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The nuclear quadrupole resonance in metallic indium has been followed continuously from 4.2'K to
390.2'K and two sources of Geld gradient have been investigated. One of these is the usual "ionic" model
involving point ions in a uniform background charge density. The contribution from this source has been
calculated by a new method to seven ligures at three representative a/c ratios; from these data the ionic
Geld gradient in indium at any submelting temperature can be inferred.

Since the ionic contribution accounts for only about 20% of the observed 6eld gradient, a second source
has been considered. This source is an undulatory component of charge density having the periodicity of
the lattice. It is found that a modest amount of this undulatory component does produce sufhcient Geld
gradient to explain the observations.

I. INTRODUCTION

HE investigation of the interaction of the nuclear
electric quadrupole with the local electric field

gradient (EFG) in metals was initiated' with the hope
of obtaining, ultimately, more detailed information
about the structure of metals in general and about the
spatial distribution of the conduction electrons in
particular.

Indium has a relatively simple body-centered te-
tragonal structure which departs su%.ciently from cubic
symmetry to produce a substantial EFG. It was chosen
for this study in the hope that the sources of this EFG
could be easily identified with (1) the ionic array and
(2) the continuous charge density corresponding to the
distribution of conduction electrons. The spectrum of
the nuclear quadrupole resonance (NQR) in indium
has been observed independently by two groups. "
This paper is a more detailed account of the work re-
ported in reference 2 and is an extension of that work
especially in regard to the calculation of the EFG.

Any study of the quadrupolar interaction begins with
the expression of the potential energy of orientation of
an electric quadrupole characterized by its tensor com-
ponents Q't in a field derived from the potential V(x').
Thus,

E= '(I)'V/Bx'c)x')Qct-

Since the same constant can be subtracted from each
of the diagonal elements of the field gradient matrix
without changing the relative orientational energy, it is
usual in (1.1) to work with a traceless matrix corre-
sponding to only the Laplacian portion of the potential.
If the quadrupole in question is an atomic nucleus with
intrinsic spin I, its orientation is known only in terms
of its nuclear angular momentum state and (1.1)
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where Q is the conventional designation for the nuclear
quadrupole moment, and eq is the second s derivative
of the Laplacian portion of the potential at the site of
the nucleus. Transitions between adjacent 3f levels as
given by (1.2) account for the observed NQR spectrum
in this case of axial symmetry.

It is essential to distinguish between the EFG at the
site of the nucleus, that is eq, and the EFG in which the
entire ion to which this nucleus belongs, is situated.
The latter EFG, here designated ego, is produced by all
charge not associated with the ion and can be calcu-
lated provided that the location of all such charge is
known. Thus an hypothesis concerning the total crystal
charge distribution can be tested with regard to its
ability to generate a reasonable value of ego. The rela-
tionship between eq and ego is a numerical one given by
the Sternheimer antishielding factor'.

eq= (1-y„)eqp. (1.3)

A recent calculationr of (1—y„) for the indium +++
ion yields a value of 16.33. This value is used in all
calculations here.

Equation (1.3) assumes that the distortion of an ion
core by the action of other charge takes place primarily
as a result of the Laplacian component of the field
generated by such charge. In other words, the distor-
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must be transformed' into a Hamiltonian composed of
angular momentum operators. If, as in the present case,
the EFG is axially symmetric with respect to the x' or
s axis, the energy levels associated with this Hamil-
tonian can be expressed explicitly' in terms of I and its
projection 3f:

(1.2)
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tion takes place as if all other charge were totally ex-
ternal to the ion, even though the actual situation is
known to be otherwise. The potential of a charge dis-
tribution which actually penetrates the ion core can
be written in an expansion with surface harmonic angu-
lar dependence and complicated radial dependence as in
Kq. (A19) of Appendix A. The radial dependence
associated with a given surface harmonic of order l,
however, begins with the power r' and includes only
higher powers. It follows that, within the framework
of a particular surface harmonic, the Laplacian term is
the most important. This remark argues in favor of the
stated assumption. It is of course possible that the ionic
distortion produced by the r'P0(cose) term, for in-
stance, will aGect the amount of distortion produced
by the r'P&(cos8) term. The present belief of the authors
is that such cross-coupled sects between different
surface harmonic species are relatively small and that
therefore (1.1) can, at least tentatively, be used.

The present report includes a description of the
experimental methods and results, the calculation of
ego and eq, a comparison of the temperature dependence
of the experimentally determined eq and the calculated
values, and finally a discussion of the several areas of
uncertainty which remain and of the research eRorts
which are intended to help resolve them.

