QUANTIZATION AND STABILITY OF CURRENTS

balance between the field energy and the energy differ-
ence between the normal and superconducting phases.
This condition implies that the field strength inside the
vortex is always equal to the critical field, and
rii~vhpfo, where A is the London penetration depth
(A 2=4mneé*/uc®). We have here neglected surface
effects which may be significant for small ». Such
vortex lines cannot be produced by the usual method
by which the flux is trapped in a multiply connected
domain, since the external field required to lower these
states below the field-free state is equal to or greater
than the critical field. A method for producing these
states would be to first trap the flux in a multiply
connected domain, in which the core is filled with
another metal with a lower critical temperature. A

PHYSICAL REVIEW VOLUME

125,

499

further lowering of the temperature will thus make the
sample simply connected and the trapped flux is
expected to go into one or a number of vortex lines.!?
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Interband Transitions for Metals in a Magnetic Field
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A quantum-mechanical derivation of the frequency and magnetic field dependence of the optical reflection
and transmission in metals is given. Both interband and intraband direct transitions are considered and
explicit results are obtained for a model of two simple parabolic bands having energy extrema at k=0.
Spin splitting is neglected. The calculated line shape is in good agreement with the magnetoreflection
experiment of Brown ef al. in bismuth. The results for the limiting cases of zero interband coupling or of
zero magnetic field are in agreement with previous work. The study of the interband transitions in a mag-
netic field is shown to yield valuable information on the band structure of metals. The advantage of this
method over magnetoplasma and zero-field interband studies is discussed.

I. INTRODUCTION

HE study of electronic transitions between the
valence and conduction bands has yielded

valuable information on the energy band structure of
semiconductors.'™® It is of interest to ask whether
similar studies can provide information on the band
structure of metals.

There are two basic differences between a metal and
a semiconductor, which affect the optical properties.
Since, in a metal there are occupied states in the
conduction band, the interband transitions are de-
pendent on the position of the Fermi energy in the
conduction band. Furthermore, the ordinary conduction
processes of the “free carriers” in a good metal give
rise to a background absorption, which is generally
much larger than the interband effects.
. * Operated with support from the U. S. Army, Navy, and Air
L. H. Hall, T. Bardeen, and . J. Blatt, Phys. Rev. 95, 550
(129%).'0 Dash and R. Newman, Phys. Rev. 99, 1151 (1955).

3 G. G. Macfarlane and V. Roberts, Phys. Rev. 97, 1714 (1955);
98, 1865 (1955).

4R. J. Elliott, T. P. Mclean, and G. G. Macfarlane, Proc.

Phys. Soc. (London) 72, 553 (1958).
8 M. Okazaki, Progr. Theoret. Phys. (Kyoto) 25, 163 (1961).

This study was motivated by the observation of a
resonant phenomenon in the reflection of infrared
radiation from the surface of a single crystal of bismuth
as the magnetic field was increased.® This resonant
phenomenon was associated with transitions from
Landau levels in the valence band to Landau levels in
the conduction band. The data on Bi were analyzed by
analogy with the work on the semiconductors™® to
yield values of the energy gap, and the effective mass
and spectroscopic splitting factor for the conduction
and valence bands. This calculation lends support to
the method of analysis used in the interpretation of the
bismuth data.

The object of this investigation is to determine the
frequency and magnetic field dependence of the power
reflection and transmission in metals. Particular
emphasis is given to the effect of the magnetic field on

the interband transitions and on the free-carrier

6R. N. Brown, J. G. Mavroides, M. S. Dresselhaus, and
B. Lax, Phys. Rev. Letters 5, 243 (1960).

7 E. Burstein, G. S. Picus, H. A. Gebbie, and F. Blatt, Phys.
Rev. 103, 826(L) (1956).

8 S, Zwerdling, B. Lax, L. M. Roth, and K. J. Button, Phys.
Rev. 114, 80 (1959); L. M. Roth, B. Lax, and S. Zwerdling, ibid.
114, 90 (1959).
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absorption. Power reflection and transmission curves
are presented for both constant magnetic field as a
function of frequency and constant frequency as a
function of magnetic field. The orientation of the
magnetic field parallel to the optical electric field and
to the sample surface is chosen for simplicity.

