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It has been conjectured that a "Mach's principle" might lead to a dependence of the local Newtonian
gravitational constant, K, on universe structure, Z ~M/R. Einstein and others have suggested that
general relativity predicts such a result. A closer analysis, however, including the carrying out of the
geodesic equations to second order, seems to indicate that this is not true and that the apparent "Mach's
principle" terms involving total universe structure are really only coordinate effects. Further, the measure
of gravitating mass obtained in a local, proper Newtonian gravitational experiment is compared in a
coordinate-free way to an experimentally measurable inertial mass and found to be related to it in a way
independent of the rest of the universe. A generalization of these results is given. It is based on the fact
that in general relativity the only way the universe can influence experiments done in an electrically
shielded laboratory is through the metric and that this can be "transformed away" to any degree of accuracy
for a su%ciently small laboratory. Consequences of this are summarized in Dicke's "strong principle of
equivalence. " It is noted, however, that there are other statements which might be called "Mach's
principles" which are satisfied in general relativity.

I. INTRODUCTION

HE principal idea which guided Einstein in
formulating the general theory of relativity was

the local equivalence of gravitational and inertial
eGects, that is, the equivalence of a uniform gravita-
tional force field and a constant acceleration of the
reference frame. Another idea relating gravity and
inertia is Mach s principle. This is less precisely
formulated but suggests that the inertial properties
of a body are determined by the distribution of matter
in the universe. Since the gravitational field interacts
with al/ matter, one could hope to see the Mach
principle relationship between inertial and distant
matter described in terms of the gravitational field.
To state this in a way independent of units, consider
the ratio of the inertial mass of a body to its active
gravitational mass. '

In particular, let us see that this ratio might be in a
static universe consisting only of a mass shell of radius
R and inertial mass M together with a relatively small
body of inertial mass m at its center. If we probe the
gravitational field of m with a small test particle, we

might expect from the Eotvos experiment that the
acceleration of the test particle is independent of its
mass. It certainly depends, however, on m and r and
conceivably on M and R. The fact that the Newtonian
theory of gravity is valid to a high degree of accuracy
suggests that for nz(&M, r«R, the acceleration is

a= I m/r'F (M,R)j—

where 3 is a constant dimensionless number. For a
more general type of universe with masses I at
distances r, from some point x, this might be extended to

F(x)=A Q. m./r. . (1.3)

Until recently, experimental determinations of P
from (1.1) were possible only on the earth. The value
found is not inconsistent with (1.3), a positive value of
3 in the neighborhood of 10' or 10', and present astro-
nomical knowledge of m, and r . It is clear that in a
uniform universe, m, r,', so that the dominant contri-
bution to the sum on the right side of (1.3) comes from
distant matter and the resulting F(x) is fairly constant
in space and time. This also is consistent with present
observations.

A comparison of (1.1) with the standard classical
Newtonian theory of gravity shows that F ' plays the
role of Newton's "universal gravitational constant. "
However, if (1.3) is true, this number is not a universal
constant but depends on the distribution of mass in the
universe about the point where it is measured. To
investigate possible resulting changes in value of this
number, it is convenient to introduce a standard value
and refer variations to it. Specifically, let Es/Sm be
defined as the presently observed terrestrial value of
F(x) '. Ks/Svr is thus a constant number of dimensions
length over mass. Then rewrite (1.1) as

Es /Sa-m

8 r'(E,F)
where F is a function of dimensions mass over length is equation is i entica wit ewton s i t e quantity
(velocity of light c=1). Dimensional analysis then

in parentheses, m, —=8xmy'EOF, is taken to be the active
gravitational mass' associated with m. Notice that by
definition of Es, this gives m, =m at: the present time

*leased on part oi a muitihthed Ph. D. thesis submitted to on earth. However, if (1.3) is true, a Cavendish-tyPe
Princeton University. experiment interpreted in the context of a Newtonian

f National Science Foundation Predoctoral Fellow, 1957-1960.
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' ' theory with fixed gravitational constant E's/Sar would
~ ~

'H. Sondi, Revs. Modern Phys, 29, 423 (1957). give a measurement of active gravitational mass m,
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yielding a ratio
EO5$i2

87t-r
(1.5)

which would not necessarily always be unity.
Einstein' claims to find such a result in general

relativity. In order to study this problem, consider the
creation of relatively small masses m ', at distances r '.
from the present standard laboratory in which, prior
to the creation of nz, ', m/«it, =i by definition of Es.
AVith m, ' present, however, (1.5) then yields

EON~= 1+A
"new matter" s~y~

(1.6)

m &om.—=1+
f/0 "new matter"

(1.8)

which is identical with (1.6) if A =1. Einstein argued
from this that since some matter contributes to the
ratio, m/m„all the universe probably does (Sec. II).
There has been some discussion' of what the numerical
coefFicient A of the sum in the right side of (1.8)
should be, and indeed the first approximation procedure
seems inadequate to resolve this. Consequently, the
equations of motion through second order will be
applied to this problem in Sec. II.

