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One atomic percent of iron has been dissolved in a series of alloys of the second row transition metals.
The alloys have been chosen so as to give closely spaced coverage from zirconium to beyond palladium.
For each dilute iron alloy, the susceptibility x has been measured from 1.4°K to room temperature. In some
members of the series, the susceptibility is essentially temperature independent, while in others the appear-
ance of a local moment is evidenced by a Curie-Weiss dependence of x on T'. A local moment first appears
proceeding from Nb to Mo at about (Nbo.sMo0o.4)0.08F€0.01 and persists nearly to Re. Disappearing at this
point, the moment reappears at (Ruo.7sRho.25)0.06F€0.01 and continues, becoming large in the alloys near Pd.
The occurrence of local moments is discussed in terms of the band structure of the alloys and the perturba-
tion introduced by the iron atom. The giant magnetic moments observed near Pd are related to the large

susceptibilities of the iron-free alloys in this region.

I. INTRODUCTION

N a previous paper! we have described observations

made of the susceptibility and superconducting
transition temperature of a series of second row transi-
tion metal alloys containing a small amount of iron.
The alloys were composed of various proportions of
niobium and molybdenum with the addition of one
atomic percent of iron in each case. It -was reported
that the alloys close to niobium in composition showed
an essentially temperature-independent susceptibility,
nearly equal to that of the Nb—Mo matrix, over the
range from 1.4°K to room temperature. In marked
contrast, it was also observed that the alloys near
molybdenum in composition showed a strongly tempera-
ture-dependent susceptibility not seen in the absence
of iron. It was possible to fit this suceptibility in a
satisfactory manner to a Curie-Weiss law of the form

nP2HB2
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where 7 is the number of magnetic centers, p is the
effective magnetic moment given by g[.S(S+1)7}, and
6 is the Curie temperature. In reference 1, this Curie-
Weiss behavior was interpreted to mean that, in
molybdenum, each iron atom possessed a local magnetic
moment, whereas this moment failed to appear when
iron was dissolved in niobium. In Fig. 2 of reference 1
a curve was given showing how the local moment
appeared as the concentration of molybdenum in-
creased. The most striking feature of the curve was that
the moment appeared abruptly at about 40 at. 9
molybdenum and rose steeply but continuously to its
maximum value.

A localized moment was also observed somewhat
beyond molybdenum in the alloy (Mog.sReo.2)0.96F€0.01-
In the absence of iron, this alloy is a good super-
conductor,? but the presence of very small amounts of

1B. T. Matthias, M. Peter, H. J. Williams, A. M. Clogston,
E. Corenzwit, and R. C. Sherwood, Phys. Rev. Letters 5, 542

(1960).
2 J.K. Hulm, Phys. Rev. 98, 1539 (1955).

iron sharply reduces the transition temperature. This
is consistent with the presence of a local magnetic
moment.?* In contrast, in the case of niobium where
no local moment was observed, a corresponding amount
of iron was found to have negligible effect upon the
superconducting transition temperature.

In this paper we present experiments that extend the
work of Reference 1 to nearly the whole extent of the
second transition period from zirconium to beyond
palladium. In most cases, however, it has been necessary
to use rhenium instead of technetium. We now report
that the local moment appearing between niobium and
molybdenum disappears at rhenium, reappears just
beyond ruthenium, becomes very large at palladium
in agreement with previous work,*=7 and then becomes
smaller again moving towards silver.

The quantum mechanical nature of a localized
magnetic moment in a metal has been considerably
clarified in papers by Anderson® and Wolff® since the
appearance of our earlier results. We shall make use of
some of these results in giving an interpretation of our
experiments in terms of the band structure of the
transition metals and the perturbation introduced into
the lattice by the iron nucleus. We shall also offer an
explanation of the giant magnetic moments observed
by us and others in the alloys near palladium.

II. MEASUREMENTS AND MATERIALS

In these experiments, the susceptibility of the
various alloys was measured at a field of 14 000 gauss
over the temperature range 1.4°K to room temperature
in an apparatus previously described.!

#B. T. Matthias, H. Suhl, and E. Corenzwit, Phys. Rev.
Letters 1,92 (1958).

4H. Suhl and B. T. Matthias, Phys. Rev. 114, 977 (1959).

5 D. Gerstenberg, Ann. Physik 2, 236 (1958).

6 J. Crangle, Phil. Mag. 5, 335 (1960).

7 R. M. Bozorth, P. A. Wolff, D. D. Davis, V. B. Compton, and
J. H. Wernick, Phys. Rev. 122, 1157 (1961).

8 P. W. Anderson, Phys. Rev. 124, 41 (1961)

9 P. A. Wolff, Phys. Rev. 124, 1030 (1961).

10 R. M. Bozorth, H. J. Williams, and D. E. Walsh, Phys. Rev.
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The samples were prepared by fusion of the elements
in an argon arc furnace. The furnace was suspended so
that it could be continually agitated while the samples
were in the molten state. The ingots were remelted
most usually between six and eight times.

The weight loss of the melts never exceeded 19
which was unimportant except in those alloys which
contained small amounts of iron. In this case, special
care was taken not to exceed the melting point of the
matrix more than necessary. In these alloys the total
weight loss was never more than 109, of the added
iron, and errors of this order may be present in the
indicated concentrations based on starting materials.
No wet analyses were made to obtain exact composi-
tions, but x-ray fluorescence analyses confirmed the
nominal compositions. All melts containing iron were
annealed at 1200°C for one week.

The molybdenum and rhenium used in the experi-
ments was in the form of rods of purity 99.99%,. The
palladium was in the form of sponge of purity 99.9999%,
while the purity of the rhodium and ruthenium sponge
was 99.99%,. The iron was electrolytic of purity better
than 99.9999. Zirconium was obtained in the form
of crystalline bars. While its oxygen content was not
known, purity was better than 99.9%,. A similar grade
of purity was available for scandium and niobium.
Vanadium was obtained as a large conglomerate of
crystals and was certainly of purity not better than
98.59,. The impurities, however, are almost entirely
N, and O, and are largely lost during melting of the
alloys. No impurities were introduced by the arc
melting since x-ray fluorescence did not detect any
traces of W (the cathode) or of Cu (the anode).