II. THEORY

The power reflection Ry at a metal interface in a
field H is determined by the surface impedance of the
metal Zy(0),°

2

ZH(O)""4‘II'/C ’ (1)

Zg(0)+4r/c

in which 47/c is the impedance of free space. The power
Ty transmitted through a thickness 6 of sample depends
on Ry and on the spatial variation of the rf electric
and magnetic fields in the metal. The special case of an
exponential decay of the rf electric field inside the
metal,

E(z)=E(0)¢ikrtinyz, )

in which z is the distance into the metal, is characteristic
of the classical skin effect and of the slightly anomalous
metal. Since Eq. (2) is generally valid at optical
frequencies, the power transmission through a thickness
6 of sample can be written as

(1'-RH)2 exp(—ZKga)
B 1—R}12 exp(—4K26) '

)

H

The surface impedance and spatial dependence of the
rf fields are found from solution of the Maxwell Equa-
tions, using suitable constitutive equations to relate the
current to the fields and the polarization to the fields.

The surface of the sample is considered to be flat
and is taken as the xy plane with the z direction normal
to the surface and extending into the metal. The rf
electric field is taken along the x direction and has
spatial variation E,(z). The static magnetic field is also
taken along the x direction. The Hall fields may be
coupled into the problem either along the y or z direc-
tions. For simplicity, specular reflection boundary
conditions are used for the electron trajectory.’® Then
the semi-infinite metal can be replaced by an equivalent
infinite medium with current sheets at =0 given by
the rf current density Jjp, .1,

= — 21[H,f<o>><1’<‘36<z>, @)

and by the dc current density s, ac,
jb.dc= (C/ZT)Ha(Z)i, (5)

9 R. B. Dingle, Physica 22, 683 (1956).

10 The results for the power reflection and transmission are
independent of boundary conditions for a local current-field
relation and are rather insensitive to boundary conditions when
nonlocal terms are included.
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in which j and K are unit vectors in the v and z direc-
tions, respectively.

To calculate the surface impedance it is convenient
to write the Fourier transform of Maxwell’s equations
for the rf fields,

= “’_:)Ea@,)— T e

c c?
4miw 2
F——Falk)+ E.'(0)=0, (6)
c? )
4t
Ez (Kz)+47er(Kz)— "‘_’jz(’fz)=0) (7)
w

in which P is the polarization vector,
E,/(0)=(0E./0%) =0, a=2x,y,

and the normalization for the Fourier transform is

E = ! " D d; 8
= / L), ®)

The surface impedance can be found once the
constitutive equations relating j and E, and P and E
are known. It can be shown that a self-consistent field
calculation of the complex conductivity contains the
screening or polarization effects associated with the real
part of the complex dielectric constant. Thus, a self-
consistent field calculation of the current-field relation
is sufficient to determine the optical properties.

Since the interband transitions between Landau
levels are a quantum-mechanical phenomena, a quan-
tum-mechanical calculation of the current-field relation
is necessary. The density matrix technique is used here
to solve the steady-state problem. The periodicity of
the lattice is taken into account and the electron
collisions are handled through a relaxation time.
Different relaxation times are introduced for scattering
processes involving a single band and those involving
interband transitions.

The Hamiltonian for the system is

3C=3c0+3c1; (9)
in which the unperturbed Hamiltonian is taken as

_ [p—(¢/c)AoJ

sz

+ VP (l‘), (10)

0

mo being the free electron mass, and V »(r) the periodic
potential of the metal lattice. The gauge for the vector
potential A, for the static magnetic field H is for
convenience chosen as

A,=yHE. (11)
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The time-dependent perturbation 3C; arising from the
rf fields is considered only for terms linear in the fields,

€

Iy=— (p-A+A-p), (12)
) Mo
A being the vector potential for the rf fields,
ic
A= — —E,(3) sinwt, (13)

w

in which 1 is a unit vector in the x direction. The
solution of the unperturbed Schriodinger equation for
the magnetic field problem,

JCO‘I,n-ql= 8»l(q)\1'n.ql: (14)
in the effective-mass approximation is"
Wt (1) = (2m) tei(@emt a9, (y— N Juno(r),  (15)

and is periodic in x and 2.