This result (1.8), or its corrected form (2.11), is
clearly coordinate dependent, however. Hence the
relationship between its numerical description of the
path of a particle and the actually observed path is
not deGned without further analysis. The usual interpre-
tation of general relativity is based on the identification
of the imcriuet theoretical measure of an interval,
proper time, with time experimentally measured in
some fundamental way, e.g. , on an atomic clock. An
invariant measure of distance and thus acceleration
can be obtained from this by setting the velocity of
light equal to one. When this is done, the invariant
description of the path of a test particle relative to a
central mass is found to be approximately Newtonian
with coefficients independent of the rest of the universe.
(See Sec. III.)

However, the number nz appearing in the left side of
(1.5) has not yet been related to an experimentally
measured inertial mass. To remedy this, a description
of a process for invariantly studying the acceleration
of charged bodies in a known electric Geld is given. The

A. Einstein, The jrfeonAzg of Re4tieity (Princeton University
Press, Princeton, New Jersey, 1955},5th ed. , pp. 99—108.

3W. Davidson, Monthly Notices Roy. Astron. Soc. 117, 212
(1957).

If it is assumed that each Esne, '/8s. «,' is small compared
to unity, the weak-field equations might be used to
check (1.6). Einstein does this and arrives at

r Eom, Eon
~
1+ g —a—— . (1.7)

"new matter" 8s «~ 87r«s
Thus

resultant ratio of "force" to acceleration is defined as
the inertial mass. For a simple theory of matter m;„„t
is found to be just the m appearing in (1.5) (Sec. IV).
This procedure assumes given standards of charge and
time interval.

The independence of the relationship between the
two numbers, m, and m; „t,from the rest of the universe
is more generally true than the above special case
might indicate. In fact, assume that the space in the
neighborhood of an electrically shielded laboratory is
suKciently Rat that in a certain coordinate system the
differences between the metric components and those of
the Minkowskian, together with the first two derivatives
of these differences, are negligible over the laboratory.
Then, according to general relativity, if small masses,
charged or uncharged, are introduced into the labora-
tory, the description of their motions and interactions in
this coordinate system is independent of the rest of the
universe. This is due to the fact that once the laboratory
is shielded, the only way the rest of the universe could
inQuence it, according to general relativity, is through
the metric. If this is sensibly Rat within, its inQuence
can be transformed away by a coordinate transforma-
tion, thus eliminating any effects from the rest of the
universe. This is Dicke's "strong principle of equiv-
alence. "' (See Sec. V.)

There are, however, other statements which might be
considered Mach's principles. These are based on the
fact that in general relativity gravitational and inertial
forces have the same formal origin. (See Sec. V.)

II. EINSTEIN'S RESULTS

Gravity and general relativity being largely concerned
with the interaction between masses as masses, Einstein
was naturally interested in whether or not Mach's
principle as discussed in Sec. I above was satisGed in
general relativity. Specifically, is the attraction and
resultant relative motion of two gravitating bodies
inQuenced by the rest of the universe'

Einstein investigated this in the weak-6eld approxi-
mation. ' The metric he found to represent the gravita-
tional field due to a distribution of small masses corre-
sponding to a "density" 0 and having small velocities,
dh'/ds, can be written as

E odV
goo= ~——

4n- r

Z o (dx'/ds)
go =— dV,

2' r

E odV)
g;,= —S,, 1+—

« i
4 R. H. Dicke, Science 129, 621 (1959). See also Revs. Modern

Phys. 29, 355 (1957);J. Wash. Acad. Sci. 48, 213 (1958);Am. J.
Phys. 28, 344 (1960).
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where

d BA
L(1yg) v)= Vga + (VX A) Xv,

dx Bx

v—=dx/ds,

(2.2)

(2.3)

on replacing Einstein's imaginary time x4 by the real
x'= —ix'. Here E is just the constant introduced in the
Einstein field equations and thus not yet related to Ec,
or other observed numbers. Equation (2.1) is correct
only to first order in EJ odV/r, and dx'/ds. The
geodesic equation for a test particle in this field becomes

test particles would depend on the mass distribution
M,/R, in the rest of the universe. To clarify the relation
of (2.6) and (2.7) to the discussion in Sec. I, it is
necessary to consider M, and ns as small additions to a
background universe Li.e. , as the m, ' were in the discus-
sion preceding (1.6) above j. For the background
universe assume that E has been chosen equal to Eo.
Thus, (2.6) will coincide with (1.6) if 2 =1 in the latter.