II. EXPERIMENTAL METHOD

The NQR measurements were made with a variable
frequency marginal oscillator similar to the Pound-
Knight' oscillator. The resonance was modulated with
an on-off magnetic square wave of about a 100-oe ampli-
tude. The modulated signal was detected with a narrow-
band, phase-sensitive detector and displayed on a re-
cording potentiometer. In some measurements at
4.2'K and below, frequency modulation with a variable
capacity silicon diode in the tank circuit was used in-
stead of the field modulation.

Frequency measurements in the case of the field
modulation were made by beating a BC 221 frequency
meter against the sweeping frequency of the marginal
oscillator. In the case of frequency modulation, a
Hewlett-Packard model 524C electronic counter was
used with a sufhcient gating time to provide the desired
accuracy. All frequency markers were made with a
precision of +100 cps. The frequency meters were cali-
brated against a cesium atomic clock.

The samples were metal powders mixed with an
equal volume of quartz powder. A 20-g sample of 325
mesh indium powder was used for the 77'K to room
temperature measurements and below 77'K a sample
of 2-p, diameter spheres was used. These spheres were
produced by melting and sonorating an indium ingot
in a decane solution; this metal powder was mixed with
the quartz powder and then evaporated to dryness. The
initial sample contained about 2 g of metal, but a second

8 R. V. Pound and W. D. Knight, Rev. Sci. Instr. 21, 219 (1950).

IIL RESONANCE FREQUENCIES AND LINE WIDTHS

From the energy level arrangement of Eq. (1.2), it
is seen that the resonant frequency for the transition
in which the magnitude of the projection quantum
number increases by one to a final value ~My~, is
given by:

I"cQI

4I (2I 1)h— (2.1)

The two isotopes In'" and In"', with natural abun-
dances of 4.16% and 95.84% respectively, each have a
nuclear spin of 9/2 giving rise to four resonance lines
whose central frequencies are in the ratio of 1:2:3:4.
The nuclear quadrupole moments of In'" and In"
have been measured by atomic beam techniques' as

9 H. Taub and P. Kusch, Phys. Rev. 75, 1481 (1949).

sample of about 10 g of metal was used for the tem-
perature range of 4.2' to 77'K. The size and uniformity
of the particle sizes was monitored with an oil immer-
sion microscope. All of the indium used had a reported
purity of 99.999% and was purchased from the Indium
Corporation of America.

The sample was located in a double Pyrex Dewar,
and the temperature was varied by allowing the helium
in the inner Dewar to evaporate to the liquid nitrogen
temperature of the outer Dewar. The rate of tempera-
ture change was about 4 K' per hour and allowed reso-
nance measurements at about every 1 K'. In the range
of 77' to 55'K, a number of measurements were made
by pumping on nitrogen placed in the inner Dewar. A
similar method of varying the temperature in the range
78'K to room temperature was used in allowing the
liquid nitrogen to evaporate and making measurements
as the sample warmed to room temperature. In all
cases a thermocouple was immersed in the powdered
sample, and temperatures were recorded at about two
minute intervals to the nearest 0.1'K, allowing a con-
tinuous temperature monitor while the resonance was
being recorded. The thermocouple used below 77'K
was made of AgAu-AuCo alloys and had been carefully
calibrated against a copper-constantan thermocouple. A
copper-constantan thermocouple was used above 77'K.
The temperature measurements at room temperature
and below fit smoothly to the precision of measurement,
about ~2 kc/sec, and in overlapping regions the dif-
ferent sets of measurements were in excellent agree-
ment, the points being within the scatter of ~2 kc/sec.

For room temperatures and above a 9-g sample of
325 mesh indium powder in mineral oil was used. The
heating was provided by a bifilar heater wire wound
about the rf shield can and again the temperature was
monitored by a copper-constantan thermocouple im-
bedded in the sample. Due to the poorer signal to noise
ratio at these higher temperatures, the uncertainty of
measurement of the central frequency was increased to
&5 kc/sec.
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FIG. 1. Recorder trace of the (5/2 -+ 7/2) transition
resonance of In"3 and In"~ at 4.2'K.

1.144 and 1.161)&10 '4 cm' respectively and these two
sets of four resonances from the two isotopes should be
in the ratio of 1.144 to 1.161. Figure 1 is a photograph
of the recorder trace of the (5/2 —+ 7/2) transition,
this resonance is of the two gram sample of 2 micron
spheres at 4.2'K. The two isotopes are easily discerned
here.