The choice of gauge for the dc field given in Eq. (11)
results in harmonic oscillator motion in the y direction
described by the harmonic oscillator function ¢:(y) and
modified plane wave behavior in the # and z directions,
involving the two dimensional wave vector q= qﬁ-l—qj(,
and the Bloch function at k=0, #%,.(r). For simplicity
all band extrema are taken at k=0. The harmonic
oscillator wave functions are displaced by the distance
A%q., in which the characteristic length X is given by

N=h/mp*w™ =ch/eH, (16)

and is independent of band parameters. The parameters
m.* and %w,™ are, respectively, the effective mass in
the #th band and the spacing of the harmonic oscillator
or Landau levels in the »#th band,

hw M =ehH/mq*c. (17)

The quantum numbers # and ! denote, respectively,
the band index and the harmonic oscillator state. The
normalization of the unperturbed wave functions is
taken as

f\Pn’ ’ q'l,* (r)\I/n,ql (l')dl'= 6n,n’5l.l'5 ((I" ‘I'), (18)

in which the integration is carried out throughout the
volume of the crystal.

In the effective-mass approximation, the energy
eigenvalues of Eq. (14) relative to the energy at the
extremum of the nth band 8,.(0) are

8.1(q) = 42q.2/ 2m ¥+ Hoo ™ (I4-3) 4 8.(0).

The notation used for matrix elements of an operator

(19)

1 J, M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).
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0 in the various representations is
(”;l’ql 0 l nlal’aql) = /dl’ ‘I,"’ql* (l‘) G\I/"',q’l’ (l‘), (20)
when taken between the unperturbed wave functions,

(0] 0]w',0)= / Ot un (D Ouno®), (21

when taken between the periodic part of the Bloch
functions at k=0, and

{lo|ry= / dy 6*(3) 060 (3), 22)

when taken between two harmonic oscillator states.

The mean value for the current density (j(r)) can be
written in terms of the wave functions for the unper-
turbed problem by use of the average density matrix'?
for the system at a time ¢, p(?),

@)= ZZ //dqdq' ﬁn,qt;n’.q’l,in’.q’l,:n,ql' (23)
n,l,n’ U

The current density operator in the unperturbed
representation is

(4

€
]n’,q’l,;n.qlz 2_ — [ ‘I’n',q’l’*<p— "AT>‘I’n.ql
Mo 4

€
_‘I’n,ql<P+*A1’)‘I/n',q/l'* } , (24)
c

in which Ay is the total vector potential Ar=Ao+A.
The equation of motion for the average density matrix
is!t
9 1 p—po
—-—=—[ﬁ(t),3€]— .
a h T

(25)

Not only 5, but also the instantaneous value of the
density matrix directly after a collision po is time
dependent,

po=[1+exp(BC—er)/kT 1, (26)

in which ep is the Fermi energy. In the representation
of the unperturbed wave functions, po is almost diago-
nal®:

(.1,4] po(3C) | 7' V', @) =81,n 80,06 (q— q') fo 84 (q) ]

e sinw?

+ (n,,q| p=Ex(2) |7V ,q")

mow
[fo[gmq)J—foEg"”'(ql)j]+. @
8- q)— &Y (q) ’

12 R, Karplus and J. Schwinger, Phys. Rev. 73, 1020 (1948).

3P, N. Argyres, Westinghouse Laboratory Research Report
60-94760-2-R6, 1955 (unpublished) and Phys. Rev. 99, 1641
(1955).
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and the average density matrix is

(nd,a] 5|1V, q)=8n,w80.00 (a— ') fo 64" (0)]

(n1,q]p-E.(2) [V, Q)

2imow
X[fo[&#(q)]—fo[&"’(q’)]]
&)~ 8.7 (d)
x[ L&:Ha)— &' (@) =i/ 7w Jeit
1(w—1/Tnn) +[ 81 (@)= 8V ()]
[8:4(q)— 8 (@) =8/ 7 pur Je et ] +
—H(w+i/Tnn) +LE:H@)— ExV ()]

(28)

The leading term of Eqs. (28) and (29) represents the
equilibrium distribution in the absence of the pertur-
bation, fo[ 8,!(q)] being the Fermi distribution for
energy &,'(q). The subscripts on the relaxation time
Tan allow 7 to vary with the band index # and to be
different for intraband conduction processes as opposed
to interband transitions. The mean value of the
current density is obtained by substitution of Egs. (24)
and (28) into Eq. (23) and by insertion of a factor of
2 for the electron spin. It is convenient to deal with
the Fourier transform of the current density

(G60)= (51;)3 / <s (e))dr,

in evaluating Eq. (23). The matrix elements which
enter into the evaluation of (j(x)) are

(29)

(nlqlexs|n' V' \q')
=08n,n0(¢s'— gt 2)8(g. — .+ «.) exp(iNiyq.)

