this argument.

us during many of the runs.

have evaluated this expression for Bi²¹⁰ and find

 $O(Bi^{210}) = 0.08$ barn.

If the positive sign of this quadrupole moment is taken

to be correct, the sign of the magnetic moment of Bi²¹⁰

is negative. We feel that no great faith should be put in

ACKNOWLEDGMENTS

to the Lawrence Radiation Laboratory Health Chemis-

try Division for considerable support during the course of this experiment and to Mr. John Padilla who aided

The authors would like to express their appreciation

which is consistent with an energy separation of 0.047Mev between the J=0 and J=1 states, the latter state being the lower. Using this wave function which has its major contribution from the term representing the $(\pi h_{9/2})(\nu i_{11/2})$ configuration, Newby and Konopinski have evaluated the nuclear moment to be $\mu = -0.75$ nm. This value is not in good agreement with the experimentally determined value of $|\mu| = 0.0442$ nm although it is possible that minor variation of the coefficients in Eq. (16) may improve the agreement.

Blin-Stoyle gives an expression for the quadrupole moment of an odd-odd nucleus on the single-particle model.³¹ Assuming the configuration $(\pi h_{9/2})(\nu h_{9/2})$, we

³¹ R. J. Blin-Stoyle, Theories of Nuclear Moments (Oxford University Press, London, 1957), p. 69.

PHYSICAL REVIEW

VOLUME 125, NUMBER 1

JANUARY 1, 1962

Nuclear Level Splitting Caused by a Combined Electric Quadrupole and Magnetic Dipole Interaction*†

ECKART MATTHIAS AND WERNER SCHNEIDER Department of Physics, University of Uppsala, Uppsala, Sweden

AND

Rolf M. Steffen Department of Physics, Purdue University, Lafayette, Indiana (Received August 7, 1961)

The interaction of a static electric field gradient and a static magnetic field with the electromagnetic moments of a nucleus is considered in detail. The eigenvectors and eigenvalues of the interaction Hamiltonian are computed as a function of the angle β between the electric field gradient and magnetic field directions, and as a function of the electric and magnetic interaction parameters ω_E and ω_H . Numerical calculations of the eigenvectors and eigenvalues have been performed for nuclear spin values $I=1, \frac{3}{2}, 2,$ $\frac{5}{2}$, 3, $\frac{7}{2}$, 4, and $\frac{9}{2}$ and for a wide range of the parameters β , ω_E , and ω_H . The accuracy of the results is 0.001%. Representative numerical results are presented.

I. INTRODUCTION

HE ability to measure the nuclear level splitting with the aid of the Mössbauer effect has greatly increased the need for numerical calculations of the eigenvalues of the interaction Hamiltonian in the case of a combination of an electric quadrupole and a magnetic dipole interaction of comparable strength. At present, the Mössbauer technique is the most powerful tool for investigations of internal fields in solids, a fact which has been demonstrated in a number of recent experiments.¹⁻³ The level splitting for a nuclear spin

I=1 and $I=\frac{3}{2}$ has been calculated by Parker⁴ as a function of the ratio of the magnetic and the electric interaction strength and for various orientations of the electric field gradient with respect to the direction of the magnetic field. For higher spin values no calculations of this kind are available. However, in both nuclear spectroscopy and solid-state physics there are many problems of interest which require resonance scattering measurements with transitions arising from nuclear states with spin values different from I=1 or $I = \frac{3}{2}$. Another field, where the eigenvalues and eigenvectors of the interaction Hamiltonian are of greatest interest, is the theory of the influence of perturbing fields on angular correlations. The calculation of the attenuation factors for an angular correlation which is influenced by a combined electric and magnetic interaction, requires the knowledge of the eigenvalues and eigenvectors of the interaction Hamiltonian. As we are

261

(17)

^{*} Preliminary results of these calculations have been presented at the conference of the Swedish National Committee of Physics at Lund, Sweden, June, 1961.

[†] Part of this work was supported by the U. S. Atomic Energy Commission. ¹O. C. Kistner and A. W. Sunyar, Phys. Rev. Letters 4, 412

⁽¹⁹⁶⁰⁾

² R. Bauminger, S. G. Cohen, A. Marinov, and S. Ofer, Phys. Rev. Letters 6, 467 (1961). ⁸ C. Alff and G. K. Wertheim, Phys. Rev. 122, 1414 (1961).

⁴ P. M. Parker, J. Chem. Phys. 24, 1096 (1956).

FIG. 1. Extranuclear fields in one microcrystal.

engaged in such calculations concerning the general case of randomly oriented electric field gradients in combination with an external magnetic field of a certain direction, we obtain the eigenvalues and eigenvectors as a by-product.⁵ They are computed as a function of the ratio of the magnetic and the electric interaction strength for all spin values $I=1, \frac{3}{2}, 2, \cdots, \frac{9}{2}$. The calculations have been carried out for various angles β between the directions of the electric field gradient and the magnetic field.

