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The usual models for the two-nucleon interaction involve a
potential which includes a repulsive hard core at short distances
and as a result, the treatment of the many-body problem is
mathematically complicated. Peierls, Levinger, and others have
suggested that ordinary perturbation theory may be useful if the
two-body interaction can be described by a well-behaved potential.
We attempt to provide such a description of the singlet-even states
in terms of a potential of the form

—&0&(r)+ (&/3d) Lp*~ (r)+~ (r)p'].

J(r) and ra (r) are well-behaved functions of the relative separation
and p is the operator for the relative momentum. The effective
range and zero-energy scattering length along with the 'S, 'D, and
'G phase shifts in the energy range 20 to 340 Mev are calculated
and adjusted to Gt the experimental values. We can fit the low

energy parameters and the 'S phase shifts very well. Agreement
with the 'D and 'G phase shifts is plausible but less satisfactory.
Suggestions for improving the 6t are made. The treatment is
nonrelativistic and Coulomb eGects are ignored.

INTRODUCTION

KVERAL authors'' have treated the problem of a
phenomenological description of the two-nucleon

interaction with some success. For example, Gammel
and Thaler' have used a repulsive core and a static,
attractive Yukawa form outside the core to provide an
accurate description of the two-body data. Such a
potential also provides a reasonable description of the
energy per particle of a many-body system. ' Signell
and Marshak and Hamada' have found similar
potentials using approaches which are partly phe-
nomenological and partly based on meson theory.
Nevertheless, it is by no means well established that
the hard core is the only possible representation of
physical reality. It is apparently possible to achieve a
description of the two-nucleon interaction in terms of a
repulsive velocity-dependent part of the potential
rather than an infinite repulsive core.' ' And, in fact,
there is some theoretical evidence for the existence of
such velocity-dependent terms in the potential. '

CALCULATION

To describe the interaction in singlet-even states
of the system, we have chosen a potential of the form'

z(r)p) = VsJ(r)+ (X/M) /p'co—(r)+co (r)p'j. (1)
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Here, r is the magnitude of the relative separation and

y is the operator for the relative momentum. In this
preliminary work. we have ignored Coulomb effects,
which are well understood, and simply solved the
Schrodinger equation with the potential (1) using an
automatic numerical procedure. Phase shifts were then
calculated in the usual way by comparing the asymp-
totic solution to the free wave solution. Ke have
compared these results with the best 6t (YLAM) to
the available experimental data obtained by Breit
et at.'

Using the potential (1), the Schrodinger equation
becomes

2
L1+2ho(r)] Rt"+ Rt' +2) co'(r)—Rt'(r)

t
M Us 2X

+ k'+ J(r)+) "(r)+ ro'(r)—
r

l(l+1)
Rt(r) =0. (2)

The fact that the potential is central allows the usual
separation of the wave function into radial and angular
parts and the equation for the radial part of the /th

partial wave is given here. The wave number
k = (ME/irt') & and the prime denotes differentiation with
respect to r. The substitution Nt(r) =rL1+2X~(r) j&Rt(r)
removes the first derivatives of the wave function and
yields

l(l+1)
(Nrt)+ k'+W. tr(k, r) — ttt(r) =0, (3)

r'

who has shown that by a canonical transformation, the hard core
can be replaced by a velocity-dependent potential.

This form has the necessary invariance properties. The other
obvious form for the quadratic velocity-dependence, p V(r)p is
essentially equivalent to this form.

