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Langevin and de Nercy'6 and 10.15~0.006 Mev for
Tobin."De Nercy and Langevin" conclude from the
angular distributions of these y rays that the peak
consists of two 7 rays, one directly to the ground state
and one to the 6rst excited state of Mg'4. Relative
intensities of these two y rays are given as -,'and -'„
respectively. This interpretation does not agree with
the spectrum of Fig. 7, for which the detector resolution
was good enough to separate the two p rays if present
in these intensities (as, for example, in the Si's data).

p ray is assumed to be a transition to the first-excited
state at 1.78 Mev. If it is assumed that the transitions
are (0-1—0) and (0—1-2) and that the 9.4-Mev y ray is
also dipole, then angular distributions of these two
resonant-scattered p rays are 1+cossfi and 1+(1/13)
&(cos'8, respectively, and the ratio of decays to the first-
excited state to decays to the ground state is 0.19&0.04.
As in the case of Mg, this contradicts an experiment in
which it is concluded from the angular distribution of
these two unresolved p rays that this ratio is 0.6."

Si

A ~~-in. -thick sample of powdered Si in a Mylar holder
produced the spectrum of Fig. 8, for which 16-Mev
electrons were used. Response functions have been
drawn corresponding to two y rays of energy 11.4~0.1
and 9.6 Mev. Both of these p rays are too high in
energy to come from (y,ey) or (y,Pp) reactions in the
Si isotopes. It is assumed that they are both from
resonant excitation of Si".The 11..4-Mev 7-ray energy
agrees well with the results of Tobin, "and the 9.6-Mev

'6M. Langevin and A. Bussiere de Nercy, J. phys, radium
20, 831 (1959)."R.A. Tobin, Phys. Rev. 120, 175 (1960).
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The magnetic octupole moments of twenty odd-A nuclei whose energy levels are reasonably well described
by the axially-symmetric collective model in strong coupling have been calculated. With but two exceptions,
the predicted moments are of the same magnitude as or larger than the moments measured for seven nuclei.
The model parameters have been determined by sting the measured values of the lower moments and
transition probabilities. The assumption has been made that the orbital gyromagnetic ratio for the odd
nucleon is that of a free particle. Then from the total gyromagnetic ratio of the particle, which was deter-
mined from the measured magnetic dipole moment and M1 transition probabilities, the spin gyromagnetic
ratio, g„was determined. With but one exception g, was found to have a value between the free particle
and pure Dirac particle values.

INTRODUCTION

HE magnetic dipole and electric quadrupole
moments of most nuclei have been measured and

reasonably well understood for some length of time.
More recently, better measurements of hyperfine
structure and reinterpretation of old data have yielded
the magnetic octupole moments of seven nuclei.

The extreme single-particle model calculation of the

* Supported in part by the National Science Foundation.
t To be submitted in partial fulfi11ment of the requirements for

the degree of Doctor of Philosophy at Rensselaer Polytechnic
Institute, Troy, New York.

octupole moments has been done by Schwartz' and
predicts limits similar in nature to the Schmidt limits
for the magnetic dipole moments. (See Figs. 1 and 2).
The uniform or Margenau-Wigner (M-W) limits can
also be used in connection with this model. One may
note however, that although the Schmidt limits
reasonably well describe the observed dipole moments,
the Schwartz limits (or even the M-W limits) do not
characterize the octupole moments well. %ith the
exception of the two chlorine isotopes, all the measurecl

' C. Schwartz, Phys. Rev. 97, 380 (1955).
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octupole moments lie rather far from the limit which
characterizes their dipole moment.

Suekane and Yamaguchi' have attempted to attribute
these deviations from the Schwartz limits to a contribu-
tion from a permanently deformed, spheroidal core
which consists of all but the odd nucleon. This calcula-
tion is not self-consistent, however, since the Schwartz
limits presuppose a spherically symmetric potential so
that J, the particle's total angular moment, is a good
quantum number. In the presence of an axially sym-
metric core, however, only mg, the projection of J on
the body symmetry axis, is a good quantum number'
(in strong coupling).

