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Energy Distributions of Photoelectrons from Metals due to a Surface Effect*
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Expressions are derived for the distribution in total energy of photoelectrons from a metal on the basis of
the alternative assumptions concerning the photon absorption process made by DuBridge and by Fowler.
The calculations are exact, avoiding the usual approximation that the frequency of the incident light must
be near the threshold frequency. Expressions are given not only for the distribution in energy of electrons
emitted in all directions but also for the energy distribution as a function of emission angle.

I. INTRODUCTION

ARIOUS mechanisms have been proposed to dc-
' ~

~

scribe the distribution in total energy of the
photoelectrons emitted from a metal. The common
characteristic of nearly all of the theoretical treatments
is the assumption of the validity of the Sommerfeld
model of a metal in which the energy states available
to the free or conduction electrons are uniformly dis-
tributed in momentum space and in which the proba-
bility of occupation of a state is given by the Fermi
function.

DifI'erences among these theoretical approaches lie in
the assumption about the way in which the probability
of absorption of a photon depends upon the electron's
initial and final states and in the assumption about the
probability that the excited electron will escape the
metal over the potential energy step at the surface.

In calculating the total energy distribution, Du-
Bridge'' assumed (1) that the probability of absorp-
tion of a photon was independent of the initial state of
the electron, (2) that in absorbing the photon energy,
hv, the direction of the electron velocity did not change,
and (3) that an electron would escape from the metal
if its "normal energy" (kinetic energy associated with
that component of velocity normal to the surface) is
sufhcient to overcome the surface potential energy
barrier 8', ; that is, the escape probability is 1 if the
normal kinetic energy after the absorption of the photon
is greater than 8"„andis 0 if the normal energy is less

than 8",. By making approximations valid if v, the
frequency of the incident light, is not much greater
than vo, the threshold frequency at absolute zero,
DuBridge was able to show that the total energy dis-
tribution was proportional to the product of E, the
kinetic energy outside the metal, and the Fermi factor
=1/{1+expL(E—8, )/kTj), where E,

„
is the maxi-

mum kinetic energy of emission at O'K.
In deriving an expression for the spectral distribu-

tion of photoelectrons near the threshold frequency,
Fowler' made assumptions (1) and (3) above, but as-
sumed in place of (2) that all of the absorbed photon
energy hv went to increasing the electron's normal
kinetic energy and that the velocity components parallel
to the surface were unchanged. (This distinction be-
tween the DuBridge assumption and the Fowler assump-
tion is clearly stated by Darrow' and by Rudberg. '
DuBridge himself used'' Fowler's assumption in his
calculation of the energy distribution of mormal energies.
That there is still cpnfusion on this point is shown by
Maurer's' stat, i.ment that in calculating the distribu-
tion in energy o' photoelectrons from a metal the

assumptions used by DuBridge "were those adopted by
Fowler in his treatment of the spectral distribution
function. . . the absorption of a quantum was as-
sumed. not to alter the direction of motion of the elec-
tron. " Maurer's subsequent development is then based
on Fowler's assumption that the absorption of a quan-

* Work supported by the National Science Foundation.' I.A. DuHridge, Phys. Rev. 43, 727 (1933).' I . A. DuBridge, Xevfj Theories of the I'hotoelect&ic Itgect
(Hermann R Cie, Paris, 1935).

' R. H. Fowler, Phys. Rev. 38, 45 (1931).
4 K. K. Darrow, Rev. Sci. Instr. 4, 467 (1933).' E. Rudberg, Phys. Rev. 48, 811 (1935).' R. J. Maurer, IIandbook of Physics (McGraw-Hill Hook Com-

pany, Inc. , New York, 1958), pp. 8—66.
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turn does change the direction of the electron. ) Rudberg'
calls this assumption "Fowler 2" and has used it to
calculate the total energy distribution function. He
shows that in the approximation, v near vo, it reduces to
the same as that calculated by DuBridge, namely, the
6rst power of the energy times the Fermi factor.