One objection6 that might be raised against the above
procedure is based on the fact that (2.4) and thus
(2.5) are true only to first order in EM,/R, and Em/r.
Hence the "Mach's principle" terms in (2.5) are of
higher order than can be consistently retained.

In other words, the difference between (2.5) and

E OV
A—=— —d V.

2m r

d Em 8 ir1)

dxo 8+ Bxi(r j (2.8)

For simplicity, consider the application of these
results to the case of the motion of a test particle near
a small mass m at rest at the origin, all inside a static,
spherical shell of mass M, and radius R„' (2.2) now
becomes

dx' 8zE, 8m-r 8m Bx' r
(2 4)

Thus, (1+EM,/SrrR, +Em/87rr) times the coordinate
acceleration of the test particle is just the Newtonian
term, to this approximation. Einstein interpreted this

by saying that the "inert mass is proportional to
1+o., '" or in (2.4) to 1+(E'/Srr)(M, /R, +m/r). How-

ever, an equivalent statement, more convenient for
this discussion and in keeping with that of Sec. I, can
be made. Specifically, dividing (2.4) by L1+(E/Sn)
X (M,/R, +m/r) j gives, for v; instantaneously zero,

Em
Qs (2.5)

8 )~y(E/8 )(M,/R. +m/r)] ax't. /

is too small to be retained in view of the approximations
made in deriving (2.5). Consequently, to the accuracy
assumed, (2.6) should be written

and (2.7)
(2.9)

(2.10)

This objection, however, can be overcome by studying
the equations of motion to higher order. ' The result, for
the same type of universe, is

dx'

Em 1

Ss.(1+5EM,/SvrR, ) Bx* r
(2.11)

In Eq. (2.11), terms of order (Em/r)s have been
neglected as well as terms of order r/R, . These are not
relevant to this discussion and for a situation of
physical interest would be small compared to the terms
kept. Terms of order (EM,/R, )' and (EM,/R, ) (Km/r)
have not been neglected, however, so that equations
analogous to (2.6) and (2.7) might be written

Ibis, in keeping with Einstein s interpretation above,
would suggest that the locally measured Newtonian
active gravitational mass of m is

tri, =m/ L1+ (E/Srr) (M,/R, +m/r)), (2.6)

or that the effective, locally measured Newtonian
gravitational constant is

1+(5EM,/Ss R,)

1+(5EM,/SrrR, )

(2.12)

(2.13)

Es=E/L1+ (E/87r) (M,/R, +m/r)7. (2.7)

H this is true, a comparison of (2.6) with (1.5) would
show that a Mach's principle in the sense of Sec. I
would be satisfied in general relativity, since the
number Es in (2.7) measuring the attraction of m for

This example, while admittedly rather specialized, is sufficient
to illustrate the ideas under consideration, It should also be noted
that here XM,/E, «1 so that this does not correspond to the
total "universe mass shell" discussed in Sec. I and for which
Xilf/8~1

There is, however, another objection that might be
raised against these results. This is discussed in the
following section.

6 See also in this connection reference 3. Davidson criticized
Einstein's retention of the av term because of the assumed small-
ness of v. He "corrects" this by retaining all velocity terms in the
geodesic equation. His result is still questionable, however, on
the basis of the discussion following in the text.

7 A. Papapetrou, Proc. Phys. Soc. (I.ondon) A64, 57 (1951);
V. Pock, J. Phys. (U.S.S.R.) 1, 81 (1939); L. Infeld, Revs.
Modern Phys. 29, 398 (1957).
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d' Em 8 f 1
xu'=

dx~ss ger Bxy'Er„
(3.2)

where x~' is proper distance as measured from the test
particle to m and x~' is proper time along the test
particle. In obtaining (3.2) higher order terms in Em/r
and r/R, were neglected but the (KM,/R, )(Km/r)
term was kept and cancelled out.

Thus, a coordinate-free description of the motion
shows that it is independent of the mass distribution
in the rest of the universe, at least to the order of
approximation for which (3.2) is valid. Hence, this
example does not seem to indicate the validity of a
physically detectable Mach's principle in general
relativity in the sense of Secs. I and II.

The rest of this section will be devoted to a sketch of
the calculations leading from (2.11) to (3.2). First of
all, it should be noted that m must be replaced by a
non-singular source as used in the Papapetrou-Pock
method before a proper distance between its center and
that of the test particle can be defined. However, for
the purpose of the discussion above, terms of order
(Em/r)' are neglected and, since both sides of (2.11)
are already of 6rst order in Em/r, this means that
contributions to the metric from m can be neglected.
Hence, Infeld'sv renormalized delta function, which
disregards self interaction could equally well be used.