It seems apparent, therefore, that magnetic octupole
moments are not as well explained by the extreme
single particle model as are the magnetic dipole
moments. In view of the difficulties encountered in
the measurement of magnetic octupole moments it
is not too surprising that. more experimental data is not
available. However, since they are one of the static
properties of all nuclei (with spin greater than or equal
to —'s) a table of their experimental values would seem
to be an essential tool to those working in the field
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2 S. Suekane and Y. Yamaguchi, Progr. Theoret. Phys, (Kyoto)
11, 443 (1957).

'A. K. Kerman, nuclear Reactions (Interscience Publishers,
Inc. , New York, 1959), Vol. I.

Nuc lear Spin

Fro. 1. 0/po(r') versus nuclear spin for the odd-Z nuclei con-
sidered. The experimental values are denoted by X's andthe
theoretical values by dots. S denotes the extreme single-particle
or Schwartz limits and M-W the uniform or Margenau-Wigner
limits. To reduce both experimental and theoretical values,
(r'/) was taken as —5RP. The theoretical values are as calculated in
the text.

of nuclear groundstates. The experimentalist might well
be encouraged to undertake their measurement if he
could be reasonably assured that the values he seeks
would be of the same order of magnitude as those
already measured so that at least no greater difhculties
would be incurred in their measurement than were
encountered in earlier work.

There exists a large group of nuclei within the
so-called. deformed region, 4 many of whose ground state
properties are reasonably well described by the axially-
symmetric collective model in strong coupling. Hence
this would seem an appropriate time to present a
consistent calculation of their magnetic octupole
moments; this is the aim of this paper.

The paper is divided into three principal sections.
In the 6rst section the generalized electric and magnetic
multipole operators are introduced. In Sec. II the
eigenvectors are presented and the expectation values
of the necessary operators of Sec. I are given. In
Sec. III the results of the calculation are discussed and
a predictive table of octupole moments is presented.

SECTION I

Generalized Multipole Moment Operators

In the axially-symmetric collective model two
coordinate systems are at one's disposal. One is fixed

4A=25, 150(A&180, A&220.
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in the core (the body systent); its axes are the principal
inertial axes of the nucleus. The other is the laboratory
system. It is generally convenient to have the laboratory
operator, whose expectation value is to be calculated,
in terms of its body system components. In what follows,
aB Euler angle rotations will be those which e6ect the
transformation from the laboratory to the body system.

i 4m-

3fI,
3+1 2l+1

IL'r'Y~, -*(l7A)j j(r)~r, (I-1)

where L= —irXV is the laboratory system angular
momentum operator, r the position vector of the
current density, j(r).'

The current density is divided into a part due to the
extra (odd) nucleon and a part due to the core.

In the case of the odd nucleon, j (r) is replaced by the
usual quantum mechanical expression and one finds'
for the single-particle operator

Magnetic Mujtiyoles

The generalized l,eath magnetic multipole moment of
an assemblage of current density, j(r), is given by
Schwartz' in a classical calculation as

(R(8,@)= (RpL1+gk, „n)„„Yk,„j, (I-4a)

in the laboratory system, and by

(R(8,&) = (RpI 1++k,„ak,„Yk,„], (I-4b)

in the body system. In both Eqs. (I-4a,b) (Rp is the
radius of a sphere of the same volume as the deformed
nucleus. In what follows consideration is limited to
surfaces of quadrupole deformation only ()t=2) and the
first subscript of the expansion parameters is dropped.

Then, to first order

rotatioji group, D.s Then

(M( „),o= (—1)"L4~lj&r' 'g(l)yp

XP...C(l—1, 1, f; o —v, v)D, ,'Yi r.. .J„(1-3)
where C is a Clebsch-Gordan coeKcient.