III. EXPERIMENTAL RESULTS

The principal results of our experiments involving
the alloying of adjacent members of the second long
transition period are presented in Tables I and IT and
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F1c. 1. Magnetic moment in Bohr magnetons of an iron atom
dissolved in various second row transition metals and alloys as a
function of electron concentration.
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TaBLE I. Magnetic moment and Curie temperature for 1%
solutions of Fe in 44 alloys from Zr to Ru.

w/uB

Alloy Structure N (Curie-Weiss) 6 (°K)
Zr hep 4 0.0
Nb bec 5 0.0
Nbo.sMoo.2 bec 5.2 0.0
Nbq.sMoo.4 bec 5.4 0.0

0.4Moo.5 bee 5.6 0.3 —9+43
Nbo.sMoo.7 bce 5.7 0.6 -
Nbo.sMoy.s bce 5.8 1.1 -1
Nbo_lMOQ_g bce 5.9 1.9 -3
Mo bec 6.0 2.1 —4
Moo.sRep.2 bce 6.2 2.1 —6
MOo,sReo,4 bce 6.4 2.2 -5
Re hep 7.0 0.0
Tc hep 7.0 0.0
Reo.sRug.5 hep 7.5 0.0
Ru hep 8.0 0.0

in Fig. 1. In the two tables we have listed the various
alloys studied, along with the average number of
electrons V per atom outside the closed 4p shell. Each
alloy is to be understood as containing one atomic per-
cent of iron. In Table I, covering the alloys from Zr to
Ru, the first four and last four entries had essentially
temperature independent susceptibilities. In the re-
maining cases the susceptibility x increased markedly
at low temperatures. We have fitted x to a Curie-Weiss
law as given in Eq. (1) as follows. In this region of the
periodic table the susceptibility of the various alloys
in the absence of iron, X, is nearly temperature in-
dependent. We have determined X, in each case by
plotting x vs 1/7" and extrapolating to 7'= . We then
plot 1/(X—Xy) as a function of temperature and deter-
mine p from the slope and 6 from the intersection with
the temperature axis. As an example we show in Fig. 2,
1/(X—Xo) plotted against T for the alloy Moo .99Feo.o1.
In Table I we have listed for each alloy 8 and the
quantity u/wp=gS which is obtained from p by
assuming that g=2. We estimate the accuracy of u/up
to be about £5%,. The values of 6 are estimated to be

Tasre II. Magnetic moment and Curie temperature for 19,
solutions of Fe in 44 alloys from Ru to Pd.

w/uB
u/uB (Sat. T,
Alloy  Structure N  (Curie-Weiss) 6 (°K) mag.) (°K)
Ru hep 8.0 0.0
Ruo.76Rho.2s hep 825 0.0
Ruo.gsRho;z hep 837 08 —2142
RuO,sRho,s th 8.5 1.3 —1342
Rug.2sRho.75  fcc 8.75 1.7 —1742
Rh fcc 9.0 2.2 —1442
Rhg sPdy.;  fcc 9.3 4.5 -2
Rho_ssPdo, 45 fcc 945 5.9 (100°K) -2
Rhy,sPdos fcc 9.6 7.1(100°K) 1
RhooPde.s  fecc 9.8 9.6(100°K) 14 71 11
RhoPdys  fcc 9.9 11.4(100°K) 3342 9.5 27
Rho.05Pdo.es  fcc 9.95 12.7(100°K) 4946 108 39
d fcc 10.0 11.3(100°K) 5543 9.7 39
Pdo.7sAgo.2s fcc 1025  8.3(100°K) 12 63 11
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Fi1c. 2. Reciprocal susceptibility of the alloy Moo.geFeo.01 plotted
as a function of absolute temperature.

accurate to about =1°K except in those cases where a
larger error is indicated.

It was unfortunately not possible to prepare alloys
of Mo and Re beyond Mog.¢Reo.s because of the
appearance of a new crystalline phase. This portion of
Fig. 1 has, however, been covered by a different system
as will be noted below.

Although some technetium was available during the
course of these experiments, the difficulty of working
with this material precluded making an extensive series
of alloys to compare with the behavior of the Re
alloys. We report just one case, Tco.90Feq.01, in which
no local moment was observed, similarly to the Re
case. The superconducting transition temperature was
lower than that for Tc by about 0.5°C.

In Table II we present results obtained for the alloys
from Ru to Pdo.75Ago.25. For these systems, the suscep-
tibility of the matrix was sufficiently temperature
dependent so that a separate measurement was made
of Xy in each case as a function of 7. The corrected
susceptibility (X—X,) was then used as before to
determine p/up and 6. This procedure gave reasonable
results up to RhgsPdo.; yielding the values of u/up
and 6 given in Table II. It is of interest to compare the
values of u/up with those given in Table I. As can be
seen in Fig. 1, the initial rise of u/up at N=8.25 is
comparable to the rise at N=35.5, and even gives an
impression of leveling out near 2 Bohr magnetons.
Beyond rhodium, however, u/up begins increasing to
large values. These large moments are related to the
large saturation moments per atom of solute reported
by Gerstenberg® for Mn, Fe, Co and Ni in Pd, by
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Crangle® for Fe in Pd, and by Bozorth et al.” for Co
in Pd. It appears evident that the spin of the iron
impurity is polarizing the matrix in its vicinity to give
an enhanced local moment. A theoretical discussion of
these giant moments will be given below.