X / dy e™vve*(y)dr (y+N%.), (30)
- f(n’,l',q’l Alnl,q)
‘ —1el
=2w(27r)§(ei”‘— =908 0,00 (qe— ¢ ) E2(q:— ¢.)
X [ty et )r-NTg—a/D, (D
— (/&) (W, V,q'| Aol m1,q)
= — (eHo/O)kbn,wd(a— )V |y+Nq.] 1}, (32)
W, V,q'| pal 0, @) =51,08(a— @) (' 1, po | m L), (33)
Vg | py|nl,q)
=5(q—q)[oe,0(n', 01 p, | m,0) 5wV | £,|1}], (34)

AND G. DRESSELHAUS

and
(nl;l,’ql I PZI %,l,q)
=6ll’5(q_ ql)[an,"'hqz—i_(n/:O! b- ! n:0>]

From the form of the unperturbed wave function of
Eq. (15), it follows that the matrix element of p, is
independent of the quantum numbers / and ¢., and
obeys the relation

My agnl(q)
(%,Z,(]ol 2 [ n,l,qo) = -‘—[ } )
L P L

(35)

(36)

and the f sum rule

2 n,l, 2| 7,0,q0) |2 mo /928, (qo)
= | (1,0,q0] 2| Q)| 1 _0( 0 > 37
mo n'#n Et(qo) — Eal(qo) w\ g’

The mean value of the Fourier transform of the current
is thus found to be

(3(0)=02s(k:) Ex(k2)4,
in which complex conductivity is*
? 1 | T 1,0 (W) [2(0—1/Tnn)
27%NE v ;:L;I:(w_i/Tnn)z— [wc(")(l—l’)jz]

e*h

(38)

0zo(ks) =

— X [Jr(Wk)|?

27r2i)\2m02 n,m,'Ll
n #n

X /dquo[gnl@z)]+

/ {6 (g=) 1 fo (2" (¢2) 1}
X | dqs
5nl(q:)_ 8"’ll(qz)
84V (g2)— 841(q0)
o[ 8:1(g)— 8nrt(g2)]
1
(w—1/7nn)+ 80 (qe) — En?' (¢2)

x| (nd,a pl ) 12[

}_..., (39)

an

T (Nk,)= / dy ¢r*(9)dr (y—N2k.). (40)

The form of Eq. (39) distinguishes between contribu-
tions to the conductivity which involve a single band
index (intraband conductivity, ¢,,"***) and those which
involve two band indices (interband conductivity,
ozz7%"). The expression for the interband conductivity
is the usual anomalous skin effect result,'® except that
the effective mass has replaced the free electron mass.
This particular magnetic field orientation introduces
no Hall fields if the crystal is assumed to have cubic
symmetry.

An explicit evaluation is made here for a two-band
model: a single conduction band and a single valence

14S. Nakajima, Advances in Physics, edited by N. F. Mott
(Taylor and Francis, Ltd., London, 1955), Vol. 4, p. 363.
15 D. C. Mattis and G. Dresselhaus, Phys. Rev. 111, 403 (1958).
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band with extrema at k=0. Thus, the lower lying
bands are not treated in detail, nor are the higher
empty bands. The contribution from the internal
atomic bands to the conductivity is treated macro-
scopically as a core polarization contribution, which
can be taken as approximately frequency independent
over the frequency range of interest. This type of
two-band model is a reasonable approximation to a
real metal if the photon energy is small compared with
the energy gaps between the conduction band and the
next-higher unfilled band and between the valence
band and the next-lower filled band. Thus Eq. (39) is
written as

O'a::c(’cz) = a'zxcore‘*_a'zx,cintra('cz)+0'xx,cvinter('<z);

in which the core contribution is essentially dispersive
and is related to the core dielectric constant e,,° by

(42)

(41)

0 5500Te = (10)/4”.) €22°°TC,

The intraband contribution is considered for only the
conduction band; the interband contribution contains
only transitions between the valence and conduction
bands. For simplicity, a spherical Fermi surface is
introduced and any dependence of the effective mass
on wave vector is neglected. The k. dependence of the
conductivity is contained in the term |J;r(A%.)|2.
Since the leading term of |J;r(\%.)|? at optical
frequencies is 8;,1-, the result is a local relation between
current and field. The effect on the optical properties
of the nonlocal terms in Eq. (39) is considered else-
where.16