Secondly, since (2.11) is accurate only through terms
(KM,/R, )', (KM,/R. ) (Km/r) and both sides of
(2.11) are already of order Em/r, only terms linear in
EM,/R, in the metric need be kept in converting the
distances and times in (2.11) to proper units. The fact

' E. Wigner, Revs. Modern Phys. 29, 255 (1957).

Since (2.11) contains coordinate acceleration and.
distance, there is a question associated with the
interpretation of it in Sec. II. This question concerns
the meaning of coordinates and the metric tensor.
The usual interpretation of general relativity rests on
the identification of

dr= (—g„gx"dx")l; (if dr'&0) (3 1)

as the differential of "proper time, " or time read on
some basic, e.g., atomic, clock associated with the
coordinate interval dxl'. Defining the velocity of light
to be 1, and assuming a light ray to be a null geodesic,
provides the basis for a method of obtaining a "proper"
measurement of a "distance" between particles.
Specifically, the proper distance between two time-like
paths will be taken as one-half the proper time of Qight
(measured along one path) of a light ray from one path
to the other and back again. This provides a coordinate-
free, if impractical, method for obtaining a measurable,
numerical description of the relative motion of two
bodies.

An application of this method to (2.11) yields

that only the "first order" terms need be kept is import-
ant because the metric obtained by Infeld coincides to
this order with that of Papapetrou-Pock. Further, the
coordinate description of the motion of n bodies through
second order, of which (2.11) is a special case, is the
same in either method. Thus, the really observable
prediction, a relation of proper relative accelerations
to proper distances and velocities, is identical in both
cases.

Finally, for the example at hand, a11 particles are
instantaneously a,t rest and terms r/R, are to be
neglected. This essentially means that between the
test particles and m, changes in the background metric,
i.e., neglecting m, can be ignored. Thus

xn'—=t:—g»(0)]'*'
x„—Lg, ;(0)]~x',

(3.3)

g p
—=background metric, i.e., with m=0, where x~'

and x~' are proper time and distance as defined above.
For the example at hand,

gpp(0) 1+KM /—47rR,

g@(0) 8;,(1+K—M, /4s R,) .

Thus (2.11) becomes

(3.4)

(
E3f, d'

4mB, dx„'~ 1 EM, SzE,

Em (1+EM,/4n R,) 8 ( 1
(3 3)

8~(1+SEM,/4irR, ) Bx„'kr„

xy'

which immediately reduces to (3.2).
The question of what the m appearing in (3.2) means

and how it is to be measured will now be taken up.

IV. RELATIONSHIP OF GRAVITATIONAL TO
INERTIAL MASS

The discussion in Sec. III did not say anything about
the physical meaning of the number m appearing in the
right side of (3.2). Mathematically this number m came
from the stress tensor of matter in the Einstein equa-
tions and in fact, if m&= four-velocity of the particle, it is

0 =COllSt

w'T. ( g):d'x. —(4.1)

However, this is still not enough and merely replaces
one unknown by another, m by T ~, leaving the physical
meaning and method of measurement of the latter
undefined.

This section will consider one of two coordinate-free
methods for obtaining physically measurable numbers
associated with the tensor T &, namely, the measure-
ment of inertial mass. The other, active gravitational
mass, was considered in Secs. II and III. Thus T & is
considered as a mathematical intermediary between
two observed numbers.
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In order to measure inertial mass, "standard"
electromagnetic theory will be assumed with its con-
served current density. This gives a constant total
charge and it is assumed that quantities of this charge
are physically available in arbitrarily small amounts.
A standard Coulomb law experiment, in proper units,
will then provide a method for measuring inertial mass,
the units of which will thus be determined solely in
terms of a unit of time and charge.

The two numbers, inertial and active gravitational
mass, will be proved approximately equal for the case
of a "Quid, " irrespective of what the mass distribution
in the rest of the universe is, provided, of course, that
it does not encroach on the laboratory and that the
latter and the masses and charges in it are sufhciently
small.

As far as this paper is concerned, the main significance
of this result is not so much the equality of active
gravitational and inertial mass but the fact that the
"function" expressing one in terms of the other is
independent of the rest of the universe. A generalization
of this result will be sketched in Sec. V.

Standard electromagnetic theory in general relativity
is based on the following equations:

The standard choice of T for a Quid is

TaP —(p+ p)iiia~s+ pgaP

w = dxa/dr, dr =(—g—.Sdxadx&) '*,
(4.8)

q'n p ~ T'n pm ~ a

with each, V ~ vanishing outside a small region around
x,' with the radius of this region much smaller than the
separation Ixa' xb'—

~
between any pair of particles.

