apply at each stage
corrections in terms of the approximate asymptotic
forms of the fi*(r) and g/ £ (7).

II. RESULTS

Tables I-IIT display s, p, and d phases calculated
(a) in the exchange approximation, (b) including 2s
virtual excitation, and (c) by Geltman.’? Comparison
of the present results with those of Geltman® suggest
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Tasre I. /=0 phase shifts in radians, &2 is the electron
energy in units of 13.6 ev.

(Triplet) (Singlet)
Ex- Vir-  Gelt- Ex- Vir- Gelt-
k k2 change tual 2s man change tual2s man
0.0* 0.0 235 233 2.350 8.10 7.5 8.220
0.01 0.0010 3.108 3.065
0.05 0.0025 3.022 2.767
0.075  0.0056 2.916 2.591
0.1 0.01 2.908 2.901 2.396 2404  2.389
0.2 0.04 2.679 2.6797 2.679 1.870 1.8776 1.834
0.3 0.09 2.461 2.4609 1.508 1.5190 1.489
0.4 0.16 2.257 2.2575 2.257 1.239 1.2569 1.201
0.45 0.2025 2.1619 1.1417
0.5 0.25 2.070 2.0704 1.031  1.0406
0.5286 0.2794 2.020 2.0193 0.9807 0.9965
0.6 0.36 1.901 1.901 0.8690 0.8406
0.6474 0.4191 1.826 1.8245 0.8055 0.8284
0.7 0.49 1.749 1.7529 0.7441
0.7225 0.5220 1.720 1.7196 0.7205 0.7516
0.8 0.64 1.614 1.616 1.616 0.6512 0.6977 0.5862
0.8314 0.6912 1.574 1.5775 0.6279 0.6877
0.85 0.7225 1.552 1.5546 0.6153 0.6934
0.8544 0.73 1.548 1.5493 0.6124 0.7004
0.8602 0.74 1.541 1.5397 0.6087 0.732b-0

a The k =0 entries are the scattering lengths in units of a0~

b The convergence of the iterative procedure was slow for this energy.

¢ A value of 0.834 was obtained for the singlet =0 phase for 22=0.745;
L{lis value should be regarded as provisional, as the convergence was indeed
slow.

that for the p and d waves, the inclusion of the 3s
state leads to no essential change in the phases. The
zero-energy scattering lengths, A¢t=7.5 and 4¢-=2.33,
are still significantly greater than their corresponding
upper limits of 4¢*=6.23 and 4,~=1.91.2 It is interest-
ing to note the beginning of a sharp rise in the /=0
singlet and the /=1 triplet phases just below the thresh-
old of excitation (k2=0.75, k=0.866). Newton!* has

TaBrE II. /=1 phase shifts in radians. k2 is the electron energy in units of 13.6 ev.

(Triplet) (Singlet)

k k? Exchange Virtual 2s Geltman Exchange Virtual 2s Geltman
0.1 0.01 0.0022 0.0040 0.0048 —0.0012 —0.0003 +0.0008
0.15 0.0225 0.0072 0.0129 —0.0036 —0.0014
0.2 0.04 0.0166 0.0281 0.0277 —0.0084 —0.0040 —0.0027
0.3 0.09 0.0511 0.0771 —0.0240 —0.0162
0.4 0.16 0.1050 0.1422 0.1412 —0.0461 —0.0380 —0.0395
0.5 0.25 0.1694 0.2105 —0.0703 —0.0646
0.5286 0.2794 0.1879 0.2289 —0.0769 —0.0722
0.6 0.36 0.2318 0.2717 0.2774 —0.0920 —0.0894 —0.0901
0.6474 0.4191 0.2579 0.2968 —0.1003 —0.0989
0.7 0.49 0.2833 0.3206 —0.1076 —0.1071
0.7225 0.5220 0.2929 0.3304 —0.1101 —0.1097
0.8 0.64 0.3204 0.3608 0.3624 —0.1154 —0.1140 —0.1158
0.8314 0.6912 0.3292 0.3783 —0.1160 —0.1133
0.85 0.7225 0.3339 0.411 —0.1160 —0.1120
0.8544 0.73 0.3349 0.438 —0.1160 —0.1115
0.8602 0.74 0.3362 0.95* —0.1159 —0.1109

