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Analytical Solutions for Velocity-Dependent Nuclear Potentials*

M. RAzAVY)$ G. Frzzn, t ANn J. S. LzvrNozzt
Louisiana State University, Baton Rouge, Louisiana

(Received August 4, 1961)

The two-nucleon potential, with the necessary invariance requirements, is assumed to be a quadratic
function of momentum: v= —VOJq(r) —(X/M) y Js(r)y, where J~(r) and Js(r) are two short-range func-
tions, For simplicity —J&(r) is assumed to be a square well of unit depth. The Schrodinger equation is
solved (neglecting Coulomb forces) for three different choices of JI(r). Numerical results for the phase shifts
are given for these three potentials (v&, v2, and v&) for the singlet S, D, and G states. Reasonably good fits
are obtained.

I. INTRODUCTION

'HE interaction between two nucleons at small
distances has been the subject for discussion for

many years, but there is still no definite and convincing
description. Meson theory fails to provide a saI;isfac-
tory, complete answer, and there is little experimental
evidence in favor of any one out of the many possible
phenomenological approaches.

One successful fit to the observed singlet-even phase
shifts is the Gammel-Thaler potential. Though for the
two-body problem it represents a simple static potential,
it is mathematically difficult to use for calculating the
properties of nuclei, since special techniques must be
used for such a potential. As an alternative to the hard
core of the Gammel-Thaler potential we discuss here a
velocity-dependent potential with the property that
ordinary methods of calculation, such as perturbation
theory, can be applied without too much difficulty. '

Of course it is known that there are certain unique-
ness theorems, in that a complete knowledge of one
set of phase shifts at all energies would determine the
singlet-even potential. ' On the other hand, this poten-
tial is only determined if it is assumed to be static. It
is possible to find velocity-dependent potentials which
also fit the singlet 5-phase shifts. ' If the phase shifts
were known accurately for a large range of energies for
many different angular momentum states, this would
serve to determine the nature of the potential. However,
the singlet-even phase shifts are known only up to an
energy of about 340 Mev for the lowest three angular
momentum states. (Above this energy, pion production
becomes significant and the concept of a nucleon-
nucleon potential loses its original meaning. ) It there-
fore remains an open question to what extent this
limited amount of phase shift data can be fitted with
reasonable accuracy to a static potential on the one
hand and to a velocity-dependent potential on the other.

In this paper, we take the simple, though physi-
cally unrealistic, shape of a square well with some
modifications.

In Sec. II we assume the same range for the velocity-
dependent and static potentials. ' In Sec. III we modify
the static square well by adding a "Jost" potential and
a delta-function potential. Kith this potential we can
still find an analytic form for the S-wave function.

It may be of interest to mention that Feshbach et al. 5

assume an energy-independent boundary condition for
the logarithmic derivative of the wave function, but
that we find a boundary condition which is somewhat
energy-dependent LEq. (4)j.

In Sec. IV we use square wells with different ranges
together with a delta-function added to the static po-
tential. To make such a potential more realistic we add
a one-pion exchange tail to it.

II. SQUARE WELL-SQUARE WELL (Equal Ranges)

The central potential is of the form

~1(r,ft)= —I s~t(r) —( /~)It ~&(r)y
where

Jt(r) =Js(r) =1—U(r —b),

U(*)=O, *&0; =-'„*=O; =1, *&0.

y is the relative momentum operator, and M is the
nucleon mass.

The Schrodinger equation for the lth partial wave
(neglecting Coulomb forces) reduces to

2
[1—x+xv(r —b)]~l R"+R')—

r
MVp

+ k'+—[1—U(r —b)]
A2

~(~+1)—L1—X+AU(r —b)] R= —XR'8(r —b). (2)
r'
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lim R'(b+e) =Rig'(b), lim R'(b —e) =Rz'(b),

Primes mean derivative with respect to r, the relative e —+ 0
coordinate, and k2=EM/)gg2 (where E is the energy in
the center-of-mass system). The solution of (2) is

Rz=Bg jg(k'r), r&b,

Rii ——Ag[jg(kr) —tanrggrgg(kr)$, r) b,

we find Eq. (4b). Substituting Rz and Rzi in the bound-
ary conditions, we find the phase shift 2gg.

jg'(kb) —(1—~)~g(k'b)jg(kb)where k"=k'/(1 —X)+M Vo/PP(1 —X)].The boundary
conditions at the edge of the square well, (r= b), are (6)

Ri(b) =Rii(b),

(1—X)Rz'(b) =Riz'(b).

taD.ff ~

rgg'(kb) —(1—X)yg (k'b) rgg (kb)

4a
where yg(k'b) =jg'(k'b)/jg(k'b). For /=0, the expression

(4b) (6) can be written as

Boundary condition (4b) is derived by multiplying (2)
by r'dr, integrating from (b e) to —(b+e), and taking
the limit as e goes to zero. Ke keep in mind that EJ
and EIq are continuous functions of r in their respective
regions:

5+e

(1—X) gg" + R.')r'dr— .

