
MAGNETIC REMANENCE IN Cu (Mn) ALLOYS

well beneath both curves except at the low-temperature
extreme. In other words there appears to be a trend
toward the b(T) curve with decreasing Mn concentra-
tion. It should be mentioned that the transition temper-
atures derived from our data, and shown in Table II, are
much smaller than those predicted by Overhauser from
specific heat results. For example, T, indicated from the
latter for a I atomic per cent alloy is 27'K, as contrasted
with our result of 7 K.

Concerning the magnitude of the e6ective field, it
may be remarked that Ho is about an order of magni-
tude larger than the magnetic field available from com-
plete alignment of the Mn atoms. (The latter is given by
4~%, , with M, equal to e,gJp&, e, being the num-

ber of Mn atoms per unit volume. ) This inequality is
consistent with the idea that the magnetization in these
alloys has its origin in exchange interactions. The possi-
bility that these interactions take the form of a con-
duction-electron field tending to align the Mn atoms
appears to be strengthened by the paramagnetic charac-
ter of the remanent magnetization.
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A treat. ment of impurity states in metals due to Slater and Koster is extended to show the connection
with the phase shift analysis of Friedel. In a simple case this allows the impurity potential to be made self-
consistent. Application is made to the susceptibility and Knight shift of dilute alloys of transition metal
compounds.

I. INTRODUCTION

'N a set of three papers, ' ' Slater and Koster have
~ discussed the theory of impurity states in crystals

employing a Wannier function representation and using
a Green's function to solve the resulting difference
equations. If very restrictive conditions are placed on
the problem, assuming (I) that the perturbations of
only one band are important and, (2) that the perturba-
tions caused by the impurity center are highly local-
ized, the Green's function method gives extremely

simple results. Assuming that the Wannier functions
of the unperturbed problem are known, the wave func-
tions of the electrons scattered from the impurity center
can be obtained in closed form as a function of distance
and energy of the incident wave.

In this particular case, the results obtained by Slater
and Roster can be extended in a simple way to show the
connection with the phase shift analysis of Friedel. 4 It
is possible thereby to make the scattering potential
self-consistent and to obtain some simple results for
charge impurities in metals. These results are particu-
larly striking for the narrow bands and high densities
of states encountered in transition element metals and

' G. F. Koster and J. C. Slater, Phys. Rev. 95, 1167 (1954).' G. I'. Koster, Phys. Rev. 95, 1436 (1954).
3 G. F. Koster and J. C. Slater, Phys. Rev. 96, 1208 (1954).
4 J. Friedel, Suppl. Nuovo cimento 7, 287 (1958).

intermetallic compounds. Some clarification is also ob-
tained of the nature of virtual states in metals and it
can be seen that there is no real distinction between
virtual states and bound states.

+4'nk +nkfnk

We define a set of Wannier functions by the equations

W„(r—r;)= —Q e '"'*f„g,

where E is the number of lattice sites in the crystal.
It is easy to show that

HW„(r —r,)=P e„(r,—r,)W„(r—r,), (3)

(r) g e~k rg

Let us suppose now that a perturbation V is intro-

II. CONDITION OF SELF-CONSISTENCY

Following Slater and Koster, we suppose that the
unperturbed lattice has a Hamiltonian H and a set of
Bloch waves f„~ belonging to the nth band and kth
wave vector such that
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duced so that the new Schrodinger problem becomes
(H+V)P=Ef. We expand the new wave functions in
terms of the Wannier functions so that

We may expand e'"'& in spherical harmonics in the
usual way to obtain

e'"'&'=4n'gij'g(kr~)Y) (8 q )Y, (O-pqp). (12)

The coefficients U„(r,) are then shown by Slater and
Koster to satisfy the set of difference equations,

By inverting this expansion we see that, for a spher-
ical band, solutions of the unperturbed equation for
energy E=E& are also j&(kr;) Yp(e; p;).

Let us consider now the perturbed Eq. (9). Using
the properties of the Green's function given by Eq. (8)

A set of Green's functions for Eq. (6) are given by it is clear that a spherically symmetric solution for
E=EIe ls

ik (ri—rp)e
G„e(r, rp—)=E& Ej,—E

(7)
Vpjp(kr, )— G@(r; rp—).