The core currents are assumed to arise solely out of
the collective motion of the core as seen from the
laboratory system. Within this model, the velocity
currents, v(r), are described by irrotational flow under
the assumption that the gradient of the mass density,
p, is normal to the velocity vector and that p does
not depend explicitly on time. Further, the surface of
the core is assumed to be described by

-2gl.
(~r.-)"=~p I:&(r'Y~.-*)j L+g.S, (I-2)

2l+1 1+1

v(r) = s Z. nP'(r'Ys, .).
The core current density, j(r), is then given by

j(r) = (p./o) v(r), (I-6)
where po is a nuclear magneton, gL, and g, the orbital
and spin gyromagnetic ratios respectively, and L and
S the orbital and spin angular momentum operators.

It is usual in applying Eq. (I-2) to replace gl, and g,
by their free-particle values. While it seems reasonable
that gl. should take on the free-particle value, it is by
Do means obvious that this should also be true for g, .' '
Thus the quantity, L2gl/(l+1) jL+g,S of Eq. (I-2) is
replaced by g(t) J, where J is the total angular momen-
tum operator for the particle and g(l) is the "total"
gyromagnetic ratio. Then g(l) is regarded as an empirical
5tting parameter from which g, is determined assuming

gl. has the free-particle value. Note that although the
particle's "total" gyromagnetic ratio is a function of t,
the "octupole" (1=3) gyromagnetic ratio and indeed
all higher ratios are determined from the "dipole"
(f,= 1) gyromagnetic ratio under the above assumption.

The right side of Eq. (I-2) is still in terms of the
Iaboratory system components. The transformation to
body system components is most easily effected once the
scalar product is written in terms of the pseudo-spherical
components of the operators which are transformed by
using the three-dimensional representation of the

' The phases of all spherical harmonics utilized in this work are
those as given in M. E. Rose, Efemeatary Theory of Angular
Mornegtlra Qohn Wiley 8r Sons, Inc. , New York, 1957).

6 J. M. Blatt and V. F. Weisskopf, Theoretma/ Nuclear Physics
(John Wiley R Sons, Inc. , ¹w York, 1952).

7 R. D. Evans, The Atomic 1Vuclels (McGraw-Hill Book Com-
pany, inc. , New York, 1955).

where p, is the electric charge density. After integration,
one has to erst order'

15i(p,) -l(21+1)-s

(~ ) ( 1)m+1 (R l+4

XF(l) Q no *n„C(2l2;p, ,
—nz), (I-7a,)

where

F(l) =p C(/1j;00)C (22j;00)W(/ j11;1t)
XW(22t j; 12), (I-7b)

with S' denoting a Racah coe%cient.
The laboratory expansion parameters are related to

the corresponding body system parameters by

n„=Q„D„,,s*(0;)a..

Further, since the surface is real a„=a„*.Then, the
time derivatives of the n„are given in terms of the
time derivatives of the u„and those of the Euler angles.
The former are ignored (n„=0) and the latter are

s The rotational functions, D, '(8;) used in the present work
are related to those of reference 5 by

LDm, m' (Ss))present work I ( 1) 17m, m' (er') )Rose.
' Compare Eq. (1-7a) and Eq. (A2) of reference 2 for the case

l=3, m 0. One will note that at this point the cited work and
the present calculation are in complete agreement. There is a
multiplicative numerical difference in the anal results, however.
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expressed in terms of the body system components of
the core angular momentum operator and the principal
moments of inertia. "

Thus, one has

Electric Multiyoles

In the body coordinate system, the l,mth electric
multipole is'

Q„n„*a„C(2l2;p, , —m)= —s Q (a„a„D„,; p rlY& 4dr (I-13)

where (Mb)„=(2v)My,~2tr) in the representation in
which M' and Ms are diagonal and where the body
system Cartesian components of M satisfy the commu-
tation rules MXM= iM— Th. e R& are the body
system Cartesian components of the core angular
momentum operator and the 8~ are the principal
Inoments of inertia.