6—6 r

5+c 2
U(r —b) R"+ R' r'dr—

~+' M Vp
k'+- [1—U(r —b)]

l(l+1)—[1—X+AU(r —b)j— Rr'dr
r2

R'b (r b) r'dr. (5)—

k

cot�

(2g2+kb) = (1—X)k' cotk'b+ —. (7)

where f= [MV2/k2(1 —X)j'b and

D= (b/2f) (cot/ —f/sin2f).

Ãog'e added in proof This .result for rg2 was also ob-
tained by R. I.. Carovillano (Ph. D. Thesis, Indiana
University, Bloomington, Indiana, July, 1959, un-
published. )

The effective range r p and the scattering length a can
be found by calculating k cot2go directly from (7) and
then expanding it in powers of k. They have the fol-
lowing forms:

—b(1-X)(1-i' cotf')

(1—X)f coti+X

D+b(1—X) (1—f' coti)+ (b/3)[(1 —) )f coti+X]2
2rp

(1—X)2(1—i- cotf-)2

III. SQUARE WELL-"JOST" POTENTIAL
Integrating the 6rst integral by parts, we have

A different form of potential for which there is an
e analytic solution for the 5 wave function is the static
(R"r2+2rR') dr "Jost" potential2 outside the range of the velocity-

dependent part. In order to get a satisfactory '5 phase

&)[(b+ ),R, (b+ ) (b ),R, (b )~
shift we have to add a 8-function term to the static
part, and we thus choose the following potential:

The second term on the left in (5) becomes

2
rj (r —bj (R"+- )r'drjg

8 (r—c)
z)2(r, y) = Vg(c)Ji(r) fg2——

M r

=X (b+ e)2R'(b+ e) —X R'b (r —b) r'dr.

The third term vanishes, since

~Vo
k'+ —[1—U(r —b))

A2

l(l+1)-—[1—X+AU(r —b)$ Rr'dr =0
r'

Substituting the above in (5) and taking the limit as

where Jg(r)= J'2(r)=1 —U(r c) and Vq is the "J—ost."
potential dehned by

Vg(r) = (2p52g22e I r)M i(1—pe pr) 2— — —

The Schrodinger equation for this potential can be
solved for the '5 state in the same way as was done for
v&,

' only, this tirn. e, new boundary conditions are found
for the derivatives of the wave function.

At r=c, ui(c) =uzi(c) and uii'(c) = (1—X)uz'(c) where

R. Jost, Helv. Phys. Acta 20, 256 (1947).
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where

tan(rlp+kb) =
J Eg—E4

(uy'(c)+k'
F= (1-X)k' cotk'c, k"=

N=rR. The phase shift gp is given by

E3—PE2

short-range velocity-dependent part with a static part
of longer range, together with a Yukawa tail. Here too,

10
we add the additional term —(h'/M)X5(r c)/—r to the

' ) p.t. t.l:
59 b(r —c)"(,v) =-V.I

1-U( -»i-
M

Et 1+4E——'+y(c), Es 2Ey(c——), +V U(r b) —y(—1——U(r —c)]p, (13)
M

2
Es=k 1+4E'+y(c)+ y'(c)—, E4=y'(c) —2Eky(c),

with y(r)=2ve ""(1—(e "") ', y'(c)=(dy/dr), „and
E=k/p.

We use Born approximation for the 'D phase shift.
For the potential of the form

X k'8(r —c) X
~= V(r) —— ——I I1—U(r —c)]I,

M r 3f

the radial part of the Schrodinger equation is

1 (f dE /(3+1)——r' +k' — —R= W(r, k)E, (11)
r' dr dr r2

where for the even, spin-singlet potential, V P

= —(10.83e ' ""/0.708r) Mev. For r&b the Schrod-
inger equation can be solved exactly for all angular
momentum states, as was done in Sec. II.

The "phase shift" 50 for 'S states is given at r= b by

tan(bp+ kb)

k
=—tan((t(b —c)+tan —'kL(1 —X)k' cotk'c$ '), (14)

where q'= (M Vp/k')+k'. (See the appendix for 8(.) To
calculate the effect of OPEP, we use Born approxima-
tion. If 6~ represents the phase shift at r= 0, and b~

the contribution of the Yukawa potential to the phase
shift, then the over-all phase shift p& is given by

where

W(r, k) = M—V(r)—
1—X+AU(r —c)

V(r —c)

—~k t1- U(r —c)~-~b(r —c)—.
dr

Ke use
tan tl(

——tanb(+tanb(o P.

(M
tan(, P= —(,'j, (kr)l —v")

&A'

)& Lj((kr) —tanb((kr) fr'dr. (15)
The Born approximation for the phase shift is given by

tauri( ———k j ((rk) WL(r, k)j((kr)]rsdr.
0

For V (r) = Vq(c)L1 —U(r c)g+ V—q(r) U(r c), we have—

The ratio of V /8 for r)b)1.6f shows that Born
approximation is accurate enough even at 20 Mev. The
second term in the bracket of the expression (15) can
be neglected when tan5& is very small.