a See text; while the process was slow, the iteration on the integral equations converged in the sense that the fi~(r) and gi1~() functions from the final
stage agreed to five figures with the output of the previous stage. This is not to say that the result is accurate to five figures; taking account of truncation
error the result is estimated to be good to possibly 2 figures. The method of Smith and Burke (reference 1), which was used to compute the values in Table I
(virtual 2s approximation), converges extremely slowly for the triplet  wave near the # =2 excitation threshold, and gives for this phase 0.41 for k2=0.74,
and 0.47 for k2 =0.745. While the convergence criterion was satisfied, further iterations beyond this stage gave phases apparently diverging from the above

values.

12N, W. McLachlan, Bessel Functions for Engineers (Oxford University Press, New York, 1955), 2nd ed.
131.. Rosenberg, L. Spruch, and T. O’Malley, Phys. Rev. 119, 165 (1960).

4 Roger G._Newton, Ann. Phys. 4, 29 (1958).
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Tasie III. /=2 phase shifts in radians. #2 is the electron energy in units of 13.6 ev.

(Triplet) (Singlet)
k k? Exchange Virtual 2s Geltman Exchange Virtual 2s Geltman
0.3 0.09 0.0008 0.0010 —0.0005 —0.0005
0.4 0.16 0.0029 0.0034 0.0034 —0.0017 —0.0016 —0.0016
0.5 0.25 0.0070 0.0081 —0.0039 —0.0038
0.5286 0.2794 0.0086 0.0099 —0.0047 —0.0046
0.6 0.36 0.0135 0.0154 0.0148 —0.0070 —0.0069 —0.0070
0.6474 0.4191 0.0175 0.0197 —0.0087 —0.0086
0.7 0.49 0.0223 0.0251 —0.0106 —0.0105
0.7225 0.5220 0.0246 0.0276 —0.0114 —0.0113
0.8 0.64 0.0327 0.0366 0.0365 —0.0139 —0.0138 —0.0140
0.8314 0.6912 0.0362 0.0406 —0.0148 —0.0147
0.85 0.7225 0.0383 0.0430 —0.0152 —0.0151
0.8544 0.73 0.0388 0.0436 —0.0154 —0.0153
0.8602 0.74 0.0395 0.0444 —0.0155 —0.0154

discussed, and given examples of, such behavior in
phase shifts for energies approaching a threshold.

Tables IV and V show the differential cross sections
given by the exchange and 2s virtual excitation approxi-
mations, for the energies 7.1 ev and 9.4 ev, the two
largest energies for which Gilbody et al.5 performed
measurements. It is clear that the contribution of the
d waves should not be ignored in discussion of the angu-
lar distribution. Figure 1 shows the present calculated
angular distributions for the energies 3.8, 5.7, 7.1, and
9.4 ev, together with the measured points of Gilbody
et al.® The gratifying agreement for the two highest
energies should perhaps be regarded with some reserva-
tion in view of the great difficulty of the experiment and
the stated experimental errors, and the incompleteness
of the present physical approximation.

As pointed out by Temkin and Lamkin,'® a measure-
ment of the spin-flip cross section'® will help to dis-
tinguish between sets of published phases. In Table VI
are shown these cross sections together with the total
elastic scattering cross sections for various energies as

TaBLE IV. Differential cross section for energy 7.1 ev (k2
=0.5220) in units of 7ae? per steradian, as given by the exchange
approximation and the virtual 2s approximation, with and with-
out the d-wave contributions.