9 Sreit, Hull, Lassila, and Pyatt, Phys. Rev. 120, 2227,
(1960).
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TABLE I. '5 phase shifts. ' TABLE III. 'G phase shifts. '

(Mev)

20
60

100
140
180
220
260
300
340

bo (Vx)

0.889
0.568
0.389
0.255
0.144
0.049—0.037—0.114—0.185

&0(Vix)

0.897
0.585
0.398
0.258
0.143
0.043—0.045—0.125—0.198

Breit

0.856
0.584
0.380
0.240
0.136
0.048—0.033—0.120—0.195

0.859
0.568
0.379
0.236
0.120
0.020—0.069—0.146

The IS phase shifts in radians, calculated from the potentials of (7)
and (8), are given as functions of laboratory energy and compared with the
values quoted by Breite for the experimental data and with the values
calculated by Gammel and ThalerI for their static potential with hard core.

where the velocity-dependence is expressed in the
effective potential

TABLE II. '0 phase shifts. '

EI, (Mev)

20
60

100
140
180
220
260
300
340

0.031
0.102
0.132
0.142
0.140
0.130
0.116
0.099
0.080

8 (Uz)

0.011
0.055
0.089
0.107
0.114
0.112
0.104
0.091
0.075

Breit

0.015
0.045
0.072
0.097
0.120
0.140
0.160
0.175
0.184

0.007
0.047
0.096
0.141
0.181
0.213
0.239
0.263

W.ii(k, r) =
1+2Am (r)

X'(o"(r)—
WOJ(r) —ZXk'(o(r)+, (4)

1+Zhu(r)

with WQ MV0——/P
Equation (3) has been solved numerically for several

choices of the functions J(r) and ~(r) subject to the
boundary condition that Ri(r) be finite at r=0. If
co(r) is of short range, it will be seen that the true wave
functions Ri(r) and the function Ni(r)/r have the same
asymptotic form so that it is permissible to calculate
phase shifts using the latter function.

Two potentials will be mentioned which give reason-
able Qts to the experimental data. For the erst, we take
both J(r) and &u(r) to be exponentials. In the second,
we have applied the criterion of simplicity to the
Schrodinger equation in the form (3). Choosing

WOJ(r) = $1+2)~(r)$
X I W,J,(r) —) 2~'2(r)/51+Zho(r)X, (5)

the effective potential assumes the simple form

W f f (k,r) = —Z)wk'(v (r)/L 1+2hz (r)$+Wp J&(r). (6)

Eg (Mev)

186.8
332

&4(Vi)

0.05
0.07

b4(Vn)

0.03
0.05

Breit

0.012
0.017

GT

0.02
0.05

a The IG phase shifts estimated by Born approximation for the potentials
of (7) and (8) are compared with the values quoted by Breit9 and by Gamel
and Thaler. I

The effective range and scattering length can be used to
determine W.«(0,r) = WOE&(r) completely (for any a,s-
sumed shape) following the treatment of 31att and
Jackson. " This reduces the number of degrees of
freedom and the Breit phase shifts may then be used
to determine X and the range parameter of a&(r).

'S and 'D phase shifts are used to fix the form of the
potential. 'G phase shifts are then calculated by Born
approximation.

DISCUSSION

The two most successful potentials, to date, are

V01(r) =55 exp( —r),

Xa)(r)= 5 exp( —3.6r),

(i'i'Wo/3I) ji(r) = VOJ &(r) = 112.5 exp( —1.4r),'
(8)

hu(r) = 5 exp( —3.6r);

where r is in fermis and energies are in Mev.
From Table I it can be seen that there is little reason

to prefer one potential over the other on the basis of
the '5 phase shifts alone. (In fact, it has been found that
these data are very easy to 6t with a velocity-dependent
potential. ) The results shown in Table II for the 'D
phase shifts are less satisfactory. The decrease in the
values of the calculated phase shifts which begins at
about 140 Mev is interpreted as implying that the
repulsive (velocity-dependent) part of the potential
has been chosen with too long a range. The use of a
functional form for cs(r) which cuts off more sharply,
such as a Gaussian, will probably correct this behavior.
The 'G phase shifts of Table III are discouragingly
large as compared to the Breit values. It has been
shown" rather clearly, however, that for higher angular
momentum states (interactions primarily at distances
greater than about 1.6f) the one-pion-exchauge-
potential (OPEP) is the principal interaction and
provides an accurate description of the experimental
data. Therefore, one can expect that a potential such

a The ~D phase shifts in radians, calculated from the potentials of (7)
and (8), are given as functions of laboratory energy FI, and compared with
the values quoted by Breitg for the experimental data and with the values
calculated by Gammel and Thaler~ for their static potential with hard core.