The central frequencies of the four resonances of the
most abundant isotope at 4.2'K are shown in Table I.
The ratio of the resonances are shown to demonstrate
the accuracy of the measurement; these ratios should
be 1:2:3:4.The half intensity line widths are also
shown in Table I. It should be pointed out in Fig. 1
that there is a marked asymmetry in the line shape.
This asymmetry is more pronounced in the (7/2-+ 9/2)
resonance, less pronounced in the (3/2 —+5/2) reso-
nance and not detectable in the (1/2 ~ 3/2) resonance.
This asymmetry is not believed to be due to strains
since it has been observed in several samples and has
this same character. Phase shifts associated with skin-
depth problems are also ruled out since the particles
are only 2 microns in diameter. Paramagnetic impurities

-44.80

0
tu 5QQQ-
V)

O
X -86.80

O
I 4,000—
Vl
K
Q'
I-

OJ

la
5.000-

t

- 28.80

-20.80

I I I I I I I I I
l

I I I I I I I I I l I I I I I I I I I l I I I I I I I I I

IOO 200 500 400
TEMPERATURE IN eK

Fzo. 2. Central frequency of the (5/2 I 7/2) transition of
In"~ as a function of temperature; the proportional quadrupole
coupling I e'gQ/h I

is plotted as the alternate ordinate.

would broaden the resonance in a Gaussian manner and
would not be expected to provide any asymmetry. The
increasing asymmetry with increasing ~Mf~ values
implies that the asymmetry is dependent on the orienta-
tion in the crystal. The asymmetry is not a property
of the modulation since it has been observed both by
magnetic field modulation and frequency modulation.
The asymmetrical character of the resonance line dis-
appears at about the Debye temperature (109'K).
~e'qQ/h~ from the 4.2'K data shown in Table I and
from equation (2.1) is 45.24a0.01 Mc/sec where the
a0.01 Mc/sec is obtained from the scatter in these four
measurements.

The resonance of highest intensity, the (5/2 ~ 7/2)
resonance was chosen to trace the temperature de-
pendence of this interaction. These measurements of
the frequency of the (5/2 ~ 7/2) transition as a func-
tion of temperature and the proportional quadrupole
coupling ~e'I7Q/h~ are plotted in Fig. 2. Several values
of

~ eg
~

obtained from these measurements are tabulated
in Table III in the next section for comparison with the
calculated EFG. Except for the disappearance of the

TABLE I. Indium NQR transitions, multiples, and
line widths at 4.2'K.

Transition

(l/2 ~ 3/2)
(3/2 ~ 5/2)
(5/2 ~ 7/2)
(7/2 -+ 9/2)

Frequency
(Mc/sec)

1.886~0.002
3.770+0.005
5.655&0.002
7.533+0.005

Multiple

1.0000
1.9984
2.9984
3.9942

Half-intensity
linewidth
(kc/sec)

33.5~3.0
22.0~3.0
27.9~3.0
24.1~3.0

resonance asymmetry, no change in line widths was
observed throughout this temperature range.

IV. EFG CALCULATED FROM THE IONIC MODEL

The ionic model is a term applied to an extremely
simplified model for the charge distribution associated
with the indium crystal structure. This model com-
prises a body-centered tetragonal lattice (with lattice
parameters a, a, c) of monopolar positive ions each
having charge E,e, where Ã, is the number of valence
electrons per ion, plus a uniform compensating back-
ground density ps equal to —2Ã„e/a'c. The ion cores
are the smallest details of the charge density recog-
nized in the construction of this model and are regarded
as points in the calculation of the EFG. It follows that
the EFG so determined is that in which the ion core as
a whole is situated. Since this EFG is derived from the
ionic model, it will be denoted ego; and the correspond-
ing quantity at the nuclear site will be denoted eq;.

The calculation method used here requires that the
charge density be expressed as a Fourier series. If the
general reciprocal lattice vector is expressed in terms
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of three integral indices p;,
h = (pt/a, ps/a, ps/c), (4 1)

TABLE G. Calculated values of the EFG in a body-centered
tetragonal lattice based upon the ionic model. Lattice parameters
are a, a, c; S, is the number of valence electrons per ion and ego,

.

is the KFG in which the ion as a whole is situated.
the desired series becomes

p= ions+ps

lV e
Q' L1+(—1)"+»+») exp(2s. ih r). (4.2)

a2c

0.42
0.43
0.44

a'cello;/Ã, e

—0.2328772—0.1894397—0.1508423

Here the sum is taken over all h vectors with the ex-
ception of h =0. The value of cps; is twice the spherical
harmonic coefficient Css given by Eq. (A16) in Ap-
pendix A. Therefore:

cps; ——2Css = (X.e/a'c) (—8~/3)
1)m+us+ns j

XA„+f(2shrt)Ps(coseh). (4.3)

The function A„(s) is defined in (A14). The sum in (4.3)
has the unusual property of being independent of the
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FIG. 3. Magnitude of the KFG at the indium nucleus (1)
as determined experimentally and (2) as calculated from the
ionic model.

values of n or of r1, so long as r1is less than the nearest
neighbor distance, and it correctly represents ego; pro-
vided that this condition is fulfilled. The respective
values of 20 and a(30)&/2m chosen for these parameters
were therefore selected for reasons of computational
convenience. The results of the calculations are given
in terms of dimensionless ratios in Table II.