Changing to a metric of signature (—,+++) his
choice for V P to the necessary order becomes

aTQ pa(1+ 2i a Ua+ 2ua) q

,V'pb —— p,x,—b(1+-'v, ' U,+—-'u. )—p,x b

cgb —
p x ix b+g bp

,V'P= —.V'j+4 Qb P.ub(x ' xb'), —

(4.10)

with p and p scalars and p much smaller than p.
Papapetrou de6nes his choice of,V' P only through the
approximations necessary to derive the equation
of motion through second order in terms ICnz/r.
He assumes that for a situation represented by n
"particles, "at points x,', 7 "P is the sum of e terms,

F P,.p=o-mP; +PE p
———1,

p-s, v+ps&;+pv-, s= o
(4 2) where

U.—= U(x.') —=Pb ub(x. '),

0
g

(-g)lani'd'x (4.3)

is independent of t. This constant number q is defined as
the total charge of the distribution represented by o-m .
It is assumed that a unit of charge as defined by (4.3)
is physically available. The operational definition of
inertial mass as described later in this section is funda-
mentally based on this association of the theoretical
number (4.3) with a given, physical "charged" particle.

The equations of motion follow from conservation of
the total stress-energy tensor given by

where 0- is a scalar, F p an antisymmetric tensor, and
m» the four-velocity of the charge. As is well known, if
on each surface x"= constant 0 is zero outside a
bounded region, then

V'ub(x') = ——,'EPb, (4.11)

PaÃX) (4.12)

He assumes that the functions p, (x) and p, (x) are
spherically symmetric about x '. This is not an un-
reasonable assumption since "distorting" forces on a
from gravitating mass M at a distance R would be of
the order (XM/R')(l, /R) where l, is the distance
across the cth mass. From the assumption above,
l &(E, so that this "distorting" force can be neglected
compared to the gravitational force E'M/R'. Finally,
he also assumes that the velocities v are small compared
to one, v,' being of the same order as U .

The mass m which appeared as the active gravita-
tional mass in (2.11) is defined for the ath particle by

iaP= TaP+igaPP& Pia PaiP'0&—
Thus, (T«„,i &).fi Obecomes. ——

~T~P., p= o.m f'F~, . (4.5) and
dp,/dt =0=dm. /Ch, (4.13)

(4.4) where R, is a region containing all points at which

p ~0 but none where p~/0 for b/u. He obtains

Papapetrou's derivation of the equations of motion
in general relativity is based on the conservation
equations, which in the absence of charge become

pa, i= paua, i (4.14)

from the lowest order equations of motion. Using (4.14)
and the spherical symmetry of p„p„a little manipula-
tion shows that

where
&""g~, =0)

~&.s= (—g)' ~&.'
(4.6)

(4 7)
pad X= b pauad X. (4.15)
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The lowest order terms in the metric tensor can then
be written

gpp
———(1—2U),

gpss=
—4 Qg N~x~',

gn= ~'p(1+2U),

(—g)&=1+2U.

(4.16)

The comparison between Papapetrou's choice (4.10)
and the standard one in Eq. (4.8) now follows im-
mediately. Inserting (4.16) into (4.8) and carrying out
the operations to an order comparable to (4.10) gives

,V'pP= —p, (1+2U,+v,'),
p —

p x lt(]+2U +p 2) p x k

g p —
~ x 4x. k+p gp

0~k u~p +4 Zb Nbpa(xa xb ) ~

(4.17)

p~d X= p.w,p (-g) '*d'x

p zv '(—g) ~u,d'x. (4.20)

The similarity of the first term on the right side of
(4.20) to total charge is significant. In fact, if p, =0,
p m is conserved so that the argument used to define
a constant charge in Sec. IV could also be used here.
From (4.15) the second term on the right can be
replaced to this order of approximation by —3J'(—g):
XP.w.PiPx. Hence

ma (4.21)

Hence, the pressure terms in (4.17) and (4.10) can be
identified while the densities are related by

(4.18)

or, from (4.16) and (4.8)

(4.19)

Thus Papapetrou's active gravitational mass is just

The limit (A„'—= ith component of relative proper
acceleration)

lim
e p(x.'—xp'),/4pr(r. p) i,

'
lim lim

"small" ) x~& —xf' ) ea —&0 e&—4 BA „'/Be
(4.23)

will then be called the inertia mass of m„provided
mp is much greater than m, .P In (4.23), "small" under
"lim" means that while each ~x, '—xp'~ is assumed so
small as to eliminate background metric curvature
eftects, Ens and Em~ are still negligible in comparison
to each