For the derivation of the interaction Hamiltonian, only electric quadrupole and magnetic dipole interaction terms have been taken into account. Furthermore, the electric field gradient is assumed to have axial symmetry properties. The eigenvalues and eigenvectors have been obtained by diagonalization using a modified type of the Jacobi method (for a detailed discussion see, e.g., reference 6). Because of the tremendous bulk of numerical results it is not possible to publish a complete list of all the data at this place. Only for the nuclear spin values I=2 and $I=\frac{5}{2}$ is a complete table of the calculated eigenvalues presented. In addition, typical curves are shown for spin I=2 and $I=\frac{7}{2}$ for three different angles β .

II. DESCRIPTION OF THE INTERACTION OF NUCLEAR MOMENTS

The direction of the external magnetic field is chosen parallel to the z axis of a fixed coordinate system S (see Fig. 1). The electrostatic field gradient is assumed to possess axial symmetry with respect to the z' axis of the coordinate system S' fixed to the microcrystal. Thus the components of the electrostatic field gradient are completely determined by $\partial^2 V'/\partial z'^2$. Furthermore, it is assumed that the presence of a magnetic field does not influence the electric field gradient. The total interaction Hamiltonian is then represented by

$$H_{\rm int} = H_{\rm magn} + H_{\rm el}.$$
 (1)

1. Magnetic Interaction

The magnetic interaction Hamiltonian is given by

$$H_{\text{magn}} = -\boldsymbol{y} \cdot \mathbf{H} = -\mu_z H_0, \qquad (2)$$

where $\mathbf{u} = \gamma \mathbf{I}$ is the magnetic dipole moment operator. The energy matrix elements are

$$(Im|H_{magn}|Im') = -H_0(Im|\mu_z|Im').$$
(3)

Since $\mu_z = \gamma I_z$, the energy matrix is diagonal:

 $(Im | H_{magn} | Im)$

$$= -H_{0}(Im|\mu_{z}|Im)$$

$$= -H_{0}(-1)^{I-m} \begin{pmatrix} I & 1 & I \\ -m & 0 & m \end{pmatrix} (I||\mathbf{u}||I)$$

$$= -H_{0} \frac{m}{[(2I+1)(I+1)I]^{\frac{1}{2}}} (I||\mathbf{u}||I). \quad (4)$$

Conventionally the "magnetic moment" is defined as

$$\mu = (II | \mu_z | II) = \frac{I}{[(2I+1)(I+1)I]^{\frac{1}{2}}} (I || \mathbf{u} || I). \quad (5)$$

The energy eigenvalues then become

$$(Im|H_{\rm magn}|Im) = -H_0\mu m/I.$$

With $\omega_{II} = (H_0/\hbar I)\mu = gH_0\mu_N/\hbar$, one gets finally

$$(Im|H_{magn}|Im') = -\omega_H \hbar m \delta_{mm'}.$$
(6)

2. Electric Interaction

The Hamiltonian for static electric interactions is

$$H_{\rm el} = \sum_{\boldsymbol{c}, \, \boldsymbol{p}} \frac{e_{\boldsymbol{p}} e_{\boldsymbol{c}}}{|\mathbf{r}_{\boldsymbol{p}} - \mathbf{r}_{\boldsymbol{c}}|},\tag{7}$$

where \mathbf{r}_{p} is the position vector of the charges in the nucleus, and \mathbf{r}_{c} denotes the position vector of the charged ions in the crystal (see Fig. 2). Expansion of $1/|\mathbf{r}_{p}-\mathbf{r}_{c}|$ for $\mathbf{r}_{c} > \mathbf{r}_{p}$ gives

$$\frac{1}{|\mathbf{r}_p - \mathbf{r}_c|} = \sum_{k=0}^{k=\infty} \frac{r_p^k}{r_c^{k+1}} P_k(\cos(\mathbf{r}_p, \mathbf{r}_c)).$$
(8)

FIG. 2. Definition of the position vectors r_p and r_c .

⁶ K. Alder, E. Matthias, W. Schneider, and R. M. Steffen (to be published).

⁶ J. Greenstadt, *Mathematical Methods for Digital Computers*, edited by A. Ralston and H. S. Wilf (John Wiley & Sons, Inc., New York, 1960), Part II, Chap. 7.