The moments of inertia calculated from the hydro-
dynamical model are"

The only operator we shall be interested in here is E2, .
The laboratory operator is then given by

(I-14)

In all cases of interest it was found that the contribu-
tion to the matrix elements of the single particle part
of this operator is less than 10%%ug. Thus, it is preferable
to approximate the E2 operator by

+2,et (+2,et)core a&Dot, o (ei)Qor

where to 6rst order, Qo is the intrinsic quadrupole
moment given by

Qo 3ESrr——l iZ(R s-ll (I-16)

where P = ao and axial symmetry is assumed.
Then one has for the core operator

where

v 1

gc=
(p /m)

which is expected to be of the order of Z/A of the core.
Also,

A (l) =
l(2l+1)- &

C(2l2; 1, —1)F(l).
l+1

XD,,'I"i i,, „I„.(I-12)
' A. Bohr, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.

26, No. 14 (1952).
"Note that 83=0 presents no diKculties here since the coefFi-

cient of R3 is zero when axial symmetry is assumed.
'o This is empirically observed Lsee reference 3; also R. K.

Osborn and E. D. Klema, Phys. Rev. 100, 822 (1955)j, but here
the necessity of Ra=0 is dictated by the fact that the R3 compo-
nent does not appear in the cartesian counterpart of Eq. (I-j.0).

R, are the pseudo-spherical components of the body
system core angular momentum operator with E0=0."

The total angular momentum operator for the system
(core plus particle) is I= R+J. Thus, the generalized
l,mth magnetic multipole operator for the system is
given by

Mi ——(—1) +'pog, (20V3)(Ro' 'A (l)Q„D,„'(I„—J„)
+(—1) pog(1)L4orlh'r' ' g C(l—1, 1, l; o —v, v)

The advantage of this approximation is that the
deformation parameter, P, is uniquely determined
(within the approximation) by the spectroscopic
quadrupole moment eQ which is the expectation value
of 2E2,0.

The following definitions of the static operators were
used:

P =~y f)~

eQ=2Es, o,

0= —M3, p.

SECTION II

Eigenvectors

The collective Hamiltonian is

IIvertiele+IIeore+ RPCr

where RPC is the so-called rotation particle coupling.
In the strong-coupling approximation (which is all
that is considered here) the total angular momentum
of the system is a good quantum number and the RPC
contribution is considered to be a small perturbation
to the total energy. Then the eigenvectors of the
collective system are products of the eigenvectors of
the core and those of the single particle.

The "core" Hamiltonian is that of a rotor; its
eigenfunctions then are Dsr, x (0); where I is the total
angular momentum of the system, M the projection of
I on the laboratory s axis, and E the projection of I on
the body symmetry axis. Except for the cases E=~,
the ground state is given by I=X.

The particle Hamiltonian has been treated by
Nilsson" as a deformed harmonic oscillator whose
potential has the same deformation as that of the core.

'3 S.Nilsson, Kgl. Danske Videnskab. Selskab, Mat. -fys. Medd.
29, No. 16 (1955).
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Also, small admixtures of spin-orbit and L' coupling
are included so that in the limit of no deformation the
intrinsic particle levels go over to the shell model
levels. VA'th E denoting the principal oscillator quantum
number and considering only matrix elements diagonal
in E, the particle eigenfunctions may be denoted as
X z~,. where mz is the projection of J on the body
symmetry axis and since the core rotates normal to this
axis is equal to E.