1+VpGz(0)
(13)

since it may be easily shown that

Q G (r;—r) (r;—r)
—EG„~(r,—rp) =8(r,—rp). (8)

If the problem is specialized to the case of one band, and
if we assume that the perturbation V is so localized that
only the matrix component (W(r —rp)

~
V~ lV(r —rp))

= Vp exists, Eqs. (6) and (7) become

P U(r;) p(r;—r,)—EU(r;) = —U(rp) Vpe(r, rp), (9)—

(10)

If Vp is zero, it is easily seen that a solution of Eq.
(9) corresponding to the unperturbed lattice is

U(r;) =e'"'~ E=Ep.

The other elementary solutions for //0 remain un-
altered since j~(0)=0 for /WO.

Next we shall consider the form taken by (13) for
r; very large. In reference (2) Koster obtains an asymp-
totic expression for the Green's function. If this result
is specialized to the case of a spherical band, the as-
ymptotic form of (13) may be written

mQq(E) Vp e'""'—cos(kr,—pr/2)—
kr; 1+VpGg(0) kr;

where Q is the atomic volume and g(E) the density of
states per unit volume. This result may be written
more simply as follows. From Eq. (10), Gz(0) can be
expressed as an integral over all states in the band

g(Ep)dEp
Ge(0) =Q

EI,—E
= —I(E)+in Qg (E), (16)

if —I(E) is defined as the principal part of the integral.
Using Eq. (16), (14) may be brought into the form

e'& cos[kr,——,'m+y(E)),
kr;

(17)

with the phase shift y(E) being given by

~Qq(E)
y(E) = tan-'i

(1(Z)—1/ Vo)
(18)

0 E

FrG. 1. (a) The density of states, g(E), and the principal part,
I(E), of the Green's function de6ned in Eq. (16). (b) Change in
number of states below energy E, p/x, for three diferent values
of the perturbing potential V. kR+y(E) =rior, (19)

This is a very simple result and a very useful one be-
cause of the physical significance that can be given to
p. Let us suppose, following the lines laid down by
Friedel, 4 that the metallic crystal is in the form of a
large sphere of radius R, and that all the wave functions
are quantized within this sphere by requiring that they
undergo total reQection at the surface. For the spheri-
cally symmetric wave we must have, for example
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with m an integer. The change in k betvreen tvro succes-
sive vrave functions of this type is clearly given by

(20)sk (R+dy/dk) =m..

The number of states per unit increment of k is
(1/m)(R+dy/dk), and the change of number of states
due to the perturbation is just (1/m)(dy/dk) per unit
of k. Consequently, the total change in number of
states up to some particular value of k is just (1/m)y(k).
Suppose that we have introduced at r=O a charge
perturbation Ze. In order that this charge may be
shielded at infinity, we must bring below the fermi
level Z/2 new states, since each state can be occupied
by an electron of each spin. We require therefore that
at the Fermi surface Ef

(1/~)y(Ey) =Z/2. (21)

Since y(Ef) is related to Vo through Eq. (18),
Eq. (21) is the condition for self-consistency of the
perturbation.

III. VIRTUAL STATES AND BOUND STATES

Considerable clarification of the nature of virtual
and bound states can be obtained from a study of Eq.
(18). The quantity I(E) which enters this relation has
been calculated for a special model by Slater and
Koster in reference 3. An appreciation of the general
shape of I(E) can also be obtained by assuming simple
forms for q(E). For instance, if we assume that the
band extends from E=—e to E=+c and place

n(E) =n(0) L1- (E/~)'3,

then I(E) is found to be given by

(22)

E E2 ) E e—
I(E)=Quip 2 —+ —1!lnE6. I E+C

(23)
IV. APPLICATIQNS

a. SusceptibilityGuided by these models, we have made a sketch in
Fig. 1 of how p(E) and I(E) might appear in a typical
case. Suppose now that Vo is negative (an attractive
potential) and is large enough so that 1/Vo cuts I(E)
in two points as illustrated in the 6gure. Then we can
determine from Eq. (18) that p will have the form
shovrn by the solid line in the lovrer half of the Ggure.
At the extreme left p rises until it equals x/2 at the
6rst intersection Eo, approaches m, falls to the value
m/2 again at the second intersection E~, and then
approaches zero as 8 continues to increase. A curve
very similar to this may be seen in Fig. 17 of reference
4. We may interpret the behavior of p as follows. Just
to the right of Eo, p reaches nearly the value m, vrhich
we have seen means that approximately one whole
state has been brought below this energy by the per-
turbation. In other words, a virtual state has been
created in the vicinity of Eo where dp/dE is large.
Since 7 falls to zero at the upper edge of the band, the
total number of states is conserved, and it is clear that