~
x,'—xp'~. This will be discussed in the following

paragraph.
This choice for m, is motivated by the fact that in

Oat space it reduces to the ratio of the electrostatic
force per unit charge between two charges to the
resulting relative acceleration. Here, however, proper
distances, times, and accelerations must be used to
correspond to the results of real measurements. The
partial derivative with respect to e is used in the
denominator since only that part of the acceleration of
~n, due to the presence of e is desired. The limit
e, —+ 0 is required to eliminate any higher order
contributions that might arise from finite e . Such
contributions might come through the metric, for
example. Finally, x,' must approach x&' so that the
space over which the interaction occurs can be con-
sidered to have a metric which is nearly constant. It is
clear that an electrostatic interaction over a large
distance for which curvature effects due to the back-
ground metric are not negligible cannot be expected to
behave according to Coulomb. Of course, it is to be
understood that these limits are to be taken in a
practical physical sense, i.e., the numbers involved
must be made only so small that decreasing them
further would not observably change the value of the
ratio being measured. Further, it is assumed that this
limit is reached by a value of ~x,'—x&'~ which is still
much larger than Enz, and Em~.

To carry out this program in Papapetrou's formalism,
write (4.5) as

or s~p2 a~""gll, ,
= p' 'ii a"+an( g) *. (4.24)

SZ = — V 'R d s (4.22)

The arrangement for measuring an inertial mass
associated with m, is as follows. First of all, add a
spherically symmetric charge distribution to m, giving
it a total charge e . Add a charge e~ to another mass m~

much nearer to m„ than the other bodies in the universe.
Further, these particles are assumed to be in an
electrically shielded laboratory. Then measure that part
of the proper relative acceleration of nz to m~ due to
the presence of e . Determine this acceleration as a
function of proper distance between m„and mt, when
they are instantaneously at rest.

Equation (4.24) with n=i will be integrated over R,
under the assumption that the rest of the universe is
instantaneously at rest. Further, only first-order terms
in m will be kept. The determination of the electro-
rnagnetic field on the right of (4.24) is based on (4.2).
If all particles are instantaneously at rest, gp, =0, to
the necessary order and that part of the 6eM due to b

~ This is to eliminate the necessity of converting from reduced
mass and is only for computational convenience in the example
at hand. A more accurate de6nition taking this reduced-mass
eAect into consideration could easily be made, but its complexity
would unnecessarily confuse the point of this example, namely,
the independence from the rest of the universe of the relationship
between active gravitational mass and a reasonably de6ned
inertial mass.
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can be written

( g)—lF"= eb(x' xb—')/orb',
P i' —0

(4.25)

(p.——',p.e.)iPx =0. (4.27)

However, here the left side of (4.27) while not necessarily
vanishing will be at least of second order in charge, so
that the difference between the m., terms in (4.26) and
those in this case are of order 2 ~' times charge squared,
and does not contribute to the terms in the definition. "

The conversion of (4.26) to proper units proceeds
precisely as in the transition from (2.11) to (3.5). The
final result is, to the necessary approximation,

BA „' eb (x.'—xb')~
SSQ

Be. 4r (r.b),'

hence, (4.23) yields

fQQ OS' e

(4.28)

(4.29)
' This argument can be sketched as follows. Changing to

proper acceleration and keeping second-order terms in charge
would put (4.26) in the form (m, +vr~+e~f&+e~e&f2+e&'f3)g&A„'
=e ef,g2&+g(yg +71;)jg', where g1 and g2' are independent of
e„eq, and h' is the contribution of charge to the derivative of the
metric tensor. It is easily seen that e, ~ 0 and e& —+ 0 allows the
neglect of fi, f2, and fq in {4.26l. The E(rii, +n;lh' term can be
shown to be of the order e„eqg.' times Ew.,/r q and is thus negligible
compared to e egg2' in view of the assumption that r, f, while
qIgall js stjll much greater &han A.m„,

The shielded laboratory walls have eliminated any
radiation contributions to (4.25). In integrating over
(4.24) only that part of the electromagnetic field due
to b, as given in (4.25), need be kept since the self terms,
due to a, would integrate to zero as a result of the
spherical symmetry valid in this approximation. Since
only erst-order results in m, are desired, the contribu-
tion of m to the metric will be neglected. Further, it
will be assumed that m~, while much larger than re„
is still so small that its contribution to the metric can
be neglected in comparison to that of the rest of the
universe. Finally, using (4.16) for the metric, integration
of (4.24) over R, gives

d2X.i

(m,+s.) (1+3U ) +m.Gi'+s, G2'
d'~02

e eb(x xb )
(4.26)4'.b'

where 7r,=—Jib,p,d'x and Gi' and G2' are functions
arising from the second term in the left side of (4.24)
and thus are proportional to derivatives of the metric
tensor. It is easy to verify that the neglect of the
electromagnetic contribution to the metric tensor used
in obtaining (4.26) is justiiied because of the limit
e ~ 0, eg~ 0 in the definition. "The terms in m may
not cancel now as they did in Papapetrou's work where

e,=eq=0 and

This then is the required result for the case of a particle
representable by a Quid-type tensor.