Application of the addition theorem of spherical harmonics yields⁷:

$$H_{e1} = 4\pi \sum_{k=0}^{k=\infty} (2k+1)^{-1} \sum_{q} (-1)^{q} \sum_{p} e_{p} r_{p}^{k} Y_{k,q}(\vartheta_{p},\varphi_{p})$$
$$\times \sum_{c} \frac{e_{c}}{r_{c}^{k+1}} Y_{k,-q}(\vartheta_{c},\varphi_{c}). \tag{9}$$

This can be written more compactly by introducing the tensor operators of the nuclear moments, $T^{(k)}$, and those of the field, $V^{(k)}$ (k=rank of the operator=multipole order)

$$T_{q}^{(k)} = \sum_{p} e_{p} r_{p}^{k} Y_{k,q}(\vartheta_{p}, \varphi_{p}), \qquad (10)$$

$$V_q^{(k)} = \sum_{c} e_c \frac{1}{r_c^{k+1}} Y_{k,q}(\vartheta_c, \varphi_c).$$
(11)

With the definition of the scalar product of two tensor operators,⁷

$$T^{(k)} \cdot V^{(k)} = \sum_{q=-k}^{q=+k} (-1)^{q} T_{q}^{(k)} V_{-q}^{(k)}, \qquad (12)$$

Eq. (9) becomes

$$H_{\rm el} = \sum_{k=0}^{k=\infty} \frac{4\pi}{2k+1} T^{(k)} \cdot V^{(k)}.$$
 (13)

The Hamiltonian is now expressed as a product of two factors, a nuclear factor and an external field factor. Written in more detail, Eq. (13) becomes

$$H_{el} = 4\pi \left(Ze_p \frac{1}{4\pi} V(0) + \frac{1}{3} \sum_{q=-1}^{q=+1} (-1)^q T_q^{(1)} V_{-q}^{(1)} + \frac{1}{5} \sum_{q=-2}^{q=+2} (-1)^q T_q^{(2)} V_{-q}^{(2)} + \frac{1}{7} \sum_{q=-3}^{q=+3} (-1)^q T_q^{(3)} V_{-q}^{(3)} + \cdots \right), \quad (14)$$

V(0) in Eq. (14) is the ordinary Coulomb potential. In the following only the electric quadrupole moment $T^{(2)}$ will be considered. The electric dipole moment $T^{(1)}$ and the electric octopole moment $T^{(3)}$ vanish because of the conservation of parity. The effects of the electric hexadecapole moment $T^{(4)}$ are too small to be of interest here. Therefore the electric interaction Hamiltonian $H_{\rm el}$ in Eq. (13) reduces to

$$H_{\rm el} = \frac{4}{5}\pi T^{(2)} \cdot V^{(2)} = \frac{4}{5}\pi \sum_{q} (-1)^{q} T_{q}^{(2)} V_{-q}^{(2)}.$$
 (15)

The quadrupole interaction matrix elements with respect to system S are then given by

$$(Im|H_{\rm el}|Im') = \frac{4}{5}\pi \sum_{q} (-1)^{q} (Im|T_{q}^{(2)}|Im') V_{-q}^{(2)}.$$
(16)

Equation (16) is obtained under the assumption, that the classical treatment of the electrical field is a good approximation.

Application of the Wigner-Eckart theorem⁷ yields

$$(Im|H_{e1}|Im') = \frac{4}{5}\pi \sum_{q} (-1)^{I-m+q} \begin{pmatrix} I & 2 & I \\ -m & q & m' \end{pmatrix} \times (I||T^{(2)}||I) V_{-q}^{(2)}.$$
(17)

Since $-m+q+m'_{1}=0$, there exists only one q for given values m and m', which implies that the sum over q can be dropped,

$$(Im|H_{e1}|Im') = \frac{4}{5}\pi(-1)^{I-m'} \begin{pmatrix} I & 2 & I \\ -m & q & m' \end{pmatrix} \times (I||T^{(2)}||I)V_{-q}^{(2)}.$$
 (18)

The electrostatic field of the crystal is known in the coordinate system S'. Therefore $V_{-q}^{(2)}$ in Eq. (18) has to be expanded in terms of the $V_{-\mu}^{(2)}$ in system S'

$$V_{-q}^{(2)} = \sum_{\mu=-2}^{\mu=+2} V_{\mu}^{\prime (2)} D_{\mu,-q}^{(2)}(\omega), \qquad (19)$$

where ω represents the Euler angles (here: γ , β , and 0).