The properly symmetrized approximate eigenfunc-
tions for the system are'

2I+1-&

16m'

The "total" particle gyromagnetic ratio g(l) was
calculated to be

2gz,
g(l)= —Q Ar, r .' og„+ (I—o) . (Il-5)I r; 1+1

The quadrupole moment is found to be

(2I) (2I—1)
Q= 0&

(2I+1)(2I+2)
(II-6)

where Qo is given by Eq. (I-16).
The second quantity which is necessary to determine

g(1) and g, is

+(—1)'+N &X ir~D2r Jr'). (ll-1) T(E2; I—+ I 1)—
The eigenfunctions of the particle are expanded in

terms of the eigenfunctions of the spherically symmetric
harmonic oscillator, symbolically as:

with
Xir" Pr„.Ar——,.rr .I N, L, X ~, ),

~I„X=~I.,) —~L,—)~

(II-2)

(II-3a)

Application of the Operators

In all the following, consideration is limited to those
cases where E/~. The E=~ bands can in certain
instances have a ground state with I/E; I is then
large enough to support an octupole moment. However,
in no case of interest eras it necessary to include this
slight complication.

The expectation value of the magnetic dipole operator
is then

v= ~09.+Is(1)3
2I+1

(—1)r = (—1)~; 0(I (N. (II-3b)

The expansion coeKcients are functions of the deforma-
tion parameter, P, and are tabulated by Nilsson. "

T(M1; I~ I 1)—
3

X2.41X10 ' —,(II-7)
5 (2I—2) (2I+2)

where &E(I~ I 1) is the—I, I 1energy—separation
in kev and Qo is in barns. The sign of 8 is defined by
Alder et a/. '4 such that

t'g(1) —g.)
signB = sign~

Finally, the magnetic octupole moment is given by

(2I) (2I—1)(2I—2)

(2I+1)(2I+2) (2I+3)

6
Xpo -gcRo2+g(3) — G(I,N,P), (H-9)

7 SSMO

where (Iij222&o21& is an intrinsic oscillator length and
G(I,N, P) is a rather complicated function of I, N, and
P. The dependence on P is via the expansion coeKcient,
Az„i,of Kq (lI-2).

3(2N+3)
G(I&N&P) = Q Ar, .r~2 5(3I—20)L(L+1)—(I—0)'(5I—20)—(I—0)j

2(2L,—1)(2L+3)

3(5I 20) L(L+1)'——(I—o)2$L(L+2)2—(I—0)2)(N —L) (N+I.+3) - &

(2L+3) (2L+1)(2L,+5)

3I(2N+3)
+Q Ar„r Pr„r+.)- L(2L+1)'—4I2j&

(2L—1)(2L+3)

(N—L)(N+L+3)L(2L+3)2—4I2)(2L+2I+1) (2L+2I+5) —
&

(2L+1)(2L+5)
+A L, r $A 5+2,I+$—

4(2I.+3)
'4 K. Alder, A. Bohr, T. Huus, B. Mottelson, and A. %inther, Revs. Modern Phys. 28, 432 (1956).
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3
A L,l+$~ L+2,l-)

4(2L+3)

(&—L) (1V+L+3)L(2L+3)'—412](2L—2I+1)(2L—2I+5)

(2L+1)(2I.+5)

6L(L+1)(2K+3)
+ (—1)~+'br, —;10Q L(L—1)(L+2))'A r„iAi, ,

(2I.—1)(2L+3)

3(L+1) L(L+2) (L+3)(L+4) (1V—L) (1V+L+3)

2 (2L+3) (2L+1)(2L+5)

3 L(L,+1)(I.+2) (L+3)(X—L) (iV+L+3)—'*

A 5+2, 1A L, 1
2(2I.+3) (2L+1)(2L+5)

3 (2%+3)L(L+1) 3 (L+2) (L 1)L—(L+1)(L+3)(X L) (cV—+L+3)- '*

AL, ~'—— AL+~, i~L, z

4(2L—1)(2L+3) 2(2L+3)

SECTION III

Results

Fittieg Scheme

The various parameters which enter int;o the expres-
sion for 0, Eq. (II-9) were determined as follows:

(i) The particular Nilsson ground state for each
nucleus has been in most cases picked by Nilsson and
Mottelson" from considerations of beta decay and
other related data, as well as from pairwise-counting
of the energy levels (according to the Pauli principle).
Their choices were used when given. In the cases of
nuclei normally outside the range of this model the
ground state was determined essentially by the latter
method.