EVhile (4.29) has been derived only through order one
in ns„ terms involving products of m, and m~ with
masses in the "rest of the universe" have rot been
neglected. It may be true that nonzero terms of order
m, ' will appear on the right side of (4.29), but these are
not really relevant here. The whole purpose of this
section and the calculation leading to (4.29) is to
present an example of a relationship between active
gravitational mass and a reasonably defined inertial
mass that is independent of the rest of the universe.
This was done using a unit of charge as a standard so
that in these units, using time and charge, the locally
measured Newtonian gravitational constant in general
relativity is independent of the rest of the universe.
I'his is consistent with Dicke's strong principle of
equivalence. 4

By now the reader is undoubtedly aware that all of
the calculations leading to the coordinate-free results
(3.2) or (4.29) could most conveniently have been done
directly in a coordinate system in which the background
metric has already been "transformed away. "A study
of this approach to the problem is contained in the
next section.

V. SUMMARY AND GENERALIZATION

This section will be mainly concerned with investigat-
ing some of the consequences of the fact that in general
relativity the entire gravitational interaction between
masses is carried by the metric tensor which can be
"transformed away" to any desired degree of accuracy
over a su%ciently small neighborhood of any point.
This fact leads naturally to the following definition
relating a standard physical laboratory to a mathema-
tical "coordinate patch. "A locally almost Minkowskian
coordinate system is one in which test particles of any
velocity experience no observable acceleration when
there is no matter or radiation present in the laboratory.
The description of experiments done in a standard
physical laboratory is assumed to correspond to the
mathematical description given by such a coordinate
system.

Using this definition, Dicke's4 strong principle of
equivalence can be de6ned as the assertion that as far
as inertial and gravitational e6ects are concerned, the
numerical content of experiments described in a locally
almost Minkowskian coordinate system is independent
of any characteristics of the mass distribution in the
rest of the universe. It is important to realize that this
is a definite extension of such results of the Eotvos
experiment as generalized in the weak principle, i.e.,
the assertion that the acceleration of a test particle
instantaneously at rest relative to a small gravitating
body is independent of the mass of the test particle in
the limit as this mass goes to zero. In other words,
the Eotvos experiment suggests that the acceleration
f,.6e(:ts of aq. external gravitating body on @suffjciently
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small laboratory can be at least approximately elim-
inated by allowing the laboratory to fall "freely" since
it seems to imply that all parts of the laboratory wouM
fall with very little, if any, relative acceleration.
However, it contains nothing to suggest that the only
eRect of the gravitating body on the laboratory is
accelerative, which is the basis for the strong principle.

A sketch of an argument generalizing the results of
Sec. IV and suggesting the validity of a strong principle
in general relativity follows.

Consider a region having space-time dimensions, in
arbitrary but fixed units, bounded by a number e.
This region is to represent the space contained in a
laboratory in which standard experiments are to be
performed. Let the matter tensor in the laboratory be
represented by XTr, (here and in the following, to avoid
unnecessary clutter, tensor indices will be suppressed
when no confusion will arise), where X is a positive
number. Further, let the matter tensor for the rest of
the universe be Tg and assume that Tp ——0 within the
laboratory, while T&=0 outside it. The total matter
tensor is thus Tz+»r, everywhere. The purpose of
the following discussion is then to show that under
certain conditions the inRuence of the "rest of the
universe" on real, proper experiments done in such a
laboratory can be made arbitrarily small by making e

sufficiently small. The crux of the argument is the
fact that the observable outcome of such experiments
cannot depend on the purely mathematical choice of
coordinate systems in which the calculations are
performed.

To this end, let p (again suppressing indices) stand
for all the matter variables other than the metric, pL,

referring to matter in the laboratory, and pz to all
other matter. Thus, XT~ is a function of p~ and Tp is a
function of pU. Assume the variables satisfy "equations
of motion"

f(p,g,g') =o, (5.1)

where g' stands for all first derivatives of g. Further,
let the metric, g, be written as the sum of two parts
Og+v(X), with 'g independent of ) and where limv(X)
=0 as X~O.

Let 'p represent the functional form of p when X=O.
Hence, when there is no matter within the laboratory,
X=0, and 'p and 'g satisfy

f('p, 'g, 'g') =0, (5.2)

S('g) —2' ('p) =o (S"'—=~'—lg"'&) (5 3)

If p„„ii represents the form of p corresponding to the
vacuum and g is the Minkowski metric, then it will be
assumed that

(5.4)f(p»»», ~,0)= 0&

&U(p„») =0 (5.5)

The two most important assumptions will now be
made. Within the space of the 4,boratory it is assumed

that (1) 'p=p„„~~, and (2) the differences between
'g+v(X) and q together with the erst two derivatives
of 'g+v(X) go continuously to zero with e and 'A. The
first assumption is simply that when X=O there are
really no matter or 6elds within the laboratory. In
other words, it ensures that when the tensor for matter
in the laboratory, XT~, is zero, the matter variables, p~,
actually correspond to the vacuum. This assumption is
probably unnecessary for the ordinary descriptions of
matter. The second assumption may seem strong in its
requirement on the second derivatives of the metric.
However, it will be used in the argument following
Eq. (5.13).