Scattering Exchange Virtual 2s
angle s+p st+p+d s+p s+p+d
0° 0.941 1.025 1.082 1.191
15° 0914 0.987 1.048 1.141
30° 0.842 0.884 0.955 1.010
45° 0.741 0.754 0.824 0.840
60° 0.637 0.634 0.684 0.683
75° 0.555 0.555 0.578 0.576
90° 0.514 0.527 0.518 0.532
105° 0.520 0.541 0.519 0.542
120° 0.570 0.579 0.574 0.584
135° 0.646 0.623 0.662 0.635
150° 0.725 0.660 0.756 0.679
165° 0.784 0.683 0.827 0.707
180° 0.806 0.691 0.854 0.716

15 A, Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).
16 gp = (1/4k2) Z10® (214-1) sin?(p*—=;7) in units of rae?

given by the exchange approximation and by the 2s
virtual excitation approximation. Figure 2 shows the
total elastic cross section as a function of energy: below
the n=2 threshold the values are those from the 2s
virtual excitation approximation, reported here; above
the threshold the values are those obtained by Smith.°

Particularly noticeable is the occurrence at the =2
excitation threshold of what may be a Wigner cusp in
the cross section. These cusps, and other threshold be-
haviors, have also been discussed by Newton.* The
sharp rise is attributable to the contributions of the
singlet s wave and the triplet $ wave, the behavior of
whose phase shifts near threshold has been noted earlier.
The numerical methods used in the present calculations
either do not work satisfactorily or are very slowly
convergent near the threshold for the partial waves
just mentioned. For example, while a representative
normal p-wave calculation took ~1 hr on an IBM 650,
the triplet p-wave calculation at £2=0.74 took ~10 hr
before convergence was satisfactory, and even then it
was found necessary at certain iteration stages to multi-
ply g () by a suitable constant to speed convergence.

TasiLe V. Differential cross section for energy 9.4 ev (&2
=0.6912) in units of wa,? per steradian, as given by the exchange
approximation and the virtual 2s approximation, with and without
the d-wave contributions.

Scattering Exchange Virtual 2s
angle s+p s+p+d s+p s+p+d
0° 0.904 1.034 1.072 1.236
15° 0.875 0.987 1.035 1.176
30° 0.795 0.863 0.930 1.016
45° 0.682 0.703 0.782 0.809
60° 0.560 0.553 0.623 0.014
75° 0.454 0.445 0.484 0.472
90° 0.385 0.390 0.392 0.397
105° 0.361 0.377 0.358 0.378
120° 0.380 0.388 0.379 0.390
135° 0.427 0.405 0.438 0.411
150° 0.483 0.419 0.509 0.430
165° 0.527 0.427 0.565 0.441
180° 0.544 0.430 0.586 0.445
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Kinetic energy Virtual 2s Exchange  Virtual 2s  Exchange
(ev) k2 o a1 o2 T T af af
0.00 0.00 72.5 72.5 82.2 6.68 8.27
0.14 0.01 62.3 0.01 0.000 62.3 62.1 5.68 6.00
0.54 0.04 37.6 0.18 0.000 37.8 37.8 3.24 3.28
1.2 0.09 24.3 0.60 0.000 249 24.5 1.89 1.89
2.2 0.16 16.9 1.16 0.001 18.0 17.5 1.26 1.23
3.4 0.25 12.2 1.62 0.004 13.8 13.3 0.957 0.913
3.8 0.2794 11.2 1.71 0.006 13.0 12.4 0.889 0.850
5.7 0.4191 8.00 191 0.015 9.92 9.42 0.688 0.655
7.1 0.5220 6.51 1.88 0.023 8.42 7.98 0.589 0.562
8.7 0.64 5.32 1.81 0.033 7.17 6.74 0.496 0.476
9.4 0.6912 4.92 1.83 0.037 6.79 6.28 0.466 0.444
9.8 0.7225 4.72 2.04 0.040 6.79 6.04 0.463 0.426
9.9 0.73 4.08 2.27 0.041 6.99 5.98 0.479 0.422

10.1 0.74 4.658 8.12 0.042 12.82 5.90 0.952 0.416

» See footnote b of Table I, and footnote a of Table II.

III. CONCLUDING REMARKS

The results reported here point up that interesting
effects may occur at excitation thresholds in atomic
collision problems. The computer effort should however
perhaps be placed on more realistic physical approxima-
tions (e.g., that of reference 2), rather than on that
used here.

While important and elegant calculations, by very
different methods, of the s phases for this problem have
been reported by Temkin!” and Schwartz,!® it is not

94 ev

71 ev
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F1c. 1. The angular distribution of electrons scattered elasti-
cally by atomic hydrogen at various energies, as given by the
virtual 2s approximation (solid line). The circled points represent
the experimental results of Gilbody ef al. (reference 6).