It is possible to obtain interpolated results with nearly
five-figure accuracy at any a/c ratio which falls within
the range of Table II. In this way, the tabulated results
have been compared with the independent calculations
of deWette" and agreement to this order of accuracy
was found to exist.

Using S,=3 and available data on the temperature
dependence of e and c in the range 100' to 400'K,"
and also at 4.2'K," together with the interpolation

"F.W. deWette, Phys. Rev. 123, 103 (1961)."J.Graham, A. Moore, and G. V. Raynor, J. Inst. Metals 84,
86 (1955)."C.S. Barrett (private communication).

technique mentioned above, it was possible to arrive
at the data given in Table III. Note that this table also
contains the magnitude of eq as determined from the
experimental data. When both ( eq;) and ) eq) are plotted
with respect to temperature as in Fig. 3, it is seen that
the EFG calculated from the ionic model fails to account
for the observed EFG by nearly an order of magnitude.
The authors were led, therefore, to consider modifying
this model by superposing an undulatory component
upon the uniform charge density background po. The
modi6cation is discussed in the next section.

TABLE III. Lattice parameters and EFG in indium as func-
tions of temperature. The quantity ego, is interpolated from Table
II; eg; is obtained from the latter by using (1—y„)=16.33."
Magnitude of eg as determined experimentally is also tabulated.

T 8 c &goi eg;('I) (A) (A) (cgs esu) (cgs esu} (cgs esu)

4.2 3.221 4.933 —5.766X 10" —94.15X 10" 537.5X10"

100.0 3.227 4.936 —5.616X10'~
150,0 3.232 4.941 —5.538X 10'~
200 0 3.238 4 945 —5.408X 10"
250.0 3.245 4.947 —5.212X10"
300 o 3 253 4 947 —4'.937X10"

4.944 —4.574X10"
400.0 3.275 4.939 -4.120X10"

—91.70X 10"
—90.43X10"
—88.31X10"
—85.11X10»
—80.62X 10»
—74 70X 10&&

-67.29X10"

505.4X 10"
475.3X10"
440.5X10"
399.8X10"
356.2X10"
306.9X10'2
254 X10"c

a Parameters at 4.2'K by C. S. Barrett (reference 12); at 100' to 400'K
by Graham, Moore, and Raynor (reference 11).

b By Burns and Wikner (reference 7).' Extrapolated from measurements ending at 390.2'K.

V. EFFECT OF AN UNDULATORY
BACKGROUND COMPONENT

The modihed charge density discussed in this section
is not intended as a permanent substitute for a well-
founded quantum mechanical model of the conduction
electrons. Its introduction is merely an exploratory
gesture to determine if a modest departure from uni-
formity in the background density of the ionic model
can produce an appreciable change in the calculated
EI'G. The results show that a relatively small change
in this background does indeed produce a large change
in the EFG.

The background component p' selected for addition
to the ionic model is defined to be proportional to the
sum of the twelve lowest ordered Fourier terms in Eq.
(4.2). This sum is a function with a definite, smoothly
undulating, form which reQects the periodicity of the
lattice and which reaches a maximum at each ion site.
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TABLK IV. Values of the p; indices describing the twelve re-
ciprocal lattice points associated with the undulatory background
component p'.

P3

The KFG generated by the undulatory component p'

just outside an ion site will be called ego„and that at a
nuclear site, eg . This time, ego„ is twice the C'20 co-
efRcient given by equation (A22) is Appendix A. Thus

1
0

0
1
1—1

1
0—1
0

0
1
0—1
1—1

—1
0
1
0—1

1
1
1
1
0
0
0
0—1—1—1

—1

f iV„e —8n.

eqo ——2C'2o' ——— — Q P~ (cosgh). (5.4)
12 g g 3 12 points

E„e4n- 1—(a/c)'
eqo„=g

a'~ 3 1+(a/c)'
(5.5)

The sum is an algebraic function of a/c and eqo„
becomes:

Like the lattice itself, these maxima are somewhat
asymmetrical; they will have a more gentle curvature
in the s direction than in the x or y directions for cases
in which c/a is greater than unity. It is precisely this
feature of the undulation which makes it possible for
p' to generate an EFG. A multiplicative parameter i' is
incorporated in the definition of p' in order to specify
the amplitude of undulation. Thus:

~Tve

p =t .,—, Q exp(27rih r)
g g 12 points

(5 1)

Note that p' attains the value $1V,e/u'c at each ion site.
The actual values of the p; indices for the twelve points
are given in Table IU and p itself can be written in
terms of real functions as follows:

p'= i (iV,e/a'c)

X—', Leos (2m x/a) cos (2~y/a) +cos (2my/u) cos (2~s/c)

+cos (2vrs/c) cos (2~x/a)]. (5.2)

Although p' has zero average value, its maximum and
minimum values are, paradoxically, not equal in mag-
nitude. A detailed inspection shows that the quantity
in square brackets above attains a maximum value of
+3 at the ion sites and a minimum value of —1 upon
a set of straight lines parallel to the unit cell edges and
located midway between the ion sites. For brevity, this
system of lines will be denoted by the symbol o..

%hen the undulatory background component is
added to the ionic model, the total background be-
comes p' —2)V„e/a'c. Since this density represents elec-
trons, it must not become positive anywhere in the
unit cell; the amplitude of undulation is therefore clearly
limited. Quantitatively, this means that the coeKcient
i must lie in the interval:

—6(f &+2. (5.3)

Negative values of f correspond to cases in which the
electron density is relatively enhanced at the ion sites;
positive values, to cases in which the electron density is
relatively depleted at the ion sites and enhanced upon 0-.

It was decided that a calculation should be made at
the 4.2'K point to determine what value of i would

yield a total nuclear EFG equal in magnitude to that
observed experimentally. At this temperature, (a/c)'
=0.4263 and

eq„=|(774.5 &( 10"statvolts/cm') (5.6)

Using data from Table III, the following equation is

obtained:
—94.15+774.5&= w537.5. (5.7)

If eq is assumed to be positive, the value of 1 required is
0.816.On the other hand, if eq is assumed to be negative,
the f value needed is only —0.572. In either event, t is
well within the limits of —6 and +2 established earlier,
which means that, especially in the case of the —0.572
value, the required undulation is small in comparison
with the maximum possible undulation. In the first
case, in which /=0. 816, the conduction electron density
is minimum at the ion sites with a value equal to 0.59
times the average background density; it is maximum
on 0 with a value equal to 1.14 times the average. In
In the second case, in which f= —0.572, the conduction
electron density is maximum at the ion sites with a
value equal to 1.29 times the average value; it is mini-
mum on a. with a value of 0.90 times average.

VI. DISCUSSION

This article shows that the theoretical explanation of
the observed EFG at the indium nucleus is still in an
imperfectly developed state; directions in which future
progress may be expected will now be discussed.

Within the frame work of the ionic model itself,
certain avenues for improved understanding remain
open. It is felt, for instance, that the weak temperature
dependence of ~eq;~ as illustrat:ed in Table III and in
Fig. 3, is not realistic and that a faster decay of this
quantity with increasing temperature would appear if
the thermal motions of the ions were taken into ac-
count. The average eRects of these motions could be
calculated using the Debye approximation in the sum-
mation of lattice modes with the aid of the elastic con-
stants that have been measured from 1.4' to 300'K
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by the ultrasonic pulse technique. "Another defect in
the ionic model is the assumption that each ion is, in
its external effects, a monopole. Actually, each ion
possesses an induced quadrupole moment as a result
of the KFG in which it is situated, and these induced
moments will, in turn, have an effect upon the EFG in
a manner analogous to the action of an ordinary polar-
ized dielectric. The extent of this effect is being
investigated.

Although the ionic contribution is by no means
negligible, it is believed that the predominant source of
the EFG is to be found in the non-uniform charge
density associated with the extra-ionic or conduction
electrons. Strong evidence for this point of view has
been presented in Section V. It is hoped that the plaus-
ible but somewhat arbitrary undulatory background
component presented there can be replaced by a better
model, and an attack upon this problem using a method
which has been applied to the conduction electron dis-
tribution problem in beryllium" is planned for the near
future. Further evidence of the importance of the con-
duction electron contribution to the EFG is provided
by the 10 kc/sec frequency shift observed in the indium
NQR at the onset of superconductivity. "

Any successful conduction electron model must vary
considerably with respect to temperature in order to
explain the strong temperature dependence of the
indium NQR which is actually observed. The electron
density may vary in response to changes in the lattice
parameters, and it may vary as a result of electron-
phonon interactions. These two effects should be
separable by pressure dependence measurements pro-
vided that the lattice parameters are known as func-
tions of pressure. Measurements of this nature are now
in progress and will be reported at a later date. The
long mean free path of conduction electrons at low
temperatures suggests that the effects of impurities on
the NQR and the tempera, ture dependence of these
effects should provide information relevant to the con-
duction electron model. Experiments to determine the
effects of alloying indium with dilute concentrations of
other metals are being initiated.
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APPENDIX A: EXPANSION OF THE ELECTROSTATIC
POTENTIAL IN A CRYSTAL

This appendix contains a derivation of the mathe-
matical methods used in calculating the electric field
gradients discussed earlier in this article. These methods
are suited to a variety of crystal potential problems
and are developed with wide applicability in mind.
Cgs electrostatic units are employed throughout.