Beyond Rhg 7Pdy 3, we encounter a new situation.
First of all, the susceptibility of the matrix becomes a
strong function of the temperature as can be seen in
Fig. 3, which shows measurements of X, taken on alloys
of Rh—Pd by Budworth, Hoare, and Preston.!! It
becomes empirically evident that the simple correction
introduced above is no longer adequate. As an example,
we show in Fig. 4 the result of plotting 1/(X—Xo)
against T for Rhg.1Pdo.. The shape of the curve as it
stands precludes a meaningful fit to a Curie-Weiss law.
We have proceeded, therefore, phenomenologically as
follows. We suppose that the local magnetic moment
associated with each iron atom is proportional to the
susceptibility Xo of the matrix. If these moments are
large, as is true in the present alloys, we may write
approximately

p=10:(Xo/Xor), 2

where p, designates the moment and susceptibility at
some reference temperature 7,. We may then rewrite
Eq. (1) as

(Xo/Xo0r)? 3k(T—6)

X—Xo

- ©)
npr2ﬂ32

In Fig. 4 we have also plotted the left hand side of
Equation (3) as a function of T, using 100°K as the

reference temperature. The resulting curve is satisfac-
torily straight and permits the determination of 6 and
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Fi1c. 3. Susceptibility per gram for various rhodium-palladium
alloys at 20°K and 100°K according to Budworth, Hoare, and
Preston.

~ 1D, W. Budworth, F. E. Hoare, and J. Preston, Proc. Roy. Soc.
A257, 250 (1961).



544

x104

W
(3

Z /
/

o
[o] 50 100 150 200 250
TEMPERATURE IN DEGREES KELVIN

300 350

F1c. 4. Reciprocal susceptibility 1/(x—xo) for the alloy
(Rho.7Pdy.3)0.09F€0.01. Also shown is the reciprocal susceptibility
modified as described in the text.

#(100°K). In this way we have determined w(100°K)
and 6 for the alloys beyond Rhg¢Pdo.s and obtained
the values listed in Table IT and presented in Fig. 1.
Not all the curves of (X/X,)?/(X—X,) were as straight
as the one shown in Fig. 4, but were close enough to a
straight line to permit the determination of p(100°K)
to an accuracy better than £59%,. The measurements of
Xo used in making these reductions were obtained on
specimens prepared in identical fashion to the dilute
iron alloys, and were in fair agreement with the measure-
ments of Budworth, Hoare, and Preston.t

A curve similar to Fig. 4 has been given by Gersten-
berg® for Pd.g9Feo.01 for temperatures extending up to
1100°K. Above 400°K this curve is approximately a
straight line and has been used by Gerstenberg to
determine a Curie temperature of 238°K and a p value
equal to 4.94 up. It is evident from the discussion above
that this proceedure has little meaning. In particular,
the Curie temperature determined in this way can only
be considered an artifact, and this is confirmed by the
high value obtained by Gerstenberg.

As long as Eq. (2) can be considered valid, p will be
a function of temperature and can be obtained for any
temperature from p, by appropriate use of Eq. (2).
It can also be obtained from the plot of 1/(X—X,) vs 7.
The slope of the straight line passing through the
temperature axis at 7=0 and intersecting the curve at
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TasrLE IIT. Magnetic moment and Curie temperature for 19,
solutions of Fe in various alloys.

w/us
N (Curie-Weiss) 6 (°K)

Alloy Structure
Vo.e7Ru0.33 CsCl 6.0 1.1 -3
Vo.eRuo.4 6.2 2.4 —4
Vo.sRuo.s tetra. 6.5 2.2 -2
Moo.75Rhy.25 hep 6.75 1.9 —2742
Moo.73Rho.28 hep 6.84 0.7 —4
Moq.oPdo.1 bec 6.4 11.2 —33
Moy, sPdo.2 bcc 6.8 6.0 —10
1\/100,5Pd0_4 bce 76 2.6 -5
Moyg.45Pdy.55 bbc+fcc 8.2 3.0 —15
MOD.quo.s fce 8.4 4.1 -9
Moy.oPdo.3 fce 9.2 6.1 0

the particular temperature in question determines p(7').
This provides a graphical picture of how p decreases
with increasing temperature, and shows that the slope
used by Gerstenberg does not give a correct moment at
any temperature. It will be noted in Fig. 4 that the
points near 80°K lie above the curves. The anomaly
is not accidental and was observed in the four alloys
beyond and including Rhg.oPdgs. This temperature
seems to correspond to the susceptibility maximum
observed in Pd near 80°K.1!

The alloys beyond Rhg¢Pdo.4 are ferromagnetic at
low temperatures and we have included in Table II
the observed saturation moment per atom of iron and
the Curie temperature 7', obtained by the method of
plotting H/o, vs o2, where o, is the magnetization per
gram. The results for Pd are in reasonable agreement
with the measurements of Crangle® whose lowest iron
concentration was 1.25 at. 9. For this alloy he found
a saturation magnetization of 7.4 Bohr magnetons per
atom of iron and a Curie temperature of 66°K. The
results given in Table II for 6 and T, and for u/us
determined in the ferromagnetic and paramagnetic
regions, are in qualitative agreement and give support to
our method of analyzing the paramagnetic susceptibility.

In addition to the main sequence of alloys presented
in Tables I and II, we have investigated the behavior of
various other systems, partly to fill in various gaps in
the picture, and partly to test to what extent alloys
with the same electron concentration but different
composition will correspond to Fig. 1. These results are
collected in Table IIT and shown superimposed on the
curve of Fig. 1 in Fig. S.

It will be observed that the vanadium-ruthenium
alloys and molybdenum-rhodium alloys taken together
trace out a curve similar in shape to the peak defined
by the Nb-Mo-Re alloys of Fig. 1. It has already been
reported that iron dissolved in vanadium shows no
localized moment.! The corresponding behavior of
these different systems when plotted as a function of
electron concentration suggests that the band structures
of all these alloys are similar and that the rigid band
model is a fair approximation. It is very interesting to
note that neither V or Ru separately show a local
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moment for dissolved iron, but that the V-Ru alloys
do show such a moment over a considerable range of
composition.

The data for the Mo-Pd dilute iron alloys are
particularly striking. Although the observed moments
do not fit on the curve of Fig. 1, there is a deep minimum
that corresponds well with the region where no local
moment exists in the Re-Ru dilute iron system.
Outside this region the local moment becomes very
large both towards Mo and Pd. The experiment seems
to indicate that giant local moments are associated with
the presence of Pd whatever the average electron
concentration of the alloy. Mo and Pd are so far apart
in the periodic table that the rigid band model can
have little meaning for their alloys and the discussion
of these systems will be very complicated.