A more complicated assumption by Fowler, ' in which
the probability of absorption of a quantum does de-

pend upon the initial state of the electron, leads to an
approximate energy distribution function involving I' '.
The development of Mitchell' leads to an approximate
energy distribution function involving E'.' ' Hill' con-
sidered various types of surface barriers and the corre-
sponding functions to describe the probability that an
electron will absorb a quantum and then escape through
the surface. If he makes the assumption that this
probability depends only on the rate at which the elec-
trons appear at the surface, his approach essentially
reduces to that based on the "Fowler 2" assumptions
and his energy distribution function has the same linear
dependence on E. Buckingham's" study of the depend-
ence of the effective surface barrier on the momentum
of the impinging electrons leads to no essential change
in the form of the energy distribution.

The common feature of the distribution functions
described above is the Fermi factor. This factor domi-
nates the shape of the distribution function in the vi-
cinity of maximum energy. That it is correct was shown
convincingly by Roehr' "' who analyzed his experi-
mental current-voltage curves according to the method
invented by DuBridge. '' DuBridge's method involves
the plotting of current. -voltage data in a way analogous
to that devised by Fowler' for the analysis of spectra, t

distribution data.
In the low-energy region the shape of the experi-

mental energy distribution curves of Roehr" for molyb-
denum and Brady" for potassium showed an upward
curvature which gives strength to Mitchell's theory pre-
dicting an E" dependence. However, I iben's" measure-
ments on calcium, made by deflecting electrons in a,

magnetic Geld„would tend to show a, linear dependence

FIG. 1. Coordinates
in velocity space.
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' K. Mitchell, Proc. Roy. Soc. (London) A146, 442 (1934).' K. Mitchell, Proc. Roy. Soc. (London) A153, 513 (1936).' A. G. Hill, Phys. Rev. 53, 184 (1938).
'0 M. J. Buckingham, Phys. Rev. 80, 704 (1950)."%.%. Roehr, Phys. Rev. 44, 866 (1933)."J.J. Brady, Phys. Rev. 46, 768 (1934)."I.Libeny Phys. Rev. 51, 642 (1937).

on energy were it. not, for the peculiar failure of the dis-
tribution curves to go through the origin. The energy
distribution curves obtained by Hillo for sodium change
shape so drastically with the frequency of the incident
light that they cannot be taken as evidence for or against
the validity of any of the competing theories.

The difhculties involved in making meaningful energy
distribution measurements have been described by
Apker, Taft. , and Dickey. ' Hy carefully avoiding con-
tact potentials between a tungsten emitter and its sup-
ports they have shown that, except for the high-energy
tail, the current-voltage characteristic is truly para-
bolic. From this it follows that the energy distribution
curve, obtained by differentiation of the current-voltage
characteristic, is truly linear in the low energy region.

Thus it appears that the best experimental data for
tungsten, at least, agree with the form of the energy dis-
tribution function derivable from the simplest mecha-
nism, that of DuBridge or that of Fowler.

It is the function of this paper to develop in detail
the distribution functions which follow from these two
sets of assumptions and to do this in an exact way whose
validity is not restricted to values of v near vo. A corn-
parison with the development of DuBridge's assump-
tions by DuBridge himself and of Fowler's assumptions
by others reveals the features which have forced these
earlier arguments into approximations. A novel feature
of the present development is that it gives not only
expressions for the distribution in energy of electrons
emitted in all directions but also simple expressions for
the energy distribution of photoelectrons as a function
of emlssloI1 angle.

This paper is restricted to a discussion of the surface
photoelectric effect in which absorption of a photon by
an electron is possible because of the potential energy
step at the surface of a metal. Because the potential in
the interior of a Sommerfeld metal is uniform, the elec-
trons in the conduction band are completely free, un-
able to absorb photons because of the impossibility of
the simultaneous conservation of momentum and en-

ergy. In a more realistic model of a metal which recog-
nizes the periodic nature of the potential, the electrons
in the conduction band are only quasi free and are abl-e

to interact. wih the lattice. Such electrons can absorb
photons and then escape the metal, giving rise to a
~ollmt. photoelectric effect.""