Using these approximations, the contribution to the
intraband conductivity from the conduction band at
T=0°K can be written as

. mo\ w3 (Ip—1)}
O'a;x,c]n“a:‘fo(’—) Z - ) (43)
mc* =02 (ﬂﬁ’é)’
in which the conductivity oo is given by

co=Ne2r/mo(1+iwr.),

(44)
and the concentration of conduction electrons is given

by
N=[(nB)}/3m*](2m* e,/ )2 (45)

The effective masses for the conduction and valence
bands are denoted by m.* and m,* respectively, and
are related to the reduced effective mass by

1/m*=1/m,*+1/m.*, (46)
and to the dimensionless effective-mass parameter
n=1+m>*/m,*=m>*/m*, (47)

which is 2 for equal effective masses in the valence and

16 M. S. Dresselhaus and G. Dresselhaus, Massachusetts
Institute of Technology Lincoln Laboratory G-Report, 82G-0030
(unpublished), which is available at the M.I.T. Hayden Library.
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T16. 1. The parabolic curves give the zero field &(k) vs'k for

the valence and conduction bands with extrema at k=0. The
Landau levels in the two bands are indicated.

conduction bands. The dimensionless Fermi energy
parameter 8 measures the Fermi energy er above the
energy gap €, between the valence and conduction
bands:

B=(er—e5)/ €. (48)
The quantity /r is related to the Fermi energy and to

the cyclotron frequency for the conduction electrons,
wl=eH/m*c, by

lr=[er—e(0)]/hiw'—4, (49)

e.(0) denoting the bottom of the conduction band (see
Fig. 1). The dimensionless magnetic field parameter
1/¢ is given by

¢= ea/hwc’ (50)

in which the reduced cyclotron frequency w, is equal
to nw?,

The contribution to the interband conductivity from
interband transitions between the valence and conduc-
tion bands is found by expanding the matrix element
of p between these two bands (v/,q|p.|cl,q) in a
power series in ¢,. The leading term represents the
allowed transitions and is

. (ﬂ_'iac)
U'a:x,cvmter: 300 X eHg(E;/‘; ac”yﬁffﬁ]);
u—iae)

(51)
in which the frequency- and magnetic-field-dependent
function G(&u; ac,B,y,m) Is given by
9(5)”; aw,ﬁ,%ﬂ) = %E*%(ﬂﬂ)—%ps(l) - 8(1+,u'— iacv)
—8(1—p+ias)],
and )
Imax t 1 lmax—l l+_+ ) 3
s £ L/ 40T
= (+1+ 8!
r tan Y[ (lp—1)/(I+31+Ex) ]}
5 an~{[(r—1)/( £x) ] }} (53)
1=0 (+3+&x)?

(52)
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F1c. 2. Dimensionless plot of the frequency dependence of the
real part of the interband conductivity for a high magnetic field
£=1.5 (solid) and for zero magnetic field £= « (dashed). The
parameters are taken as aq,=0.01, 3=1.0, y=20.0, and 2=2.0.
(See text.)

A measure of the strength of the interband coupling
characterizing each metal is
Cr=|(1,0,0]p2(¢,0,0)|*/moe,, (54)

and the quantities g, a.., @, v denote, respectively, the
dimensionless frequency parameter

u="hw/ e, (55)
the dimensionless interband relaxation parameter
Qey= ﬁ/chel]; (56)
the dimensionless conduction band relaxation parameter
ao="1/7c€, (87)
ash
|
04 -
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5 \
E o2} \
\
\
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F1G. 3. Dimensionless plot of the frequency dependence of the
imaginary part of the interband conductivity for a high magnetic
field £=1.5 (solid) and for zero magnetic field £= » (dashed).
The parameters are taken as a,=0.01, 8=1.0, v=20.0, and
7=2,0. (See text.)
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and the dimensionless band cutoff parameter
(58)

The quantity lmax is related to the cutoff energy
€max by

Y= (emax* e,,)/e,,.

lmax= [emax_ 50(0)]/ﬁwc(c)_%' (59)

The frequency and field dependence of the real and
imaginary parts of o.z,. "% are presented in Figs. 2,
3, 4, and 5 as dimensionless plots of the real and
imaginary parts of [G/(axn—+1u)] vs u and ¢ with the
values of the parameters taken as a.,=0.01, 3=1.0,
=20, and n=2. The discussion relevant to these
curves is given in Sec. III.