Finally, we have made some preliminary investiga-
tions of the alloys near V= 3. We were not successful in
forming solid solutions of iron in yttrium. We have,
however, investigated a solution of 1 at. 9} iron in Sc.
The addition of iron greatly increases the susceptibility
at low temperatures and suggests that a large local
moment exists in this alloy. We have not as yet been
able to interpret these curves in such a way as to
assign an unambiguous value to the moment.

IV. INTERPRETATION

The results that are reported in this paper show
clearly that, in some portions of the periodic table, an
iron nucleus present as a dilute impurity in a host
lattice has associated with it a localized magnetic
moment. This experimental fact has two implications:
first, there must be wave functions associated with the
iron atoms that are local in character, as distinguished
from band wave functions having equal amplitude in
each unit cell throughout the body of the crystal; and
secondly, these local wave functions have a net spin
and show a magnetic moment of several Bohr mag-
netons. In this section, we would like to discuss first
the nature of local states in metals, next the circum-
stances under which the local states will magnetize,
and then the application of these ideas to the occurrence
of local moments in the 4d transition metals. Finally,
we shall consider the origin of the giant moments
observed in the alloys near palladium.

A. Localization of States

The nature of localized states around impurities in
metals and semiconductors has been the subject of
much discussion. The problem is rather different in
the two cases because the high density of conduction
electrons in a metal usually causes the local state to
be very closely confined about the impurity center. In
contrast, in a semiconductor the impurity state may
spread out over many lattice sites. An extensive
discussion has been given of the metallic case by
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Friedel' using a model based upon a free-electron con-
duction band. His main argument proceeds as follows.
An electron is incident upon the impurity center charac-
terized by a nuclear charge Z units larger than the
nuclear charge of the host atoms, and is scattered. The
outgoing wave is analyzed into angular momentum com-
ponents of quantum number I, each of which shows a
phase shift ; compared to its phase in the absence of the
impurity. The density of states in energy is shown to be
shifted by an amount (1/7)dvy;/dE for each component
by considering boundary conditions on the waves at the
surface of a very large sphere surrounding the impurity.
Consequently, the total number of new states below
energy E, considering degeneracies, is (1/7) >_; (2141)
Xvi(E). Since two electrons of opposite spin may
occupy each state, and since the crystal must remain
electrically neutral one can write

2
L=~ Zl: QA-1)mi(Ey), (4)

where E; is the Fermi energy. This is Friedel’s phase
rule. In many cases the shielding charge is not uniformly
distributed in energy. Thus, if there is an energy where
dvi/dE is large, there will be an accumulation of states
in a narrow energy range. Such a region is called a
virtual state and has a width determined by dv;/dE.
The wave functions contributing to such a virtual state
are concentrated about the impurity and constitute
what we mean by a local state. In some cases, the
energy at which dvyi/dE is large may lie below the
edge of the band, in which instance the state is infinitely
narrow and becomes a real bound state.

Another treatment of impurity states which is more
closely adapted to our present problem has been given
by Slater and Koster.’®=!% They use a method based
upon a Wannier function representation and a Green’s
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F1g. 5. Magnetic moment in Bohr magnetons of an ion atom
dissolved in various second row transition metals and alloys as a
function of electron concentration.

2 T, Friedel, Supp. Nuovo cimento 7, 287 (1958).

B @G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).
4 G. F. Koster, Phys. Rev. 95, 1436 (1954).

15 G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
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Fic. 6. (a) Typical curves of the function #(E) and 7(E) as a
function of energy; (b) the phase shift v(E) as a function of £
for various values of V.

function solution that takes account of the band
structure of the host metal. Although the method is
perfectly general, the most useful results can be obtained
by making the restrictive assumptions that only one
band is involved with the impurity, and that the
impurity potential is large only at the impurity site
ro=0. In this case, Slater and Koster find that the
perturbed wave function is given by

-wcgui)]W(r-r», )

1
W =— ik erge—
. Z[e 14+VG5(0)

VNS

where N is the number of lattice sites, W(r—r;) is
the Wannier function associated with the sth site, V
is the matrix component (W (r—to)|Vur|W (r—10))
of the self-consistent Hartree-Fock potential Vauw,
and Gg(r;) is the Green’s function for the problem
iven b

g y 1 eik~n‘

N x Ex—E

(6)

Although this was not done by Slater and Koster,
their method can also be considered from the point of
view of phase shifts.!6 We obtain thereby some partic-
ularly interesting results and insight into the nature of
local states. From Eq. (6) we have

Ev)dE

where Q is the atomic volume and 5(E) is the density
of states per unit volume. If we define the principal
part of this integral to be —I(E), we have

Gr(0)= —I(E)+inn(E). ©)
With the additional assumption that the bands are
16 A, M. Clogston, Phys. Rev. 125, 439 (1961).
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spherical, it may be easily shown!® from Eq. (5) that
only the /=0 component of the scattered wave has a
phase shift, and is given by

y(E)= tan*1<

0 (E) ) ©

I(E)—1/V

The quantity 7(£) which enters this relation has been
calculated for a special model by Slater and Koster.!?
An appreciation of the general shape of I(E) can also
be obtained by assuming a simple form for n(E).
Guided by such models, we have made a sketch in
Fig. 6 of how 5(E) and I (E) might appear in a typical
case. As a rough rule of thumb, the peak values of I are
about equal to the reciprocal of the width of the band.
Let us suppose that V is negative (an attractive
potential) and is large enough so that 1/V cuts I(E)
in two points as illustrated in Fig. 6(a). Then v(E)
will have the shape shown by the solid line in Fig. 6(b).
At the extreme left 4 rises until it equals 7/2 at the
first intersection Ko, approaches =, falls to the value
/2 again at the second intersection £;, and then
approaches zero as E continues to increase. A curve
very similar to this is given by Friedel in reference 12,
Fig. 17. We may interpret the behavior of v as follows.
Just to the right of E,, ¥ reaches nearly the value =,
which we have seen means that approximately one
whole state has been brought below this energy by
the perturbation. In other words, a virtual state has
been created in the vicinity of £ where dvy/dE is large.
Since v falls to zero at the upper edge of the band, the
total number of states is conserved, and it is clear that
the virtual state has been removed from the vicinity
Of El.