II. GENERAL

a. Nomenclature

The problem will be discussed in terms of spherical
coordinates r, 8, p, where 0 is the angle between the r

'4 L. Apker, E. Taft, and J. Dickey, Phys. Rev. 73, 46 (1948).
"Experimental evidence for a volume effect is given by meas-

urements of the distribution in energy of electrons from low work
function alkali metals illuminated by high-energy photons. Such
measurements, which show a preponderance of low-energy elec-
trons, have been described by J.Dickey, Phys. Rev. 81, 612 (1951)
and by S. Methfessel, Z. Physik 147, 442 (2957).

'6 For a recent discussion of the volume photoelectric effect in
metals see A, Meesen, J. phys. radium 22, 308 (~961).
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b. Energy Distribution Inside the Metal

The velocity distribution function of the electrons
before excitation is defined as Ã(r~)=diV/dr~ the-—
number of electrons per unit volume of the metal per
unit volume of velocity space. That is, dlV=1V(rz)
)& d7 ~

——the number of electrons per unit volume of the
metal which have velocities in the velocity space in-
terval dv-j. Expressed in terms of spherical coordinates,
dX=X(r~)vPdv, sin8~d8~dg~, and in terms of the solid
angle in which the velocity vectors lie, dX=N(r&)
)&v~'dv~dO. By using the relation between kinetic energy
and velocity, E& mvP/2, dS can b——e expressed as

de= (2/m') liV(r~)EJViE]dQ]. (2)

de is now thought of as the number of electrons per
unit volume of the metal whose directions of motion lie
in the solid angle dQ& and whose kinetic energy is E&
within the range dE~.

According to the Sommerfeld theory of metals the
states available to the free conduction electrons are
uniformly distributed in velocity space. That is, the
number of states per unit volume of the metal per

vector and the s axis. The 2 direction is chosen normal
to the surface of the metal. @ is the angle between the
projection of the r vector on the plane of the surface
and the x axis. In such spherical coordinates a small
increment of solid angle=—dQ= sin8d8d4.

The relation between spherical and Cartesian co-
ordinates in velocity sPace is shown in Fig. 1. The com-
ponent of a velocity normal to the surface is v, = v cos0.
An incremental volume of velocity space—=dr= v'dv

&&sin8d8~ which, expressed in terms of solid angle, is
v'dud 0.

The energy symbols used are those defined in Fig. 2
which shows the energy diagram traditional in dis-
cussions based on the Sommerfeld theory of a metal.
The zero of energy is chosen as the potential energy
inside the metal. W, is the height of the potential energy
barrier at the surface of the metal. p is the Fermi level
which equals the energy of the most energetic electrons
at absolute zero of tempera, ture. P is the work function
=5',—p, =hvo, where vo is the threshold frequency at
absolute zero. E~ is the energy of a particular electron
before it has absorbed a quantum. E2 Z&~+hv i——s the
energy of that electron after it. has absorbed a quantum.
Because of the choice of the zero of energy, E& and E2
equal the kinetic energies, before and after quantum
absorption, of the electron inside the metal. After the
electron has escaped from the metal, its kinetic energy is

L'"=E,2 W.=Eg+h—v W„. —

The subscript 1, whether applied to an energy, velocity,
or angle refers to the electron before it absorbs the
quantum, subscript 2 refers to the electron after it has
been excited, and no subscript refers to the electron
after it has escaped the metal.

E~ =EI+hv--
E"-E&-W,=EI+hv-Na

W0

E W M WIIJ~
I

INIDE VACUUM

Fxo. 2. Energy diagram for Sornmerfeld metal.

unit volume of velocity space equals a constant, c. The
probability that a particular state is occupied is
given by the Fermi-Dirac distribution function=1/
(1+e's' »~" ), which behaves in the well-known way,
being approximately 1 for values of L&j below the
Fermi level p, and approximately 0 for values of Ej
greater than p, the suddenness of the drop from 1 to 0
being less at higher temperatures. Thus E(r~)=c/
(1+a&~' """). This can also be written in terms of
the kinetic energy of the escaped electrons by writing
E~ as E—hv+ W . In this event E~ p= E hv+ W—' IJ, — —
=E hv+P=E —(hv P)=E—E', ,„—, where—E, =h,v.
—P has the physical meaning of the maximum energy
of the emitted photoelectrons from the surface of a
metal at O'K. Thus

Ã(r&) =c/(1+e&"' ~~*~~"').