17 A. Temkin, Phys. Rev. Letters 4, 566 (1960), and Second
International Conference on the Physics of Electronic and Atomic

inconceivable that the eigenfunction expansion ap-
proach is the most practical for orbital angular momenta
greater than zero, and may also provide the most prac-
tical approach to problems involving more complicated
atoms than hydrogen.

100
cof

)
3

TOTAL CROSS - SECTION (T
8 88

F3
o

8

n
o

(¢) Q2 04 as o8 10 1
KINETIC ENERQY K 12 @

¥'16. 2. The total cross section for the elastic scattering of elec-
trons by atomic hydrogen. The n=2 excitation threshold is
marked by the vertical dashed line. The kinetic energy is k% in
units of 13.6 ev. The validity of the circled point (at 22=0.74)
has been discussed in the text and particularly in footnotes to
Tables I and II.

Collisions, University of Colorado, Boulder, June 12-15, 1961 (W. A.
Benjamin Inc., New York, 1961), paper I 5.

18 C, Schwartz, Second International Conference on the Physics
of Electronic and Atomic Collisions, University of Colorado, Boulder,
June 12-15, 1961 (W. A. Benjamin Inc., New York, 1961),
paper I 1.
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Transition Probability due to Random Perturbations
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The subject of transition probabilities induced by random perturbations is treated. The expression for
average transition rates between two energy levels is derived for the general case when the frequency
spectrum of the perturbation and the distribution of the energy levels have comparable widths. The general
expression takes an especially simple form for the special cases where the frequency bandwidth of the
perturbation Hamiltonian is either much larger or much smaller than that of the energy level distribution.
The formulas are applied, by way of illustration, to a number of physical problems.

INTRODUCTION

HIS paper attempts to present, from a unified
point of view, the effect of random perturbations
on transitions between two energy levels. It is shown
that the degree of randomness of a given perturbation
is characterized by €:/Qo, the ratio of the spectral
bandwidth of the perturbation to the width of the
energy level distribution. The theory has a strong
bearing on the case of motional narrowing of resonance
lines, which has been studied in detail by Bloembergen
et al.! Some of the features of the motional narrowing
theory are rederived as a special case.

THEORY

The starting point for first-order time-dependent
perturbation theory is usually the equation?

ot
ap(t)= (Gh)™ / H ! (¢)eirnt'dy’ 1)
0

where |a(£)|?is the probability of finding the system at
time ¢ in an energy state Ey, if at £=0 when the pertur-
bation is turned on it is known to possess the energy E,..
Hy,'(¢) is the matrix element of the perturbation
Hamiltonian connecting the two states, and wgm
= (Ex—En)/h.

If E; and E,, are not sharp well-defined energy levels,
we must introduce a distribution function p(wn), where
p(w)dw=g(E)dE is the probability of finding the energy
difference wgm within the range wz-%dw. The total
transition probability per unit time to this group of

I N. Bloembergen and R. V. Pound, Phys. Rev. 95, 8 (1954).
2 See, for instance, L. I. Schiff, Quantum Mechanics (McGraw-
Hill Book Company, Inc., New York, 1955), 2nd ed., p. 197.
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states is

0

d d
w(l)=— 5 |ax(®)]?— — / p(@im)deimax ()2, (2)
dt & dt

—0

where

0

/ p(@Wrkm)dwpm=1.

Consider now a case in which the perturbation
Hix'(#) is a random stationary process. (An example
would be the effects of thermal vibrations of a crystal
lattice at the site of a single atom.) From (1) it follows
that there will be statistical fluctuations in w so that we
may define an average transition probability per unit
time as

1 T
w)= lim — w(f)dt
@=lim— [ w0

1T od e
dit — / P(wkm)dw km I ak(t) [ 27 (3)
0 dat —o0

where (2) was used. This reduces to

0

1
@=lim— | plomdom|aDI @

—00

Utilizing Eq. (1) we note that

H ! (t")etorm =441 dy".

By changing variables so that {//—¢=7 and '=t¢, we