The width of the virtual state is clearly controlled by
the value of #(E) at the point of intersection. If (E) is
small the state will be very narrow. If V is increased
from the value shown in Fig. 6(a) the intersection E,
will move to the left so that v(E) will be given by the
uppermost of the dotted curves in Fig. 6(b) and the
state will become sharper. If the intersection is below
the edge of the band, n(E) will be zero and the state
infinitely sharp. On the other hand as ¥V becomes
smaller, the virtual state will move up in the band and
broaden. In fact, even if 1/V does not intersect I(E),
v(E) will still exist as shown in the lower dotted curve
in Fig. 6(b) and there will be an accumulation of
states in a broaden energy range.

We may also use Fig. 6(b) to visualize how the
matrix element V can be made self-consistent. With a
charge perturbation Ze in the lattice at 7,, we see from
Eq. (4) that v/7 must equal Z/2 at the Fermi energy.
With the Fermi energy determined by the bulk of the
crystal remote from the perturbation, V must increase
until v (E;) has the proper value. With Z small enough,
self-consistency can be obtained for E; anywhere in
the band. For larger values of Z, however, this model
is restricted in its ability to achieve a self-consistent
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value of V. Since we have limited ourselves to one band
and a perturbation localized to one site, we can never
displace more than one state below E;. Beyond the
point at which I(E)=0, /7 cannot be larger than %,
and if the band is full, ¥ can never be anything but zero.
These restrictions mean physically that the model
cannot supply enough charge to shield a very large
perturbation, and that the self-consistent potential
would be important at sites removed from #g, or would
cause appreciable distortion of nearby bands.

We have noted above that a virtual state is formed
at the energy where I (E)=1/V. By reference to Eq. (5)
we note that the square of the amplitude of the central
Wannier function for the state of energy E is (1/V)/
{[1/V—I(E)J+4[=Qq(E)]}. The condition for the
virtual state is therefore just the condition that the
amplitude of the state be large at the impurity site.

B. Magnetization of Local States

We shall turn now to a discussion of the conditions
under which a local state will magnetize. This problem
has been treated recently in detail by Anderson® and
Wolff.® The short discussion we give here is closely
related to that presented by Wolff, although it differs
in some details, and is based upon the Slater-Koster
model introduced above.

The self-consistent Hartree-Fock potential for the
impurity problem, operating on the Wannier function
Wo(r—r;), is given in the usual way by

VarWe(r—r,)

2

-t g [ foer

|r—r'|

XWyrqr (r')dV']W,(r— r;)

—[/\I/kr.,»‘)*(r’) ‘ /[\Ifk»,:"(r’)dV’]W,(r—ri)}

[r—r

-z [ | ri,[Wa(r'—ri)dv'}m/.,

_[ / w0, ri/ ('~ ri)dV']\Ifk',O } (10)

where ¢ is the spin quantum number and the summation
on %’ is over filled states. We have added the direct
potential due to the impurity nucleus, whereas the
potential due to the unperturbed wave functions ¥°
is not part of Vmr and has been subtracted. We can
now use Eq. (10) to compute the matrix component
V., which may be different for up and down spin
electrons. We follow Wolff and approximate ¥y, by
using only that part depending on the central Wannier
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function. In that case we obtain for spin direction o
using Eq. (5),

1 1
Ve=v4+J— (1—60,»)[~—-‘~—*h—1], 11
> 1+ V,.Gu(0)]2 an

where
62

v=(W(r—r,)

W(r—ro)), (12)

r
and

9

J= <W(r~ o) W(t'—10)

|r—r'|

XW (r—ro)W(t'— ro)). (13)

The quantity J appearing in Eq. (11) is the exchange
self-energy of an electron in the central Wannier
function and was first recognized by Anderson® as
being important in determining whether or not a local
state will magnetize. Being an exchange self-energy, it
is much larger than ordinary exchange integrals and
may become as large as 10 electron volts.?

Let us chose ¢ to be in the positive z direction. Then
Eq. (11) may be written using Eq. (8)

JQ 1(E)dE

Vi=—Ct— :
Vit ) o (1/Vi=I)*4(x)

(14)

The value of the constant C will be discussed below.
Let us suppose now that Vy is such that 1/V,=1(E) at
some energy E,, and that the Fermi energy E; is low

]
_\ _____________ 2/2
TV
(a) Vi
Vi
Vi

V== C gz 7 (Ep) TN

Vy == CHIE7, (Ee) |
(b) !

Fi6. 7. (a) The phase shift at the Fermi level for down spin
electrons as a function of Vy; (b) a curve of V4 as a function of
V4 in a typical case resulting in one self-consistent solution.
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Vy

Vy= -C+J % (Ef)

Vi =-Cz 7y (Ep-

F16. 8. A curve of V4 as a function of Vy in a case resulting in
two self-consistent, magnetic solutions.

enough so that the range of integration does not include
the second intersection shown in Fig. 6. The integrand
in Eq. (14) will be large at E=E,. In accordance with
Eq. (9), we define a phase shift for electrons of spin
direction o by

Yo (E)= tan*l(

(K
n () ) (15)

I(E)—1/V,
Upon differentiation, Eq. (15) becomes

dvs wn r 1 1dy dI
- <“~~I>—w~+- ].u@
dE  (/Vi—Ip+@enl\v, /ndE dE

The result may be used to approximate the integrand
in Eq. (14) in the vicinity of E= E,, which then becomes

J Er 1 dy,
*——-——-—/ —-—dE
Vi (dl/dE)py ) ™ dE

1

Vﬂﬂﬂ@m;m(ﬂ

(17

Vi=—C

Actually, it is clear from Eq. (6) that for energies low in
the band I(E)~I/E, measuring E from the center of
the band so that V,2(dI/dE)g,~—1. Making this
approximation in Eq. (17), we have finally

1
Vi=—CH+J—vi(Ey). (18)
™

Also, interchanging the roles of up and down spin we
have

1
Vi=—=C+J-v+(E)). (19)
m™

Equations (18) and (19) can in principle be solved
simultaneously for V1 and V. The nature of the solu-
tion can best be understood graphically as shown in
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Figs. 7 and 8. In Fig. 7(a) we sketch the behavior of
(1/7)vs(Eys) as a function of V) determined from
Eq. (15). If this curve is multiplied by J and displaced
downward by an amount C, we obtain the solid curve
in Fig. 7(b) representing Eq. (18). An interchange of
up and down spins gives the dashed curve representing
Eq. (19). Under the assumed conditions, the two curves
intersect at a single point where V1= V,=V, so that in
this case up and down spin electrons move in the same
potential and the virtual state is unpolarized.