Any model for the charge density distribution within
a crystal will, in general, include a lattice of singularities
immersed in a continuous background, the whole having
vanishing average value within a unit cell. The singu-
larities may be monopoles, dipoles, multipole charge
aggregations of higher order, or combinations of these.
The continuous background may be absent altogether;
it may be uniform; or it may be a complicated function
depending upon the sophistication of the model.

At the beginning it is convenient to separate the total
charge distribution into two distinct partial distribu-
tions, each of which has vanishing average value within
a unit cell and each of which is assumed to be known in
the form of a Fourier series. The first such partial dis-
tribution, denoted by p, consists of the singularities
and the uniform component of the background. This
uniform component, po is simply the negative of the
total monopole content of a unit cell divided by the
volume of that cell. In terms of its Fourier series, p can
be written

p=singularities+po=gh A(h) exp(2irih r) (A1).
Here the symbol h represents a vector in reciprocal
space and A (h) is the Fourier coefficient. It may be re-
marked that the finding of A (h) is practically a routine
matter once the positions and multipolar compositions
of the singularities have been speci6ed. The second
partial distribution, denoted by p, includes all of the
charge not represented by (1), namely the nonuniform
component of the background. In Fourier series repre-
sentation, p' becomes:

p' =Ph A '
(h) exp (2irih r) . (A2)

Since both p and p' have vanishing average value, both
A (0) and A'(0) are equal to zero.

It is important to realize that series (A1), which repre-
sents singularities, has a very slow rate of convergence;
that is, relatively many terms are needed to give a
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satisfactory approximation to the charge density p.
On the other hand, series (A2), which represents a com-
paratively smooth function, has a much more rapid rate
of convergence. This difference in convergence prop-
erties, plus the necessity of deleting the effect of the
singularity at the origin in (A1), requires the use of
entirely different methods for the calculation of the
potentials generated by the respective partial charge
distributions.

Attention is now directed to the potential V generated
by the partial distribution p. For convenience, the origin
of coordinates is chosen to coincide with the point at
which the expansion of this potential is to be developed.
It will be assumed, for generality, that this expansion
point coincides with one of the singularities of (A1);
the results can be specialized easily to the case in which
this is not true, however. Evidently, U is representable
by a series of the form

—2' oo

3 l=O m l

)(Pilml (cosg) e~m4 (A3)

in the open interval 0(r(r o, where r o is the distance
from the origin to the nearest neighboring singularity.
The term containing por' is the result of an integration
of Poisson's equation from the origin outward and is the
only non-Laplacian term in (A3). The terms containing
the 8 ~ coe6cients constitute the self-potential gen-
erated by the singularity at the origin and the coefFi-

cients themselves are related to the known multipolar
composition of this singularity. Thus So' is the monopole
moment or net charge; B~ ', B~', and B~' characterize
the dipole moment, etc. The terms containing the Cp
coefficients constitute the Laplacian component of the
potential generated by all of p which is not associated
with the singularity at the origin. This is the part of
V which is of greatest interest, and one of the present
objectives, therefore, is to develop a method for finding
the Cp coeKeients. Note that the fact that V is real
implies that 8& =Bp*and C& =Cp* and conversely.

In view of the fact that V and p are connected by
Poisson's equation, the Fourier series for the former
must be

2 (h)
V=4r Q exp(2s.ih r).

(2s.h)'

Now let the spherical polar coordinates h, Hh, and gh be
associated with the reciprocal lattice vector h. By a
well-known expansion,

exp(2wih r)=g Q i'(2l+1)jt(27rhr)
i=O m=t

(i
~

res
~
)!

X pi~" ~ (cos8)pr ~"~ (cos@)
g+ ~rit~)!

&(expLiris($ —Qh) j. (AS)

In this expansion, j&(2s hr) is a spherical Bessel function
of the first kind and order J. Combining (A3), (A4),
and (AS), and equating coefficients for the surface
harmonic of order l and m, one obtains

(—2rr/3) per bet+Br"r t'+ +Ci"r'=47ri'(2l+1)

(t—i'))! A(h)
X j i(2rrhr) pi "~ (cosi)h)

(i+~m~)! h (2s-h)'

)&exp( i~—h) (A6)

Here So& is equal to unity if /= 0 and to zero otherwise.
In principle, the unknown coefFicient Cp can be found

by inserting any fixed value of r, say r&, 0 &r& &ro, into
both sides of (A6) and summing over h, that is, by per-
forming a summation entirely in reciprocal space.