(ii) The core radius, 64, was taken throughout as
1.2X10 "A„„&cm.

(iii) The intrinsic oscillator length, Pi/nz~of', was
taken as approximately A'~'X10 " cm. This value
follows from the semi-empirical binding energy formula
with 5~0=41 A & Mev.

(iv) Since Coulomb excitation data is generally
more reliable than hyperfine structure measurements,
the value of P was obtained wherever possible from
the measured E2 reduced matrix elements which are
proportional to Qo'. The sign of Qo was then assigned
on the basis of the measured value of Q or by other
specific means as indicated. When Qo was not available,

P was determined from Q. Most of the values of Qo
were taken from reference 14. As a check on the correct-
ness of the values of P and 5~0 for those nuclei with well
measured, excited, intrinsic particle levels the experi-
mental and theoretical differences in the energy levels
were compared. In all cases the results of these compari-
sons were quite acceptable.

(v) Once the Nilsson level was identified and the
deformation parameter known, the AL, ), determint:u
G(l, lV,P).

'5 B. Mottelson and S. Nilsson, Kgl. Danske Videnskab.
Selskab, Mat. -fys. Skrifter 1, No. 8 (1959).

(vi) From the measured dipole moment, Eq. (II-4),
and the measured or deduced value of 8, Eq. (II-7),
g, and g(1) were determined. In only one case was the
sign of 8 actually available. Hence in general two sets
of values of g, and g(1) were found. That set was chosen
for which g. was closest to Z/A. The values of g, and
g(1) found here agree with those of reference 14.
When 5 was not available g, was assigned the value Z/A
except as indicated and g(1) was determined from p.
As a. check on the reasonability of the value of g(1), g,
was determined from Eq. (II-5). It was expected that
g, should have a value less than that of a free particle,
but of the same sign.

Discussion of the Results

Figures 1 and 2 display the experimental values of
the seven isotopes and the theoretical values for the
deformed nuclei. To reduce both the experimental and
theoretical values and thereby compare them with the
Schwartz limits, (r') was taken as 35(Rp with (Rg=1.2
X10 "A' em. If indeed (Ro is only as large as 1.5&10 "
A' cm, then, with the exception of the two chlorine
isotopes, all the measured moments lie closer to the
opposite single-particle limit than to the one which
characterizes their dipole moment.

Figure 3 displays the deduced values of g, . The
nucleus Ga" seems greatly out of place. If one allows
g, to take on a value greater than 1.0, then not only
does g, fall within the "correct" range, but also the
theoretical value of 0 is much closer to the experimental
value. In the case of Np"', g, was arbitrarily assigned
the free-particle value since the magnetic dipole
moment is only roughly known L~6~2.5 nm]. The
general feature to be noted is that the majority of the
odd-Z nuclei have a g, value lying closer to the Dirac
than to the free-particle limit, while for the odd-X
nuclei the situation is just reversed.

Table I displays the experimental and theoretical
values of the octupole movements of those nuclei
considered. No theoretical value is given for I"' since
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CONCLUSION

The foregoing calculation demonstrates that the
octupole moments of nuclei within the collective region
may be expected to have values whose magnitudes are
of the same order as the magnitudes of those already
measured. This suggests that no greater diKculties

"R.K. Osborn and E. D. Klema, Nuclear Phys. 5, 571 (1957).

the character of the Nilsson level that should be the
ground state (if the collective model were valid for this
nucleus) is such that 0 is essentially iudeterminant
except as to sign. In the case of Er'", the sign of both p,

and Q are experimentally iu doubt. Iu order that
$633, -', +1 be the ground state Q must be positive.
Further, the sign of g, is only correct for negative p, and
only of the right magnitude for positive Q. These
choices of sign have also been noted by Osborn and
Klema. "

For Np"', the magnetic dipole moment is only very
roughly known; p, = a6+2.5 um. Further Q has not
been measured, and only Qo is known. Since there are
uo —,+ levels in the vicinity of 93 protons for a negative
deformation parameter Q was taken as positive aud

Q,~..=+3.2 barns. Because of the uncertainty iu p, g,
was arbitrarily assigned the free-particle value. Then
g, turns out to be larger than Z/A, but the theoretical
value of p, (+3.4 nm) is nearly within the experimental
uncertainty.