The rf field dependence is thus found from Egs. (6)
and (41) to be

E.(2) 1 e Kz
S —— ., (60
Ez, (0) ™ -/—oo K2+ (47"1.(*’/62)0'11("2) K ( )

e-—ikzzd’(z

in which K is related to the index of refraction #x and
the extinction coefficient 2g by'?

K= (iw/c)(ng—ikn),
where Re(K)>0 and

(61)

b [&3 (Ir—1)t
wlp—ia)l 1502 (et

(ng—ikg)= (%co,eﬁl i—

+Cy<iiai>9(5,n; aw,ﬁ,v,n)] ];- (62)

M 10y

The relative importance of the ‘“free-carrier absorp-
tion” in the conduction band and of the interband
transitions as compared with the core dielectric constant
is contained in the reduced plasma frequency parameter

1227)

”pZ—__— %N62h2/ezxcoremc*eg2 — bﬁ%/e:mcore’ (63)
and in the effective coupling parameter Cy,
C11= 3@H(mc*/m0). (64)

From Egs. (3) and (60), it follows that the power
reflected at a metal interface in a field H is

(ng—1)2+ky?
T 1) ?

and the power transmitted through a thickness & of
sample is given by Eq. (3) with

K= eukn/ i,

(65)

K;>0. (66)

Plots of the frequency and field dependence of Ry and
Tw are presented in Figs. 6, 7, 8, and 9 for a,,=0.01 =q,,
B=1.0,v=20,7=2.0, Cg=1.5, 5=2.5, and €,,°°7*=9.0.

17F, Seitz, Modern Theory of Solids (McGraw-Hill Book
Company, Inc., New York, 1940), p. 632.
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eters are taken as a;»,=0.01,3=1.0, ]
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The results for zero field (¢=) are also included.
In this case, the frequency-dependent function
9( 005k acv)ﬂﬁ')’ﬂ) reduces to

G015 en,Byv,m) = (B) 25 (1) — S (1 +p—iac)
—=S(1—ptias)], (67)
with
S (x) =« tan— (nB/x)}—tan= (ny/x)1].

The power reflection and transmission can be found
from the limiting values of the index of refraction and
of the extinction coefficient,

(68)

(”0— 1k0) = (Ezzeore)%[l - & .
p(u—iac)
p—to, d
x| 1 Co 2 Vg s I @
M 10y

For simplicity, the field dependence of the parameters
Qg, Ao, B, 0, CH, b, and €,,°°™ is neglected in constructing

(X 1.2 1.6 20 2.4
E=eg/huc

the curves. The absolute magnitude of the transmission
is fixed by choosing an energy gap of ¢,=1.0 ev and a
sample thickness of 0.5 micron.

III. DISCUSSION

In Figs. 2-9 it is seen that the direct transitions
between the valence and conduction bands in a mag-
netic field result in a resonant and periodic variation of
the real and imaginary parts of the interband conduc-
tivity and also of the observable quantities, the power
reflection and power transmission. Information on the
band structure of the metal is obtained from study of
both the period of these resonances and of their line
shape. In the absence of a magnetic field, the power
reflection and transmission are affected by the interband
transitions but not in a resonant manner.

Interband transitions in a magnetic field are energeti-
cally possible from a level // in the valence band to a
level I in the conduction band, where 7/ denotes a
Landau state above the Fermi energy, and 7, a state
in the valence band from which such a transition is
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F16. 5.§Dimensionless plot of the
imaginary part of the interband
conductivity vs (1/H) for a photon
energy u="%w/e;=3.5. The param-
eters are taken as a,,=0.01,3=1.0,
v=20.0,_ and n=2.0. (See text.)
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F16. 6. Plot of the reflectivity vs the dimensionless frequency
parameter u for high magnetic field £=1.5 (solid) and for zero
field £¢= o (dashed). With the choice of parameters a.,=0.01,
a.=0.01, 8=1.0, v=20.0, n=2.0, Cy=1.5, b=2.5, and ez°°r®
=9,0, the low-frequency behavior features the free-carrier
absorption. The interband transitions appear at higher frequencies
as maxima in the reflectivity and are shown on an expanded scale.

20 24

allowed. Interband transitions between the two bands
obey the selection rule Al=0 if the high frequency
current obeys a local current-field relation, if the two
bands are simple quadratic bands, and if their energy
extrema are located at the same point in k space.