At this point it is appropriate to mention two schools
of thought regarding lattice sum methods which are
closely related to the present method. One such school
was originated by Kwald" and given recent extensive
development by Nijboer and deWette in a series of
papers, the principle one of which is footnoted. '~ In this
school, the singularities are rtnplaced by broadened func-
tions with Gaussian forms thus introducing a con-
vergence factor into the A(h). The "tails" of these
functions overlap the expansion point, and their effect
must be compensated; the result is a "double series"
method involving summations both in real space and
reciprocal space. The procedure can be adjusted to
make both sums converge with reasonable rapidity or
to sacri6ce rapidity of convergence in one sum in order
to enhance this property in the other. The double series
method can, in this way, be eff ectively transformed into
a "single series" method with arbitrarily small residual
error. In the second school, represented by Bertaut, "
Jones and Templeton, " and Kanamori, 's each singu-
larity is replaced by a broadened function which van-
ishes identically outside a certain sphere concentric
with the site of the singularity. By choosing the radius
of this sphere correctly, the overlap effect can be
eliminated entirely and a rigorous single series formula-
tion obtained.

In the present method, there is no deliberate modi6ca-
tion of the original physical model; the procedure for
accelerating the convergence of (A6) is entirely mathe-
matical in inspiration, Under this procedure, both sides
of (A6) are rendered regular within an rs neighborhood
of the origin by multiplying by r'+'; then a repeated
integration technique is invoked in order to improve
the convergence. The result is a rigorous single series
method with the following advantages: (1) only one
transcendental function of h needs to be evaluated at

"P.P. Ewald, Ann. Physik 64, 253 (1921)."3.R. A. Nijboer and F. W. deWette, Physica 23, 309 (1957).
's F. Bertaut, J. phys. radium 13, 499 (1952).
'9 R. E. Jones and D. H. Templeton, J. Chem. Phys. 25, 1062

(1956)."J.Kanamori e$ al , J. Phys. Soc. Ja.pan 10, 93 (1955).
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(A14)A„(s)= 2"I'(1+v) J„(s)/z".

(A15)

The variable r may now be given a 6xed value r& and
the final expression for Cp becomes

Xexp (—imPh). (A7) (i+-', ). xpro«P
C m g m r)—(o(+i)+Here the compact notation $(m is defined by

(=4mi'(21+1) (i [m
~

—)!/(l+ ) m))!. (A8)

each lattice point, and (2) this function becomes oscilla- The function A„(z) is defined" by
tory at large real argument as well as small in magni-
tude thus minimizing the termination error. The func-
tion in question, A„(z), is discussed in detail below. The~~f~r~

To continue with the derivation, let the terms in
(A6) be rearranged, and let both sides be multiplied
by the factor suggested above:

g,mro(+i= —P m+ (2~/3) po()o, r(+o

A (h)
+$( Q r'+'j ((27rhr)PE' ~(c osIIh)

(2mb)'

The following indefinite integral follows from the prop-
erties of the spherical Bessel functions:

+ Q A (h) (2irh)' —'A„+(+;(2~kri)
2'(-')( &

XP('m' (cosgh) exp( —imph). (A16)
s'+' j((z)sdz = s'+' j(+&(z)+const. (A9)

Using (A9), and applying Jo" rdr to both sides of
(A7), one obtains

~2L+3 r2 2~= —&("—+—po&oi
2 3 )+5

g m

2l+3
A (h)

+$( Q r + j(+i(2m'hr)
(2xh)'

XP(' ~ (cos(Ih) exp( —imPh). (A10)

If this same operation is applied a total of n times,

~2l+2n+1 p2 'rI

C) = —8(t
(2l+3) (2l+5) (2l+2ri+1) 2 4 6 2e

2' ~l+2n+3

+—po()o~
3 ((+5)(i+7) . (i+2e+3)

A (h)
+.~mQ r(+1+mI' (27rgr)P [ml (coseh)

(2or/g) ~+~

Xexp( —i~h). (A11)
The following notation, "
(a)„=a(a+1) (a+2) . (a+n 1)—

=r (a+e)/r (a), (A12)

will be used and (A11) solved for Cp. Thus:

(I+o) - ~~ (t+ o)-
C m p,m r—(o(+i)+

m! 3 ((I+5)/2) „
(27rh)' 'j ().„(2~br)

+2"(I+o)-4"Z ~(h)—
(2~br) '+"

XPi~"'~ (coseh) exp( —imPh). (A13)
2' A. Erdelyi t,'Bateman Manuscript Project), Higher Trunscen-

derltal Fuectioes (McGraw-Hill Book Company, Inc. , New York,
j.953), Vol. I, p. 302.