In the development which follows, however, some of
the conclusions do not depend upon a knowledge of the
proper form of E(;~).Interesting results follow from the
mild assumption that the initial electron distribution is
isotropic, that is, that A (r ~) is not a function of direction.

c. Rate of E1ectron Excitation

= (2/m')X(r g)EgdEg cos8gdng.

The rate at. which electrons of the type being con-
sidered come to unit area of the surface is simply the
product of the normal component of velocity and the
number of electrons per unit volume, i.e., dX, '=v„dS
=v~ cos8~F(r~)dr~. This rate can be written in terms
of velocity as de, ' = &V(r &)v&'dv& cos8& sin8&d8dP& ——lV(7 &)

g'vI dvy cosHydQy or, in terms of energy, as

de, '= (2/m')X(r~)E&dE~ cos8~ sin8~d8~~~ (4a)
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These electrons will absorb photons at a rate, dN, '

which is some fraction, a, of the rate at which they
come to the surface, dE, '. That is, dS '=ad/, ' where

a, the probability that an electron will absorb a photon,
is a linear function of the light intensity. For the
moment, a may be considered a function also of photon
energy, electron energy, and electron direction.

d. Coordinate Transformation for Going
Over a Potential Barrier

When an electron escapes from a metal it goes over
a potential energy barrier, W', . This has the effect of
reducing the component of the electron's velocity nor-
mal to the surface but the components of velocity
parallel to the surface remain constant. This means, in
terms of symbols introduced earlier, that p remains
constant (P2

——P) and that ~2 sing, =n sing. This latter
result, written in terms of energy, is E2 sin'8& ——E sin'8,
which leads by differentiation to

E2 sino' cos02d02= E sin0 cosod0.

The rate, dE, ', at which electrons escape from the
metal will be in general some fraction, t, of the rate,
dS ', at which they have come to the surface and
absorb photons. That is,

dh, '= ~dr. '= ~~de. ', (6)

Lo

where dN, ' is given by Eq. (4). For the moment t may
be considered a function of electron energy and electron
direction although both the DuBridge assumptions and
the Fowler assumptions include t=1.

E+W.—hv
= (2/m')N(rq) — EdE cosgdQ.

E+W.
(7b)

The rate at which electrons escape from unit area of the
surface is given by Eq. (6) as

dlV, '= atdN, ' =at (2/m') N (r g)

E+W.—hv
X— EdE cosg singdgdg (Sa)

E+W,

E+W, hv-
=at(2/m')N(rq) EdE' cosgdQ. —

E+W.
(Sb)

Thus, in a given direction 0, the photoelectric current
per unit surface area, per unit solid angle per unit
energy of the emitted electrons is

dN, ' E+W hv-
—=at(2/m')N(rg) — E cosg.

dQdE E+W,

III. DUBRIDGE ASSUN:PTION

a. Exact Results

In calculating the total energy distribution function
DuBridge assumed that the absorption of a quantum
did not change the direction of motion of the electron.
(This is assumption 2 in the Introduction. ) In terms of
the symbols used here this means that P& ——P2 and 8&

——8,.
When these substitutions are made and E~ written in
terms of E2 t Eq. (1)],Eq. (4) converts to dlV, '= (2/m')
XN(rq) (E2—hv)dE2 cos82 sin82d82~2. Equation (5) and
the fact that P2 ——p allows this to be written as dlV, '
= (2/m')N(r&) (E2—hv)dE&(E/E2) cosg singdgd& By.
writing E2 in terms of E LEq. (1)j, this becomes

E+W. hv—
dN, '= (2/m')N(r~) — EdE cosg singdgdg (7a)

E+W.

Notice the implication of this equation if a (the ab-
sorption factor), t (the escape factor), and 1V(r~) (the
initial distribution factor) are all functions of energy
alone. It is that the energy distribution of the emitted
electrons is also isotropic except for the Lambert's law
factor, cosg. With these assumptions Eq. (Sa) can be
integrated over all directions of emission to give the
total energy distribution function:

0
0

E (ev) ~

E+W,—hv
dN, '= at(2/m')N(r~) — EdE

E+W,
x/2

cos0 sinodo d@
0

FIG. 3. Normalized energy distribution functions. (a) DuBridge
(v»); (b) DuBridge (v„);(c) Fowler (v»); (d) Fowler (v„,8=90 );
(e) Fowler (v„,8=0',).