The onset of the interband transitions in zero field
is characterized by a sharp increase in the real part of
the interband conductivity and by a cusp in the
imaginary part as is seen in Figs. 2 and 3. In the
presence of the magnetic field, additional peaks are
seen in both the real and imaginary parts of o,inter
which correspond to the allowed transitions between
the Landau levels. The magnitude and sharpness of
these peaks increases as the relaxation time 7., increases
(or a,, decreases). This resonant behavior is observable
either at constant magnetic field as a function of
frequency (Figs. 2 and 3) or at constant frequency as a
function of field (Figs. 4 and 5). On the basis of the
simplified two-band model presented in this paper,
these maxima as well as the maxima in the reflection
and the minima in the transmission approximately



INTERBAND TRANSITIONS FOR METALS

obey the condition
I+3+£01—p)=0, (70)

or fiw=e,+hw.(I43%). This condition is exactly obeyed
as the relaxation time becomes infinite. For a finite
relaxation time, the reflection maxima are shifted to
somewhat lower frequencies and higher fields, while
the transmission minima occur at correspondingly
higher frequencies and lower fields. The reflection
maxima occur at the same field and frequency as the
maxima of the imaginary part of the interband con-
ductivity. The position of the transmission minima
coincide with the maxima on the real part of the
interband conductivity, which is associated with power
loss. The intensity of the resonances increases with
increasing field and with decreasing photon energy,
provided that it is energetically possible to make a
transition at all. Empirically, it is found that on
reflection, the amplitude of the resonance maxima

100

60 [
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Fi1c. 7. Plot of the transmission vs the dimensionless frequency
parameter g for high magnetic field £=1.5 (solid) and for zero
field £= o (dashed). The parameters are the same as in Fig. 6.
(See text.) At low frequencies the peak for the free-carrier ab-
sorption is seen. The interband transitions appear at higher
frequencies as minima in the transmission.

increases linearly with field. The transmission minima
in Fig. 9 are seen to approach essentially zero trans-
mission for the lowest quantum number. Increasing
quantum number not only decreases the magnitude of
the resonances but also broadens them. The magnitude
of the resonances increases with increasing (m.*/¢,),
but this ratio which determines b in Eq. (63) does not
vary strongly from one material to another.

For the parameters chosen in Figs. 2-9, the departures
of the reflection maxima and transmission minima from
the resonant condition of Eq. (70) are about 0.29.
In reference 6, the resonant magnetic field was taken as
the point on the resonance where the increase in the
reflection was half the increase at the reflection maxi-
mum. For the values of the parameters chosen here,
the departure of this point from the resonant condition of
Eq. (70) is about 0.59, too low in magnetic field as com-
pared with the reflection maximum which gives a value
0.29, too high in field. The lowest transition which ap-
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Fic. 8. Plot of the reflectivity vs the dimensionless field pa-
rameter (1/£)=%w./e, at constant photon energy u=3.5 (lower
curve) and p=>5.0 (upper curve). The zero-field point is indicated.
The parameters are the same as in Fig. 6. (See text.)

pears in the frequency plots of Figs. 2, 3, 6, and 7 is the
=3 transition, while the magnetic field plots of Figs. 4,
5, 8, and 9 include the /=0 and a few higher transitions.
The resonances in Figs. 8 and 9 become so closely
spaced as H — 0 that only the zero-field point is shown
and an envelope for the low-field behavior is indicated.

As the magnetic field increases a de Haas—van Alphen
type of resonance is found both for the intraband
conduction processes and for the interband transitions
whenever a Landau level crosses the Fermi energy.
This phenomena is of much smaller magnitude than
the transitions between the Landau levels (=0.019 as
compared with several tenths of a percent) and is
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F16. 9. Plot of the transmission vs the dimensionless field
parameter (1/&)=%w./e, at constant photon energy u=3.5
(lower curve) and p=35.0 (upper curve). The zero-field point is
indicated. The parameters are the same as in Fig. 6. (See text.)
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independent of photon energy. The imaginary part of
the interband conductivity is sensitive to the de Haas—
van Alphen effect and this effect can be seen on Fig. 5
at £=0.25, £=0.75, and £=1.25. The corresponding
effect on the reflectivity at 1/£=4.0, 1/£=1.33, and
1/£=0.80, is too small to be observed on the scale of
Fig. 8. In constructing the figures, the variation of the
Fermi energy (or 8) with magnetic field which is asso-
ciated with the de Haas-van Alphen effect has been
neglected.