The common potential V determined in Fig. 7(b)
also fixes the phase v(Ey). If the calculation could be
carried out accurately without making the various
simplifying assumptions that lead to Eq. (18), this
value of v(E;) would necessarily equal (7/2)Z in
order to satisfy the requirements of charge neutrality.
The accurate curves then would be slightly different
in shape from the approximate curves drawn in Fig. 7(b)
but would intersect at the same value of V.

Let us consider next a case where J is considerably
larger. Equations (18) and (19) would then lead to the
curves shown in Fig. 8, which now exhibit three inter-
sections. It is easy to see that the intersection for
V=V, is unstable in this case since a small increase
in | V| leads to a decrease in | V|, which then corre-
sponds to a larger increase in |Vy|. Conversely, the
intersections at A and B are stable. These roots corre-
spond to unequal values of V4 and Vy, and therefore
to a different accumulation of up and down spin
electrons. The virtual state consequently is magnetized,
and the two intersections correspond to opposite
senses of polarization.

The condition for there to be two roots to Egs. (18)
and (19) is clearly that |dV:/dV,| be greater than
unity at the symmetric intersection where Vi="V,=V.
Differentiating Eq. (18) we find

iij/_f . (Ey) 1
vy [E)=1VIE+[r(ENT V'

(20)

Suppose that the virtual level corresponding to potential
V is at E=E, We define the width A of the virtual
level by the relation (1/7)(dv/dE)g,A=1. Then from
Eq. (16) we have,

dl
sz /(=) . @)
dE/ g,
We now approximate by letting
I(Ef)=1I(E0)+ (aI/dE)p,(E;— Eo),
1(Ef)=n(Eo)) and I(E)=1/E.
Then Eq. (20) becomes
dVy A
—_—— (22)

av, 72(Eg— Eo)*+A?Y
which is the result found by Anderson® and Wolff.?
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Equation (22) is an important relation. If the
virtual state is at the Fermi level (E;=E,), it shows
that J must be greater than the width A if the state is
to polarize. This is what makes so important Anderson’s
observation that J is much larger than an ordinary
exchange integral. Furthermore, the further the virtual
state is below the Fermi level the harder it is to
magnetize. Also, we note that as E, increases in energy
from the bottom of the band A becomes greater,
approaching infinity at the point where dI/dE=0. We
will use these results in the next section in discussing
the occurence of local moments.

We shall conclude this section by discussing the
situation when the Fermi level is so high in the band
that it lies above the second intersection £; shown in
Fig. 6. In this case, we find that we must replace Eq.
(18) approximately by the expression

Vt=—C+J|:1— ['y(E;)—l]:l. (23)

Vi*(dI/dE)E,

We can make a sketch of this relation, and the relation
obtained by interchanging up and down spins, as we
did before, with the result shown in Fig. 9. Because of
the change in sign of dI/dE, every intersection of the
two curves now corresponds to V1=V, and the virtual
state therefore cannot magnetize. The intersection is
stable and must correspond to the value of V required
for charge neutrality.

C. Occurrence of Localized Moments

Let us now consider how the ideas we have introduced
above about localized wave functions, and the condi-
tions under which they are likely to magnetize, can be
used to explain the occurrence of localized moments in
dilute alloys of Fe in the 4d metals. We should first of
all examine what is known about the band structure
of the transition metals. The most reliable and complete
band calculations made to date have been done for
body centered cubic iron by Stern'’ and Wood.!8

Vi
7
/I
v, =f (v9 //
rd
d
v
/ '
/
/ Vi=1(v;)

1
1
]
]
]
]
1

F16. 9. A curve of V3 as a function of Vy in a case which leads
only to nonmagnetic solutions.

17 F, Stern, Phys. Rev. 116, 1399 (1959).
18 J. H. Wood (to be published).
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F1c. 10. The density of states per atom per rydberg as a function
of energy for body centered iron according to J. H. Wood.

In the absence of band calculations for the second row
transition metals, we shall assume that the iron
calculations have some validity for the body centered
cubic 4d metals. The iron calculations are made for a
nonmagnetic state and do not attempt to account for
the ferromagnetism of iron. This restriction is, however,
an appropriate one for the 4d case.

Wood has used his band calculation to determine a
density of states for iron,!8 and his curve is reproduced
in Fig. 10. It is characterized by the double-humped
structure usually assumed for the d band metals. The
integrated number of electrons N per atom below
various energies is marked on the curve. In the discus-
sion that follows, we shall assume that the rigid band
model applies sufficiently well for our purposes so that
we can treat the density of states curve as being fixed
while the electron concentration varies from 5 to 7 per
atom proceeding from Nb to Re. The accuracy of this
assumption is, of course, dubious and may account for
the differences between Fig. 10 and the results of low
temperature specific heat measurements by Cheng, Wei
and Beck.”® These authors find a minimum in specific
heat between N=35 and 6 in agreement with Fig. 10
but find a peak in specific heat between N=6 and 7
rather than at N=38.