E+W. hv-
=at (2m/m')N (rg) — EdE.

E+W,
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As described in the Introduction, DuBridge's other
assumptions were: (1) a= constant at a fixed frequency,
(3) t=1, and also that E(r)) =c/(1+e(~ ~~*)'"r)
Under these assumptions the exact shape of the energy
distribution function is

of the correct factor v„.It turns out to be

E+W. hv—) ' EdE
d~V,

'
~
X . (»)

E+W j 1+s(& &ms-x)l&&

E+W.—hv
dE, ' ~— X

1+( (& &max—) I kT

This function is shown in Fig. 3 as the dotted curve (b).
It has been normalized so that its maximum ordinate
equals the maximum ordinate of curve (a).

This function is shown as solid curve (a) in Fig. 3. The
curves of Fig. 3 have been drawn for the special case
of tungsten, at a temperature of absolute zero, illumi-
nated by light of wavlength approximately 1000 A
(hv= 12.0 ev).

Experimentally determined values for tungsten are:
the work function /= 4.5 ev,"the potential energy step
at the surface W' =12.5 ev."
b. Comparison with the DuBridge Development

By making approximations valid if v is near vo,

DuBridge derived an energy distribution function of
the form EdE/(1+e(~ ~~*"~ ) That Eq. (11) also
reduces to this form in the same approximation can be
shown by writing the ratio (E+W', kv)//(E+W, )—as
1 hv/(E+W, ).—This is almost constant if the range of
E (from 0 to E, , ) is small compared with W„that is,
if v is near vo.

However, the fact that the development by Du-
Bridge and the development in this paper lead to the
same approximate answer is not a sign that the two
approaches are equivalent.

In arriving at his' Eq. (44), "in which no approxima-
tions have been made, "DuBridge uses a concept which
has meaning only if the later approximations are made.
Thus Eq. (44) cannot give an exact answer. The ques-
tionable concept is in the following sentence. ' "If we
multiply the number of electrons per unit volume having
the velocity I&" (m&= v2 in our notation) "by the value
of the velocity component $( normal to the surface"
($)——v„=vu cos8g in our notation) "we obtain the
number arriving at unit area of the surface in unit
time. " The trouble here is that those electrons having
velocity v2 have many diferent directions so that one
ought not to talk of the velocity component normal to
the surface.

A second point which seems questionable in the
DuBridge argument is the use of e„instead of e„
(P( instead of $) to obtain the rat. e at which the elec-
trons arrive at the surface. It is true that after electrons
of a particular velocity and direction are excited they
have a normal velocity component =~„butneverthe-
less, the rate at which these electrons come up to the
surface is determined by v„.

For sake of comparison an exact energy distribution
function has been calculated using the factor e„instead

"Data by Rupp analyzed by R. H. Fowler, Statistzcal Me-
clzunics (Cambridge University Press, New York, 1936), Table 42.

=at (2/m')!V (r))EdE cos8dO,

dtV, '/dQdE~ = ()t (2/w') $(r()E cos8&

(14b)

(15)

d~V, '=at(2n/m')N(r, )L cos8, .

de, ' o-—
1+g (E &ms,x ) l kT— (17)

The total energy distribution function at T=0 given by
Eq. (17) is shown as the solid curve (c) in Fig. 3.

b. Comparison with the Usual Derivation
Based on Fowler's Assumptions

Most derivations of the energy distribution function
based on Fowler's assumptions (for example, references

IV. FOWLER ASSUMPTION

a. Exact Result

In calculating the spectral distribution function
Fowler assumed that all of the absorbed photon energy,
hv, went to increasing the electron's normo/ kinetic
energy and that the velocity components parallel to
the surface were unchanged. In terms of the symbols
used here this means that p(——p~ and v( sin8( ——()2 sin82.