We can use Eqs. (18) and (21) to derive an expression
for the susceptibility of a metal containing a small
number of charge impurities. By differentiation we
obtain from Eq. (18)

dy 1 i dg i dI
sin2y—

dE 2g dE mQg dE
sin p)

which becomes, using Eq. (21),

1/dr 1 (1 dg)
sinn Z

m kdE zf 2n. kg dEJzg

i i dI
sin'(~Z/2). (25)

KQ g dE Ef

The left-hand side of Eq. (25) is just the change in
density of states at the Fermi surface. According to the

the virtual state ha, s been removed from the vicinity
of Ey.

The vridth of the virtual state is of interest. This is
clearly controlled by the value of g(E) at the point of
intersection. If g(E) is small, the state is very narrow,
and vice versa. If we increase t/'0, the intersection moves
to the left as shown by one of the dotted curves in
Fig. 1(b) and the state will become sharper. If the
intersection is below the edge of the band, q(E) will be
zero, and the state will be infinitely sharp. The dis-
tinction between bound states and virtual states is
thus largely one of degree. In fact, even if 1/Vo does
not intersect I(E), 7(E) will still exist, as shown in the
second dashed curve in Fig. 1(b), and there will be an
accumulation of states in a broad energy range.

We may also use Fig. 1(b) to discuss the condition of
self-consistency given by Eq. (21). With a charge
perturbation Ze in the lattice, (1/m. )y must equal Z/2
at the Fermi energy. With the fermi energy Ef deter-
mined by the bulk of the crystal remote from the
perturbation, Vo must increase until y(Ef) has the
proper value. If Z is small enough, this can occur for
Ef anywhere within the band. With larger values of Z,
however, the model is restricted in its ability to achieve
a self-consistent value of Vo. Since vre have limited
ourselves to a one-band model and a perturbation
localized to one site, we can never displace more than
one state belovr the Fermi level. Furthermore, beyond the
point for which I(E)=0, (1/vr)y cannot be greater than
—,'. If the band is full, p can never be anything but zero.
These restrictions mean physically that the model
cannot supply enough charge to shield a perturbation
that is too large, and that the self-consistent potential
would be important at sites removed from ro, or would
cause appreciable distortion of nearby bands.
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rigid-band model, this quantity shouM be given by
(Z/2)(dq/ridE)zf E.quation (25) correctly reduces to
this limit for small Z. In order to obtain the change of
susceptibility due to the perturbation, we must multiply
(25) by 2pz'e, where e is the density of impurity
centers. We have then

If x is the fractional concentration of impurities equal
to mO, this can be put into the form

2pzP 1 (1 dg
x —

~

— sinn-Z
Mp 2~kg dE zr

1 1dI
sin'(vrZ/2), (27)

x'0 g dE~" Ef

where Mo is the mass of an atom of unit atomic weight.
If Z is large, the predictions of this formula are very

different from those of the rigid-band model. For in-

stance, if the impurity is a nucleus differing by one
charge unit from the matrix we have Z=1, and (27)
becomes

2p,g' 1 1 dI
QX, ) ——— g——

~0 x'0 q d& &f
(28)

This result represents a different physical situation
depending upon the location of the Fermi energy. If
Ef is in the low part of the band where g is small and

x)O 6
10

I-

Cl

Q
Lll
O
V)

N 4—

&,Va 7Crp ~a Tl p ~pGa

Va-xTLxGa (Va xCrxGa

/

1 1
hX = 2Pg~e SlIl7rZ

2X g dE Ef

1 (1 dI
sin'-'(vrZ/2) . (26)

m'0(q dE zr

dI/dE negative, a large increase in X,~ is predicted
because of the presence of a virtual state at the Fermi
surface. On the other hand, if Ef is higher in the band
where dI/dE is positive, then we should predict a
decrease in susceptibility. Using Eq. (23) we can de-
termine that near the center of the band (dI/Dq dE)zf
equals approximately 8/w, where m is the width of the
band. Equation (28) then becomes approximately

6& .i= —(2pza/3Ip)x(8/m-'w). (29)

If the band is narrow, the impurities will cause a large
decrease in the molar susceptibility. It is interesting to
note that this effect is indifferent to the sign of the
impurity charge.

