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It is argued that the gauge invariance of a vector field does not necessarily imply zero mass for an associ-
ated particle if the current vector coupling is sufficiently strong. This situation may permit a deeper under-
standing of nucleonic charge conservation as a manifestation of a gauge invariance, ~vithout the obvious
confIict ~ith experience that a massless particle entails.

&~OES the requirement of gauge invariance for a.
vector Geld coupled to a dynamical current imply

the existence of a corresponding particle with zero
mass? Although the answer to this question is invari-
ably given in the affirmative, ' the author has become
convinced that there is no such necessary implication,
once the assumption of weak coupling is removed. Thus
the path to an understanding of nucleonic (baryonic)
charge conservation as an aspect of a gauge invariance,
in strict analogy with electric charge, ' may be open for
the Grst time.

One potential source of error should be recognized at
the outset. A gauge-invariant system is not the con-
tinuous limit of one that fails to admit such an arbitrary
function transformation group. The discontinuous
change of invariance properties produces a correspond-
ing discontinuity of the dynamical degrees of freedom
and of the operator commutation relations. No reliable
conclusions about the mass spectrum of a gauge-
invariant system can be drawn from the properties of
an apparently neighboring system, with a smaller in-
variance group. Indeed, if one considers a vector Geld

coupled to a divergenceless current, where gauge
invariance is destroyed by a so-called mass term with
parameter mt, it is easily shown' that the mass spectrum
must extend below mp. The lowest mass value will
therefore become arbitrarily small as mo approaches
zero. Nevertheless, if m, o is exactly zero the commutation
relations, or equivalent properties, upon which this
conclusion is based become entirely different and the
argument fails.

If invariance under arbitrary gauge transformations
is asserted, one should distinguish sharply between
numerical gauge .functions and operator gauge func-
tions, for the various operator gauges are not on the
same quantum footing. In each coordinate frame there
is a unique operator gauge, characterized by three-
dimensional transversality (radiation gauge), for which
one has the standard operator construction in a vector
space of positive norm, with a physical probability
interpretation. When the theory is formulated with the
aid of vacuum expectation values of time-ordered
operator products, the Green's functions, the freedom
of formal gauge transformation can be restored. ' The

' For example, J. Schwinger, Phys. Rev. 75, 651 (1949).' T. D. Lee and C. N. Yang, Phys. Rev. 98, 1501 (1955).' K. Johnson, Nuclear Phys. 25, 435 (1961).' J. Schwinger, Phys. Rev. 115, '121 (1959).

A„P(P)=B(m') g„.—
(P.~.+P.~,) (~P)+P.P

P'+(&P)'

Here B(m') is a real non-negative number. It obeys the
sum rule

1= dm' B(m')

which is a full expression of all the fundamental equal-
time commutation relations.

The Geld equations supply the analogous construction
for the vacuum expectation value of current products
(j„(x)j„(x')), in terms of the non-negative matrix

j"(P)=m'B( ')(P»P g"P'). —

The factor m' has the derisive consequence that m=0
is not contained in the current vector's spectrum of
vacuum fluctuations. The latter determines B(m') for
ns&0, but leaves unspeciGed a possible delta function
contribution at m=0,

B(m') =Bob(m')+Bi(m')

The non-negative constant 80 is then Gxed by the sum
rule,

1=Be+ dms Bi(m').
0

Green's functions of other gauges have more compli-
cated operator realizations, however, and will generally
lack the positiveness properties of the radiation gauge.

Let us consider the simplest Green's function associ-
ated with the field A „(x),which can be derived from the
unordered product

(A„(x)A„(x'))

(dP) .a'vt* "&dm-s st+(p)b(p'+m')A„, (p),
(2or)s

where the factor +st(p)8(p'+ m) enforces the spectral
restriction to states with mass m& 0 and positive energy.
The requirement of non-negativeness for the matrix
A„„(p) is satisfied by the structure associated with the
radiation gauge, in virtue of the gauge-dependent asym-
metry between space and time (the time axis is specified
by the unit vector rt„):
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Ke have now recogluzed that the vacuum Iluctua-
tions of the vector A „are composed of two parts. One,
with m&0, is directly related to corresponding current
Quctuations, while the other part, with m=0, can be
associated with a pure radiation field, which is trans-
verse in both three- and four-dimensional senses and
has no accompanying current, Imagine that the current
vector contains a variable numerical factor. If this is
set equal to zero, we have B~(m')=0 and Bo 1or-—,
just the radiation field. For a suf6ciently small nonzero
value of the parameter, Bo will be slightly less than
unity, which may be the situation for the electro-
magnetic field. Or it may be that the electrodynamic
coupling is quite considerable and gives rise to a small
value of 80, which has the appearance of a fairly weak
coupling. Can we increase further the magnitude of the
variable parameter until J dm' B~(m') attains its limit-
ing value of unity, at which point Sl)——0, and m=0
disappears from the spectrum of A„? The general re-
quirement of gauge invariance no longer seems to dis-
pose of this essentially dynamical question.

Would the absence of a massless particle imply the
existence of a stable, unit spin particle of nonzero mass?
Not necessarily, since the vacuum Quctuation spectrum
of A„becomes identical with that of g'„, which is gov-

erned by all Of the dynamical propert. ies of the fieMs
that contribute to this current. For the particularly
interesting situation of a vector Geld that is coupled to
the current of nucleonic charge, the relevant spectrum,
in the approximate strong-interaction framework, is
that of the states with E=Y=T=O, E~= —1, J=1,
and odd parity. This is a continuum, beginning at three
pion masses. ' lt is entirely possible, of course, that
B(m') shows a more or less pronounced maximum
which could be characterized approximately as an un-
stable particle. ' But the essential point is embodied in
the view that the observed physical world is the out-
come of the dynamical play among underlying primary
fields, and the relationship between these fundamental
fields and the phenomenological particles can be com-
paratively remote, in contrast to the immediate cor-
relation that is commonly assumed.

~ The very short range of the resulting nuclear interaction to-
gether with the qualitative inference that like nucleonic charges
are thereby repelled suggests that the vector Geld which defines
nucleonic charge is also the ultimate instrument of nuclear
stability.

Note added in proof. Experimental evidence for an unstable
particle of this type has recently been announced by B.C. Maglic,
L. W. Alvarez, A. H. Rosenfeld, and M. L. Stevenson, in Phys.
Rev. Letters 7, 178 (1961).