Mg"
AI27

Cp'
{ PV

Ga"
Gavl
In"3
jn115
I127

Eul53
Gd155
Gd157
Tb159
Dy161
Dy163
Ho'"
Fr167

+bi?3
Iu175

Hf177
Hf179
Ta181
Re185
'U233

U235

Np237
Am'4'

—0.020—0.015
0.14
0.18
0.57
0.56

&0.18

—0.016
0.019—0.020—0.015
0.121
0.196
0.250
0.250

probably+—0.020
0.044
0.054
0.054
0.086—0.034—0.235
0.112
0.003
0.007—0.032
0.061—0.001
0.064—0.061
0.121—0.409—0.031

—3.40
5.30
2.75
2.90
5.10
8.28
4.60
4.60

3.80—2.42—2.90
3.13—3.20—2.24
2.01—3.42—3,11
3.29—1.24—2.30
3.41
3.84—2.01—2.10
5.59
3.72

E 202, ~~+]
$202, —,'+]

E—8
Ã—8
N —19
g —19
Ã —18
S—18

413, -', +]
521, —,

' —]
521, p —]
411, -', +]
642, -', +]
523, -', —]
523, -', —)
633, -', +)
512, g' —]
404, —,'+]
514, —',—]
624, $+)
404, -', +]
402, -', +]
633, 5~+]
743, —,

' —]
642, 2+)
523, -', —)

E

L

C

C

L
L[
i
a
L
l
L

L

a, (l

Cl)B

g

g, h

g

g, l

& g~ was taken as Z/A and P was determined from Q.b g&
——0.41, Z/A =0.47; P was determined from Q.

o g =0.05, Z/A =0.44; P was determined from Q. The difference between
the gc required for Cl» and that for Cl» is not understood.

d This ground state is an exception to the pairwise filling of levels which
would predict N-16. However, that level is such that g& would be negative.

& g~ was arbitrarily taken as 1.0. A larger value would make g~ more
reasonable, and Otheotet ~ would be closer to Oexptl.

& Pairwise level counting predicts a groundstate of N —27, and anexception to this rule predicts N-31. Neither level yields a reasonable
value of g~ with an exact fit to p.

tr All the parameters were determined from Coulomb excitation data.
& The sign of Q has not been measured, but here signg& ——signQ, so Qwas taken as positive.
I The sign of p, has not been experimentally determined, but here signg~=sign@ so tM was taken as negative.
j The sign of p, has not been measured, but here the sign of g& is oppositethat of p. Thus p was taken as positive.
I The signs of p, and Q are not known. For reasons discussed in the text

y, was taken to be negative and Q positive.
1Q has not been measured for Hf»9. However, the first excited intrinsic

level of Hf»9 is a 7/2 —level which lies directly above the ground state onlyfor positive Q. Qtheotet, . +3.8 barns.
m For reasons discussed in the text, ga was arbitrarily assigned the free

particle value; gc was determined from Coulomb excitation data.
& Nuclear Data Cards (National Research Council-National Science

Foundation, Washington D. C.),

would be encountered in their measurement than have
been incurred before. It would seem worthwhile there-
fore that their measurement be undertaken since they
provide information concerning the current, and hence
the velocity distributions within the nucleus.

ACKNOWLEDGMENT

It is a great pleasure to acknowledge the continued
support and encouragement of Dr. J. P. Davidson
throughout this work.