At photon energies lower than are energetically
required for interband transitions, free carrier or plasma
absorption is found and is observable either on reflec-
tion or on transmission as is seen in Figs. 6 and 7.
If no interband transitions occur at any frequency at
all, the photon energy characterizing the free-carrier
absorption is ppe,. The presence of the interband
transitions shifts the free-carrier absorption to either
lower or higher frequencies. The magnitude of the shift
increases with increasing proximity of the interband
transitions to u,, with increasing interband coupling,
and with increasing p,. Increasing the relaxation time
sharpens the drop in the reflectivity and the rise in the
transmission, but if ., @1, then «, and «., are not
as important in determining the exact frequency at
which these edges occur. The presence of a magnetic
field also shifts the plasma absorption edges. However,
for this magnetic field orientation, the magnetic field
effect is often of smaller magnitude than the shift pro-
duced by the interband transitions. On the scale used
in Figs. 6 and 7 to present the free carrier absorption,
the zero-field and high-field reflection and transmission
curves are coincident.

The effect of the interband transitions on the free-
carrier absorption has already been pointed out.
Conversely, the free-carrier absorption influences the
line shape of the interband transitions both in zero
field and in the presence of a magnetic field. As u,
increases, the magnitude of the resonances increases,
but as u, approaches the onset of the interband tran-
sitions, the reflection and transmission curves show a
confusion of free-carrier absorption and interband
effects. The choice of the parameters taken here is
reasonable for some metals and semimetals and has the
virtue of separating the interband resonances from the
free-carrier absorption. Some numerical examples are
included here, but a more complete discussion is
available elsewhere.!® The reduced plasma frequency
parameters u,*(R) and u,*(T) are chosen, respectively,
as the point of inflection in the curves of the reflection
and transmission vs frequency. With this criterion,
the determination of u,*(R) and w,*(T) agree with
each other to within 19%,. The choice of the parameters
b=2.5, B=1.0, and e;,°°*=9.0 results in u,=0.527.
If we take an,=a.=0.01, y=20.0, =2, then u,*(R)
=0.525 and p,*(T)=0.530 for Cx=0, = (no mag-
netic field and no interband coupling); u,*(R)=0.522
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and u,*(7)=0.526 for Cx=1.35, t= (no magnetic
field and large interband coupling) ; u,*(R)=0.530 and
up*(T)=0.534 for Cx=0, £=1.5 (high magnetic field
and no interband coupling) ; u,*(R)=0.525 and u,*(7T)
=0.529 for Cy=1.5, £=1.5 (high magnetic field and
large interband coupling). Somewhat larger shifts in
the plasma edge are observed for larger values of u,.
The maximum value for Cy is found by assigning all
the interband coupling from the f sum rule to the
closest lying band.

The results of this work indicate that the study of
the field variation of the free-carrier absorption is not
as satisfactory a tool for the investigation of the band
structure of metals as is the study of the interband
transitions in a magnetic field. There are several
reasons for this: (1) the magnitude of the field variation
of up*(R) and wu,*(T) is comparable to the variation
with other parameters, such as the interband coupling;
(2) absolute values for the reflection and transmission
are needed for the determination of u,*(R) and u,*(T);
(3) the criterion for the determination of u,*(R) and
up*(T) is not clearly defined. These conclusions are rele-
vant to Hal|Ex and different results are possible for
Haet= L.

The study of the zero field transitions is also less
satisfactory than the magnetic field experiment. There
are also several reasons for this. (1) For the zero-field
experiment, absolute values of the reflection and
transmission vs photon energy are needed to locate the
transitions. (2) Since interband effects on reflection are
of the order of tenths of a percent to a few percent,
a differential method is needed to increase the sensi-
tivity. This is possible only in the magnetic field
experiments. The interband effects are generally larger
on transmission than on reflection, but the high
attenuation of light by most metals imposes stringent
requirements on the sample preparation both for zero-
field and high-field measurements. (3) The magnetic
field greatly simplifies the search for interband tran-
sitions, since the resonances can be observed over a
wide range of frequency and field. (4) Not only is the
magnetic field experiment more sensitive and con-
venient, but also more information is available. Both
the spacing of the resonances and the line shape of a
single resonance can be studied. The spacing of the
resonances gives information on the effective masses of
the valence and conduction bands and on the energy
gap between them. The line shapes can give information
on the magnitude of the interband coupling and the
relaxation time for interband transitions.
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