Similarly, let 'pr, and g+'v be the matter variables
and metric describing the situation inside the laboratory
in the absence of any matter outside, i.e., when pg
=p„„ii. Thus, by definition,

f('p~, n+'v, 'v') =o,

S(.+ v)-».(".)=0.

Finally, the full field equations can be written

f(p 'g+v, g'+v')=o,

S('g+v) »~( ~—) &~(p~)—=o

In particular, within the laboratory,

f(pi, 'g+v, 'g'+v') =o,

S(g+v)-». (")=o.

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

However, by assumption, within the laboratory 'g
diRers from q, and its first two derivatives from zero,
only by numbers which go to zero as e —+0. Thus
(5.10) and (5.11) can be rewritten as

f(p~, n+v, v') =&,

S(q+v) »( )=E, —
(5.12)

(5.13)

where 8 —+ 0 as e —+ 0 and 8—+ 0 as e —+ 0. Notice that
since S depends on the second derivatives of 'g+v,
it is sufficient that these vanish as e —+ 0 for E—+ 0 as
e —+ 0. Actually, this condition may not also be neces-
sary, but this point is irrelevant to the main argument.

The final result is thus that the variables, p~ and
z+v, satisfy, within the laboratory, Eqs. (5.12) and
(5.13) which differ from those, (5.6) and (5.7), satisfied
by the corresponding variables in the a,bsence of matter
in the rest of the universe only by functions H and E
which can be made arbitrarily small by making
suKciently small.

Thus, it seems reasonable to expect that for each X,
the solutions with matter in the rest of the universe,
'g+v and pr, , and those with matter only in the labor-
a,tory, p+'v a.nd 'pz, , can be brought arbitrarily close
together by making the laboratory suKciently small.
Further, the outcome of proper, local experiments done
in such a laboratory can depend only on the behavior of
&hq me&ri& g,gd mg, pter v@rigbles within. i&. Thus, the
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results of such experiments can be made as nearly
independent of the matter in the rest of the universe as
desired by making e suKciently small.

Of course, the definition of quantities to be measured"
and local laws to be tested within the laboratory may
require X —+0. It might then be thought that for X

small enough the eBects of the matter in the rest of the
universe wouM become comparable to those of matter
within the laboratory, vitiating the above argument.
To prevent this, a lower limit for X is demanded. This
limit could be determined by the lower bound of
available experimental accuracy for the measurements
requiring A, ~ 0. That is, values of X below this limit
would not produce observable differences in measure-
ments. For this fixed P, e can then be determined as
above.

There are, however, other statements which might
possibly be called "Mach's principles" which are valid
in general relativity. For example, inertial and gravita-
tional forces have a common formal origin in general
relativity. Specifically, for a test particle of mass m
and velocity mt',

—ml' gw tt—~ (5.14)

might be identified with the gravitational force acting
on rn. On the other hand, this quantity transforms
just as an inertial force should, i.e., in going to a
relatively accelerated system, the acceleration enters
F& linearly. For example, in a coordinate system rotating
relatively to a Lorentz system in a Qat space, IiI' as
defined in (5.14) contains the centrifugal and Coriolis
forces experienced by particles in this rotating system.

"For example, inertial mass. See Eq. (4.23) and the discussion
following it.

Thus, Iij" might also be identified with "inertial force"
acting on m. Inertial coordinate systems would then
be those in which IiI' vanishes or equivalently, those in
which "free" uncharged test particles are unaccelerated.
This coincides with the definition of locally almost
Minkowskian coordinate systems above. Another way
of saying this is that the locally almost Minkowskian or
inertial coordinate systems are those in which the total
gravitational force vanishes.

If suitable boundary conditions could then be
exhibited for a general type of universe, the Einstein
equation would predict the over-all state of motion of
inerital frames relative to the total mass distribution in
the universe. This statement alone has been mentioned
as a "Mach's principle. ""However, once it is required
that fundamental, standard experiments be done within
such frames, the rest of the universe cannot, in general
relativity, inRuence their results.

Another paper'3 will discuss modifications of general
relativity violating the strong principle of equivalence
by the introduction of a variable gravitational "con-
stant" determined through field equations by the mass
distribution in the universe.
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