This latter result, written in terms of energy is Ej.sin'8&

=82 sin 02 which leads by differentiation to E& sin0&

Xcos0&do& ——E& sin02 cos02d02. By making this last sub-
stitution and using also the facts that dE~=dE.. and

Eq. (4a) converts to dX.'= (2/nP)X(r()
XE2dE2 COS82 Sln82d82@2.

In going over the potential barrier Eq. (5) holds as
well as the relations dE2 dE and P2————P. Thus dX, '

becomes

dÃ, '= (2/m')N(r()EdE cos8 sin8d8d(t (13a)

= (2/m')cV(r&)EdE cos8dQ. (13b)

(The above two-step process can be viewed more di-
rectly as a one-step process in which the electron sur-
rnounts a potential energy step =5' —hv, i.e., its
kinetic energy changes directly from E) to E.)

From here on the argument is identical to that given
in Sec. III (a). The equations analogous to Eq. (8) to
Eq. (11) are:

dtV, ' = atdiV, '= at (2/m') X(r()I.':dE cos8 sin8d8dg (14a)
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5 and 6) make use of approximations in arriving at the
sa,me expression, Eq. (17), which has been shown above
to be exact. Maurer's' derivation is forced into an
approximation by the same trouble appearing in the
DuBridge development, namely the use of a single value
of the velocity component normal to the surface to
describe the many values of this component belonging
to electrons moving in diferent directions. Combined
with the simple assumption that the probability of
an electron absorbing a quantum is proportional to the
number of times per second that the electron appears
at the surface, Hill's9 approach can lead, without
approximations, to Eq. (17),but says nothing about the
energy distribution as a function of emission angle as
does Eq. (15).

Again for the sake of comparison, an exact energy
distribution function can be calculated on the basis of
Fowler's assumptions except that the factor ~„is used
instead of the correct factor v„to determine the rate at
which electrons come to the surface. The result analo-
gous to Eq. (14a) is

E+W
dlV, '= at (2/m')tV (r~) — EdE cos8 sin8dg

E+W.—hv

1—(8 sin8)'/(E+ W,)'
X

1—(IJ sin8)'/(E+W, ) (E+W,—hv)

This is too complicated to integrate over all directions
to give the total energy distribution. However the
function has a simple form for emission parallel to the
surface (8= 90') and for emission normal to the surface
(8=0'). These extremes are plotted as curves (d) and

(e) in Fig. 3.

V. SUMMARY AND CONCLUSIONS

The distribution in energy of photoelectrons from a
metal has been calculated on the basis of alternative
assumptions due to DuBridge and to Fowler as to the
mechanism of the photon-absorption process. The
derivations are exact, avoiding the approximations

usually made. With the approximation of small maxi-
mum energy of the emitted electrons, both results give
an energy distribution function showing a linear de-
pendence on energy. At larger energies of the emitted
electrons the Fowler assumptions lead exactly to the
same first power dependence on energy. However, the
DuBridge assumptions lead exactly to a function in-
volving a first power dependence modified by a factor
which is a slowly varying function of energy.

The calculations have been carried out in terms of
energy distributions written as a function of the direc-
tion of motion of the electrons, both inside the metal
and outside. Thus expressions have been derived for
the energy distribution of photoelectrons in terms of
the emission angle. The general conclusion is reached
that if the factors entering into the photoelectric
mechanism are isotropic the energy distribution of the
emitted electrons will also be isotropic except for a
I.ambert's law factor. This conclusion also holds if one
makes Fowler's assumption that only the normal com-
ponent of electron momentum is affected during the
photon absorption process.

The validity of the Fowler-DuBridge assumptions,
even for a pure surface eGect for a real metal, is very
much an open question. Indeed, the agreement between
the Fowler-DuBridge conclusions and the experimental
results for tungsten may be only accidental. It is be-
lieved, however, that, given these assumptions, their
consequences have been accurately described here.

Although the simple assumptions due to Fowler and
to DuBridge have been emphasized, the approach used
here is not necessarily restricted to these assumptions.
In particular, Eqs. (10) and (16) are valid for any
isotropic form of the absorption factor and the escape
factor, and Eqs. (9) and (15) are valid for any form
whatever of these factors.
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