V. NUMERICAL RESULTS

(kc)' Vp
tanrl( —— —+X ILjP(kc) —j( t(kc)j(+,(kc)g

2(1—)) E )
—Lln(1 —X)]kcj((kc)t j((kc)+cj('(kc)]

2',2e ""
r'jP (kr) dr.

(1-ve-&")'

IV. SQUARE WELLS OF UNEQUAL RANGE

Ke have tried to fit the '5 phase shifts to Breit's
values (YLAM), ' and then used the same parameters
to calculate the 'D and 'G phase shifts. The set of num-
bers given below do not necessarily represent the best
results. It is possible that further adjustments of the
parameters would give better fits. In all our calculation

(12) we have neglected the Coulomb force. Table I gives the

TAaLz I. Parameters for different potentials. '

Meson theory predicts that when the distance be-
tween the two interacting nucleons is large enough,
(r)1.6 f), the potential is static, well behaved and is
of the Yukawa form (OPEP). Therefore we cannot ex-
pect that the potential that we have discussed in Sec. II
should be satisfactory. Indeed, the 'D phase shifts for
the potential e& turn out to be very small for all energies.
To improve the 6t for 'D and 'G phase shifts we take a

~o
b (f) c (f) (Mev) X p (f ')

e1 (square wells) 2.4 ~ 16.9 —0.21 ~ ~ ~

e2 (square- Jost) ~ 0 7 '?5.5 —1.43 2
(((( (square wells with Yultawa) 1.6 0.5 51 —1.64

The parameters in the table are to be used as follows: for potential vI
use Eq. (7), for v2 use Eq. (10), for vs use Eq. (14).

7 Breit, Hull, Lassila, and Pyatt, Phys. Rev. 120, 222? (1960).
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TABLE II. The 'S phase shifts. '

Z (Mev) 20 100 180 260 340

no(»)
9o(v )
vo(sl)

Breit's lto (YLAM)
Gammel-Thaler

0.871 0.217
0.852 0.341
0.846 0.448
0.856 0.380
0.859 0.379

—0.082
0.103
0.169
0.136
0.120

—0.187—0.079—0.032—0.033—0.069

—0.197—0.192—0.190—0.195

a Phase shifts in radians. The effective range ro and the scattering length
c for e1 and ea are as follows: a(e1) =a(G-T) = —23.6f, ro(v1) =ro(G-T)
=2.65 f, a(@23 = ~, ro(e2) =2.71 f. go(fr1, 2,g) are the phase shifts calculated

for potentials e1,2,3. G-T refers to Gammel and Thaler.

TABLE III. 'D phase shifts. '

E (Mev)

(v2)
q2(v3}

Breit's E2 (YLAM)
Gammel-Thaler

100 180 260 340

0.114 0.200 0.246 0.259
0.052 0.126 0.189 0.270
0.072 0.120 0.160 0.184
0.096 0.181 0.239

a Phase shifts in radians. y2(e2, 33 are the phase shifts calculated for po-
tentials e2, 3.

TABLE IV. 'G phase shifts. '

Gammel-Thaler. ' Once more we want to emphasize that
the above potentials are chosen to illustrate how one can
explain the experimental results of nucleon-nucleon
scattering without using a hard core. Two of our po-
tentials (st and vs) have been used for a perturbation
calculation of the energy of a neutron gas. ' However,
we have so far no physical evidence in favor of such a
velocity-dependent interaction. "
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APPENDIX

For the angular momentum state l, the "phase shift"
/corresponding to b& of Eq. (14)j is given by

E (Mev)

n4(v3)
Breit's E4 (YLAM)

0.006 0.012 0.017
0.007 0.012 0.016

0.023
0.01.7

100 180 260 340

where

ji'(kb) —fiji(kb)
tan8i=

ni'(kb) —
ging (kb)

ss Phase shifts in radians. y4(os) is the phase shift calculated for po-
tential 212.

values of the parameters used with the three different
forms of potential. In Tables II—IV, the values of 'S,
'D, and '6 phase shifts for different shapes are com-
pared with Breit's phase shifts. The scattering lengths
and the effective ranges for e1 and v2 are given below
Table II, together with the values given by Gammel-
Thaler. These results suggest that one can explain all
the scattering data using a velocity-dependent po-
tential, without introducing a great number of new
parameters. In fact, for the singlet potential we have
three (for vt), and four (for vs or es) adjustable pa-
rameters, compared to the three parameters used by

j,'(qb)+A, e,'(qb)
P~)—

j((qb)+Ate((qb)

j&'(qc) —F&(k'c)ji(qc) j&'(k'c)
, F,(k'c)=(1—))

+l (qc) Fl (k c) sl'(qc) ji(k'c)

and

6 '(qb) = J((qr)—
s J. L. Gammel and R. M. Thaler, P'rogress in E/ementury Par-

ticle and Cosmic-Ray Physics (North-Holland Publishing Com-
pany, Amsterdam, 1961), Vol. V, p. 99.

J. S. Levinger and L. M. Simmons, Phys. Rev. 124, 916
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