A, (x)-expL —x'/4 (v+1)], (A17)

andasx —+ ~,
2 "+lI'(1+v) cost x—(v+-,')ir/2]

(A18)
I'(-') x"+I

After x exceeds v, the negative power of x in (A18)
overcomes the large constant factors, and (A16) con-
verges more or less quickly depending upon the value
of v. Briefly, a large value of v postpones the onset of
convergence but makes the convergence more rapid
once it begins; it is recommended when high accuracy
is desired. Tables of A„(x) for half-integer order are
given in a reference already cited." In addition, a ten

2~A. N. Lowan et at. , Z'ables of Spherical Bessel Fgnctio77s
(Columbia University Press, New York, j.943), Vol. II, p. 213.

Although this formula appears complicated, it fre-
quently becomes quite simple in specialized cases. Thus
the 6rst term on the right hand side vanishes, unless the
singularity at the origin has a multipole component of
the same species as that of the potential component
being calculated and the second term vanishes for all
cases in which the l value associated with this potential
component is different from zero. Note that, in applying
(A16), the analyst has two degrees of freedom of choice
in that he can set r& equal to any value in the open
continum 0(r&&ro and m equal to any integer in the
range 0 &~ n & ~.Ualues of r& near to ro are advantageous
since they result in fewer terms to be summed. To
choose a value of m intelligently, one must take into
account the properties of the functions h.„(s) for real
argument, and the over-all accuracy required in the
calculation. For high orders, A„(x) is characterized by a
bell-shaped central maximum, and oscillatory skirts.
Quantitatively, as x —+ 0,
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decimal table of A42~2(24') has been constructed and is

acknowledged in Sec. VII. The argument in this table,
which is actually equal to (22rhri)2, covers the range
from 0.0 to 1600.0 in steps of 0.1. This form of argu-
ment has proved extremely useful, especially since the
square of (22rkr&) is obtained more easily than the first
power of this quantity. There is every reason to believe
that the processes of function generation and lattice
summation can be incorporated into the same auto-
matic digital computer routine; such a step will be
attempted as soon as it is justi6ed by the volume of
work. For a limited number of calculations, however, the
use of the A table is recommended.

Returning to a consideration of the 22o2224nifor224 back-
ground charge density p', one can say of the potential
V' generated by p'

P2 g P P g2,„m l+kP, ~ ~( g); 4, (AI9)
l=0 m=l k=0

The reasons for the exact form of this expansion will

become clear presently. Note that the terms with k=0
constitute the Laplacian portion of V', those with k&0,
the non-Laplacian. Thus, of all the terms associated
with a particular surface harmonic, that is, with an
angular dependence indicated by a particular set of
numbers l and ns, the Laplacian term is the most im-

portant in a neighborhood of the origin.

By repeating the technique employed earlier, it is

easy to show that

A'(h)
„m&i+2k p

m p ~' (2 kr)
k (2~k)2

XPl' ~ (cos8h) exp( —i222&h). (A20)

The power series development for the spherical Bessel

function is as follows:

s) '+~

il(s) = —
I

2si 2i k-o I'(k+1)I'(k+ I+I+2)
3(- I)'I'(-.)

~i+2k ~

k=o 2'+"I'(k+3+ 22) k-!

( 1)k
sl+2k

2l+2k(2)
(A21)

y equating like powers of r in (A20), one finds that

~-(—1)"
—g A'(h)(22rk)' —'+"

2l+2k(2) k t

XPl' ' (cosgh) exp( i~—h) (A. 22)

The procedure for hnding the potentials V and V'

generated by the given charge distributions p and p'

has now been fully developed. It may be helpful, there-
fore, to consider the total potential or sum of V and V'

as partitioned into the self-potential Vq of the singu-
larity at the origin and the potential V0 at the site of
the origin due to all other charge. Thus:

V2= V+V'= V,+V,. (A23)

Evidently, V& is simply the sum of (A3) and (A19),
and U0 is this same sum with the Bl terms deleted.
Thus, in surface harmonic expansion, one has

oo l eo

p g r2+g mrl+Q C „mrl+2k

l=0 m=l 3 k=0

X Pitman (cos8)e"' &. (A24)

This is the potential with which the singularity at the
origin can interact energetically, and, in most cases,
the interactions with the non-Laplacian terms can be
neglected in favor of the interactions with the La-
placian terms. Practically, this means that usually only
the Cl and the C'l0 coeKcients will ever have to be
calculated.