' J. M. Blatt and J. D. Jackson, Phys. Rev. 76, 18, (1949).
"For example, G. Breit and M. H. Hull, Nuclear Phys. 15, 216

(1960).
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as VIz must be joined on the OPEP at a distance of
(say) 1.5f.s

The potential Viz seems to provide as accurate a
description of the singlet-even scattering data as a
"hard-core" model. It remains to be seen whether such
an approach will also be successful for other spin states
of the system.
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The thermal neutron scattering of argon is unusual in that it shows a large amount of incoherent scattering,
even though it is even-even and practically monoisotopic. The incoherence has been ascribed by Henshaw
to a large scattering cross section for Ar". Measurements with the BNL fast chopper for a gas sample
enriched to 63% Ar" have shown that the total cross section from 0.1 ev to 6 kev varies in such a way as to
reveal the presence of a negative energy level. The parameters F„=82ev, Eo= —9.8 kev, and I'~= 1.85 ev
have been deduced for this level. The consequences of this anomalous scattering for neutron studies of
atomic motions in a liquid are discussed.

I. INTRODUCTION

HE element argon shows unusual behavior in its
thermal neutron scattering properties in that, al-

though it is even-even and practically monoisotopic,
it displays a large amount of incoherent scattering.
Henshaw' has shown that this incoherence results from
the presence of the small (0.34%) Ar" component,
which has a remarkably high cross section.

It has been suggested that it may be possible to pre-
pare a completely incoherent scatterer by mixing argon
isotopes in the proper amounts. In principal, if
P; f„n,=0, where f, are the isotopic abundance factors,
and n; the corresponding scattering amplitudes, then
complete incoherent scattering is obtained. Such a
scatterer would permit the use of subthermal neutrons
to investigate the atomic motions in a liquid, since for
the completely incoherent case the experimental data
are amenable to a rather simple interpretation in terms
of a self-correlation function describing the motion of
the atom.

The potential or "hard sphere" scattering amplitude
is defined to be positive. A negative scattering amplitude
is obtained only when a nearby resonance is present at
an energy above the thermal region. In this case the
negative resonance amplitude can overwhelm the hard-
sphere component.

It is the purpose of this paper to show that the high
thermal scattering amplitude of Ar" is due to the pres-

f Work done under the auspices of the U. S. Atomic Energy
Commission.*Student visitor from Cornell University, Ithaca, New York.

D. G. Henshaw, Phys. Rev. 105, 976 (1957).

ence of a resonance at negative energy (i.e., below the
neutron binding energy). Hence, the Ar" scattering
length is positive and of the same sign as that for ele-
mental argon. ' This implies that both Ar" and Ar'
have the same sign (+) for their scattering length.
Complete incoherence, therefore, for argon cannot be
achieved. .

TABLE I. Analysis of argon sample.

Isotope

Ar'6
Ar40
Ar'8
N14

Atomic %
62.7~1.0
33.8~1.0
2.2~0.2~],p

~ A. W. McReynolds, Phys. Rev. 84, 969 (1951).' F. G. P. Seidl, D. J. Hughes, H. Palevsky, J. S. Levin, W. Y.
Kato, and N. G. Sjostrand, Phys. Rev. 95, 476 (1954).

4 D. Mann. W. W. Watson, R. E. Chrien, R. L. Zimmerman,
and R. B.Schwartz, Phys. Rev. 116, 1516 (1959).

II. EXPERIMENT

The total neutron cross section of a sample of argon
gas enriched to 62.7%%u~ of Ar" was determined by trans-
mission methods with the Brookhaven fast chopper and
time-of-Right apparatus operating at the BNL graphite
research reactor. The gas sample was enclosed at a
pressure of 1800 lb/in. s in a specially designed iron
sample holder which fits into the sample slot of the fast
chopper entrance stator. ' These holders were previously
used in transmission measurements on xenon and kryp-
ton isotopes. 4 The argon sample was prepared by the