For the bcc structure, the points I' and H in the
Brillouin zone have full cubic symmetry while the
point P has tetrahedral symmetry.® The doubly
degenerate levels ¢, and triply degenerate levels f,, are
not split at these points. Moreover the order of levels
at P is the same as at T'. As a consequence, it is clear
from a consideration of the energy bands calculated by
Stern!’ that the large peak in density of states at N=38
largely derives from atomic states of symmetry e,

1 C, H. Cheng, C. T. Wei, and P. A. Beck, Phys. Rev. 120,
426 (1960).

2 1,. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys.
Rev. 50, 58 (1936).
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although there will be some contribution from other
bands. It will be noted that the area under the peak
corresponds to just about four electrons. This fact has a
direct relation to our experiments and accounts for the
fact that the alloys just beyond Mo develop a maximum
of 2 Bohr magnetons per atom.

N=5t7

Within the frame work of the rigid band model then,
let us consider the course of events proceeding from
N =35 to 7 for the alloys shown in Fig. 1. Except for the
last member of the series, Re, these alloys all have the
bee structure. We start at V=6. At this point, the iron
nucleus plus core electrons constitutes an impurity
with two excess positive charges. We suppose that half
the shielding charge is to be provided by each of the e,
derived bands. Each band must therefore form a
virtual state just at the Fermi level. We have seen in
the last section that this is the optimum condition for
magnetization of the state, and that the necessary
condition is J> A. From Fig. 11 we see that E, is about
0.05 ry so that 1/(dI/dE)p~— E®=25X10"*; also
Q(Eo) for each band is about 5 states per ry. Using
Eq. (21) we obtain A~0.1 ry or 1.4 electron volts.
We have estimated earlier that J may be as large as
10 electron volts, so that we should definitely expect the
virtual states to magnetize at this point, giving a net
moment of approximately 2 Bohr magnetons per iron
atom as observed.

Suppose now that we increase the electron concentra-
tion toward N=7. Two things happen. First, since the
iron core now becomes an impurity with less than two
excess charges, the virtual states must move to a
higher energy than the Fermi level. Secondly, the
width of the virtual states will increase rapidly. Both
these events are unfavorable to polarization, and we
have seen in Fig. 1 that at N=7 the states have
already demagnetized.

On the other hand, suppose that the electron con-
centration decreases from N=6 to N=35. It is evident
that the burden of shielding the three excess nuclear
charges will now be assumed partly by the lower half
of the band, and that the virtual levels derived from the
upper half of the band will tend again to lie at an energy

FERM! LEVEL
——— VIRTUAL LEVEL

R —>

77(E)-—’ 5 6 7

F1e. 11. A schematic description of the process leading to the
appearance of a local magnetic moment between N=5.5and N=7.

CLOGSTON

et al.

higher than the Fermi level and be more difficult to
magnetize. Since the Fermi level is above the lower
half of the band, we cannot expect any polarization
from this source. The theory as presently developed
cannot hope to deal with this complex interplay between
the various bands, but we see experimentally that at
N =35 the shielding of the 3 nuclear charges is being
effected by states that are too diffuse to magnetize.
We have attempted in Fig. 11 to visualize the three
conditions described above that lead to the appearance
of a localized moment between N=35 and 7.

N=8109

As may be observed in Fig. 1, the local moment,
after disappearing at N=7, reappears between N=28
and 9 and approaches a value of about 2up again at
N=9. On the basis of our previous discussions, we
may give the following interpretation to these events.
As N increases beyond 8, the Fermi level has certainly
risen above the major part of the 4d band and the
general trend of the density of states must be to
decrease. This is illustrated for example in Fig. 10.
Although Fig. 10 applies to the bec structure the trend
should also be true for the present case even though the
structure is no longer bee but starts as hep at ruthenium
and ends as fcc at rhodium.

As the electron concentration increases beyond N =8,
the iron nucleus plus core electrons will begin to act
like a negative impurity in the lattice. We may expect,
therefore, with increasing NV that a virtual state will
form at an energy somewhat smaller than the Fermi
energy. In a mirror image of the previous process, this
virtual level will tend to overtake the Fermi energy as
N increases and will eventually magnetize, as happens
experimentally beyond N =28.25.

D. Giant Moments; N=9 to 10

An outstanding feature of Fig. 1 is the occurence of
very large moments beyond an electron concentration
of N=9. Crangle,® Gerstenberg® and Bozorth et al.”
have observed these large moments in the ferromagnetic
state for dilute alloys of Fe and Co. The present
measurements show that these giant moments increase
systematically with increasing Pd content in the
dilute iron alloys beyond Rh, and that the large
moment is also characteristic of the paramagnetic
state of these alloys. As made evident by the clear
correspondence between Fig. 1 and Fig. 3, the occurence
of giant moments is closely related to the high suscep-
tibilities encountered in the Rh—Pd system for composi-
tions near Pd. This correspondence extends to the
location of the peak value of moment and susceptibility
respectively at a composition near 5 at. % rhodium.

The occurence of a peak in susceptibility near Pd can
be interpreted on the basis of the rigid band model as a
peak in density of states near the edge of the band.
This is contrary to our assertion that the general trend
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of the density of states in this region of the periodic
table must be to decrease. Actually, however, only a
small number of states per atom, about 0.1, are included
in this peak. We can easily calculate from the specific
heat data of Budworth, Hoare, and Preston! that the
maximum in density of states at 5 at. 9, rhodium
corresponds to about 2 states per electron volt. The
width of the peak, therefore, in energy is very narrow,
about 0.05 electron volt. Superimposed on a state
density curve like Fig. 10, the peak would be extremely
high and narrow. Evidently there are not enough states
in this peak to cause the virtual state to demagnetize.