For the intermetallic compound V~Ga, measurements
of Knight shift and susceptibility' seem to require that
the Fermi level intersect an extremely narrow peak in
density of states. The temperature dependence of the
susceptibility fjxes the width of the peak at about 0.04
ev, while the maximum susceptibility indicates that
the peak contains about 1 state per formula unit.

Some measurements have been made of the sus-
ceptibility of alloys of VSGa with small amounts of
Ti and Cr. ' The results extrapolated to O'K are shown
as the experimental points in Fig. 2. We note 6rst the
striking fact that the experimental susceptibility de-
creases sharply upon alloying with both Ti and Cr.
This is in agreement with Eq. (29), but is in marked
contrast with the rigid-band model which would predict
a monotonic variation of susceptibility with electron
concentration. The point is emphasized by the alloy
V2.yCrp y5Tio]gGa which has a susceptibility appropri-
ate for x=0.30 and not for x=O as would be expected
from the rigid-band model.

We also show in Fig. 2 the initial rate of decrease
of susceptibility upon alloying with small amounts of
Cr or Ti predicted by Eq. (29) using a bandwidth of
0.035 ev, a value which gives an approximate fit to the
experimental data. This value of zv is close to the value
determined from susceptibility measurements. It is
remarkable that these two determinations of I, one
from an experiment representing a weak, uniform
perturbation of the band, and the other a strong local
perturbation, should be in such good agreement.

b. Knight Shift

It is of interest to inquire about the Knight shift
to be expected at the nucleus of the impurity atom
according to this model. This problem has been dis-
cussed by Daniel, ' using a square well to represent the
potential around the impurity. We may proceed here
by taking, as a solution of the difference equation (9),

2
2

FIG. 2. Susceptibility versus fractional concentration of impurities
in doped V3Ga. The dashed line is predicted by Eq. (29).

' A. M. Clogston and V. Jaccarino, Phys. Rev. 121, 1357 (1961).
This work has been done in conjunction with V. Jaccarino,

H. J. Williams, A. Gossard, J. H. Wernick, and R. C. Sherwood
and will be reported more completely later.

E. Daniel, J. Phys. Chem. Solids 10, 174 (1959).
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U~(r, ) — sic xf

QN

Vo
——G8(r, —ro) (30)

1+VpGg (0)

It is possible to show with a little manipulation that
the Uk(r, ) satisfy the condition of orthonormality,

It follows that the wave function il =P; U(r, )W(r —r~)
is normalized. The Knight shift' then will be given by

where x is the susceptibility per unit volume of the
matrix. p depends upon the density of states per unit
volume and is not affected by a single impurity. We
assume that only the Wannier function at the origin
will have amplitude at ro, and that it will be equal to
the atomic wave function 4 (0) appropriately modified
in the crystal. Q"e have then,

GE (0)

1/Vo+G~(0) I-"r
(33)

0
BOTTOM
OF BAND

CENTER
OF BAND

Consider the factor

Ga (0)

Fro. 3. The factor I' (Er) defined by Eq. (34) as a function of Ef.

P=
1/Vp+GE(0) zf

Using Eq. (18) again, this can be put in the form

I 2

F (Ry) = (ED1+——Sill'Y
m.Og EJ

(34)

In the usual discussion, it is assumed that the Knight
shift in an alloy will be 6xed by the susceptibility of the
matrix in conjunction with the hyperfine 6eld appro-
priate to the impurity atom. P measures the deviation
from this rule. If Z=1, y=or/2 and we obtain from

8 C. H. Townes, C. Herring, and %. D. Knight, Phys. Rev. 77,
852 (1950).

Eq. (34), P=)I(Ef)/7rQti(Ef)]' In Fig. 3. we have
made a plot of P(Er) for Z= 1, using data for I and ri

given in reference 3. We see that P is very large near
the bottom of the band and drops rapidly as Ef in-
creases, becoming zero at the center of the band. This
behavior can be compared with that calculated by
Daniel. ' He also finds P very large for Ef small. Ac-
cording to his model, however, P decreases rapidly to
approximately unity as Ef decreases and never drops
below this value. The difference arises from the fact
that we are dealing here with a single band of limited
width. The present model may have application to the
study of Knight shifts in metals and intermetallic
compounds with partially 6lled d bands.