We can give a reasonable explanation of the occurence
of giant moments in the dilute iron Rh—Pd alloys and
their relation to the susceptibility of the matrix by
making further use of the ideas introduced in previous
sections. Let us take the Hartree-Fock potential
given by Eq. (10) and evaluate its matrix components
between Wannier functions located at sites which
are nearest neighbors to the impurity atom. Then we
find approximately,

(Wi (x—1o)| Var| W1 (r—1.))
—(Wy(x—1) | Var| Wy (1—12))=—2S0J', (24)

where a indicates a nearest neighbor site to an impurity
atom, and Sy and J’ are given by

2S0= ! ! 25)
0~1\72E:[]1+V1GE(0)!2 ]1+V¢GE(0)]2} (
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lr—1'|

J'= <W(r~ o)W (r' —r)

XW(x—ro)W (' — ra)>. (26)

So is the total spin associated with the central Wannier
function, and J’ is the ordinary exchange integral
between the central Wannier function and the nearest
neighbor Wannier functions. We thus effectively
introduce at each near neighbor site a spin-dependent
impurity potential V,, given by

Var=—=8o", V=S8

Each neighbor therefore will be a center for the accum-
ulation of up and down spin electrons. Because Vgt
and Vg are different, there will be a net accumulation
of spin at each neighbor in accordance with Eq. (15)
given by

27

1
28a=- tan“(

™

U (Ey) >
I(E)—1/Vas

1 . Wﬂn(Ef)
B (1(5,)—1/1/,,;)' (28)

Under any expected circumstances Vg, and Vg will
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be much smaller than I(Ey), so that Eq. (28) becomes

1
=~ tan" 7O (E;)SeJ"].

™

(29)

The calculation leading to Eq. (29) is not quite
correct because of effects connected with the inter-
ference of wave functions scattered from each of the
Z nearest neighbors of the impurity site. Slater and
Koster!® have shown how to handle correctly a perturba-
tion extending over several near neighbors, but the
interference effects are rather small and will be neglected
here. Consequently, we shall write for the total spin
S associated with the localized spin So

Z
Sr=So+— tan[xQn(E,)SoJ’]. (30)
™

If the argument of the arc tangent is small, Eq. (30)
becomes approximately

Sr2So+Z8n(Es)SoJ". @31
This is exactly the result that would be obtained for
the average polarization using the perturbation theory
method of Ruderman and Kittel? and Yosida.?? In
arriving at Eq. (30) we have supposed that the polariza-
tion of the matrix by the local spin will involve only the
states of one band. That is, we are assuming for
simplicity that the high susceptibility of the Rh—Pd
alloys of high Pd concentration arises from only one
band.

Bozorth et al.l” have proposed a model to explain the
giant moments observed in Pd— Co alloys. They suppose
that an exchange interaction between the impurity
spin and the nearest neighbor Pd atom polarizes each
such atom to the extent of the 0.6 hole per atom
presumed to exist in the Pd 4d band. Although this
model leads to approximately the observed moment for
Pdg.gsFeq 01, it cannot easily be reconciled with the
moments observed in the Pd—Rh dilute iron alloys.

The theory we propose here makes no reference to
the number of unfilled states in the 44 band, but
depends instead upon the density of states at the Fermi
surface. According to Eq. (30), Sr will increase with
increasing susceptibility since 5(E;) will increase. We
may therefore account in a qualitative fashion for the
observed correspondence between local moment and
susceptibility. Since we have no experimental deter-
mination of Sy, but only of S, we cannot easily test the
functional form of Eq. (30). We may, however, see if
reasonable assumptions about the parameters So and J’
can account for the experimental moments.

The quantity On(E,) appearing in Eq. (30) can be

2 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).
2 K. Yosida, Phys. Rev. 106, 893 (1957).
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related to the molar susceptibility by the expression

M,
M (Ep)=—Xu
2up*

=1.55X10% X states per electron volt. (32)
For Pd at 100°K, X,/ is about 800X 10~¢. Hence Qy(Ey)
is 12.4 states per electron volt. Actually X in Pd may
be enhanced by exchange, but we can easily show in
that case that we should use in Eq. (30) an effective
value of Qn(E;) related to the observed susceptibility
by Eq. (32). An order of magnitude guess for a reason-
able value of J is 0.1 electron volt, so that Qq(E,)J’ is
about 1.2. From the shape of the curve of u/up versus
N in Fig. 1, we may estimate that Sy is about 1 corre-
sponding to a moment of 2 Bohr magnetons. From
Eq. (30), we find Sr=6 so that the total expected
moment is 12 Bohr magnetons.This close agreement
with the observed value is, of course largely accidental
since we have made a very crude estimate of J'.
Actually, however, Eq. (30) is rather insensitive to the
value of J’ for large values of the argument of the arc
tangent. If we chose a value of J’ equal to 0.05 electron
volt, the predicted value of Sr would drop only to
10 up, while for J’ infinite it can get no larger than
14 up. The model appears therefore to give an adequate
account of the giant moments found near palladium in
terms of the unusually high susceptibility of the
matrix.

V. CONCLUSION

In the preceding sections we have presented experi-
mental data that show the systematic occurence of
localized magnetic moments when iron is present in
small amounts in alloys of the second row transition
metal elements. These moments first appear at an
electron concentration of 5.5, disappear at N=7,
reappear at N=8.25 and continue to the end of the
period. Within the confines of the present development
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of the theory of localized states and of the band
tructure of the transition metals, we have been able to
account for these general features of the experiments.

A second notable result of the measurements we
report is the occurence of very large moments in the
dilute iron alloys of rhodium and palladium. In order
to obtain meaningful results from the paramagnetic
susceptibility data, we have been forced to take account
of the temperature variation of the polarization of the
matrix by the local moment. We find in fact that the
total local moment in various alloys is strongly cor-
related with the susceptibility of the matrix. These
giant moments have been observed before in measure-
ments of the saturation magnetization of the ferro-
magnetic alloys of iron and cobalt with palladium, but
we see now that they are also characteristic of the
paramagnetic state and of a range of alloys near
palladium. We have introduced a theory that describes
the polarization of the matrix by a local moment and
which accounts for the very large moment of approxi-
mately 11 Bohr magnetons seen in palladium. An
interesting feature of this calculation is that the result
is outside the range of perturbation theory.

There are various directions in which a useful exten-
sion could be made of the results reported here. A
similar study could be made of dilute alloys of man-
ganese, cobalt, and nickel, and the work could be
extended to alloys of the 5d group. The method appears
to offer a powerful approach to the problem of under-
standing the nature of ferromagnetism in the transition
metals.
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