From the axial symmetry of the crystal field gradient with respect to the z' axis of system S', it follows directly that

$$V_{\pm 1}'^{(2)} = V_{\pm 2}'^{(2)} = 0 \text{ and } V_0'^{(2)} \neq 0.$$
 (20)

From the general expression for the $V_q^{(k)}$ —defined in system *S*—the expression for the $V_{\mu'}^{(k)}$ in system *S'* can easily be seen to be [see Eq. (11)]

 $V_{\mu'^{(k)}} = \sum_{c} e_{c} \frac{1}{r_{c'^{k+1}}} Y_{k,\mu}(\vartheta_{c'},\varphi_{c'})$

and

$$V_0'^{(2)} = \sum_{c} \frac{e_c}{r_c'^3} Y_{2,0}(\vartheta_c',\varphi_c') = \sum_{c} \frac{1}{4} \left(\frac{5}{\pi}\right)^{\frac{1}{2}} \frac{e_c}{r_c'^3} (3 \cos^2 \vartheta_c' - 1).$$

The ordinary Coulomb potential due to the charged ions in the crystal is given by

$$V_{\rm el}'(r_c') = \sum_c e_c/r_c'$$

and thus

$$V_0'^{(2)} = \frac{1}{4} (5/\pi)^{\frac{1}{2}} \partial^2 V_{el}' / \partial z'^2.$$
 (21)

Equation (19) may now be written:

$$V_{-q}^{(2)} = V_0^{\prime (2)} D_{0,-q}^{(2)}(\omega) = V_0^{\prime (2)} (\frac{4}{5}\pi)^{\frac{1}{2}} Y_{2,-q}(\beta,\gamma), \quad (22)$$

or

$$V_{-q}^{(2)} = \frac{1}{2} (\partial^2 V_{el}^{\prime} / \partial z^{\prime 2}) Y_{2,-q}(\beta,\gamma).$$
(23)

⁷ A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).

$\begin{array}{c} y=0.00 \\ \text{any} 6.00000 -3.00000 -6.00000 -3.00000 6.00000 \\ y=0.05 \\ 1.0 5.900000 -3.050000 -6.000000 -2.950000 6.100000 \\ 0.5 5.521355 -3.190682 -6.178931 -2.672096 \\ 0.5 5.521335 -3.190682 -6.178931 -2.672096 \\ 0.5 5.521335 -3.190682 -6.178931 -2.672096 \\ 0.5 5.521335 -3.190682 -6.178931 -2.672096 \\ 0.5 5.521335 -3.190682 -6.178931 -2.672096 \\ 0.5 5.23872 -3.008677 -6.214000 -2.737849 \\ 0.3 5.920100 -3.039647 -6.000399 -2.959653 6.080099 \\ 0.1 5.927664 -3.037110 -6.231288 -2.786623 \\ 0.5 5.940178 -3.023981 -6.001379 -2.959635 6.070141 \\ 0.0 6.027692 -3.027693 -6.002097 -2.979163 6.040232 \\ 0.5 5.950233 -3.0124281 -6.002397 -2.979163 6.040232 \\ 0.5 5.920256 -3.004187 -6.002397 -2.988999 6.020265 \\ 0.8 4.824118 -3.514414 -6.198043 -2.2321478 \\ 0.1 5.990275 -3.004187 -6.002397 -2.988999 6.020265 \\ 0.8 4.824118 -3.514414 -6.198043 -2.332778 \\ 0.1 5.990275 -3.004187 -6.002498 -2.997780 6.000278 \\ 0.6 5.142137 -3.333333 -6.333136 -2.413788 \\ 0.6 5.142137 -3.333333 -6.333136 -2.43788 \\ 0.6 5.142137 -3.333333 -6.332186 -2.43788 \\ 0.6 5.142137 -3.333333 -6.332186 -2.43788 \\ 0.5 5.290957 -3.008610 -2.900200 6.0000278 \\ 0.5 5.290957 -3.008610 -2.432618 \\ 0.5 5.290957 -3.008610 -2.432618 \\ 0.1 5.912451 -3.071300 -6.452187 -2.521878 \\ 0.5 5.290957 -3.068610 -6.003597 -2.956757 6.080288 \\ 0.1 5.912451 -3.071300 -6.432522 -2.366682 \\ 0.1 5.912451 -3.071300 -6.435722 -2.366782 \\ 0.5 5.00857 -3.068610 -6.003597 -2.956757 6.080288 \\ 0.1 5.912451 -3.071300 -6.435782 -2.367878 \\ 0.1 5.90000 -3.150000 -2.000000 0.2900000 0.3 5.90773 -3.098101 -6.473251 -2.366782 \\ 0.5 5.080387 -3.04747 -2.956757 6.080288 \\ 0.1 5.912451 -3.071300 -6.435782 -2.366782 \\ 0.5 5.080383 -3.04183 -2.075448 -2.975744 6.010976 0.9 5.507838 $	E_{δ}	E_4	E_3	E_2	E_1	cosβ	$E_{\mathfrak{b}}$	E_4	E_3	E_2	E_1	cosβ
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	6.617207	-2.637603	y = 0.50 -6.154228 6.178031	-3.243771	5.418396	0.6	6.000000	-3.000000	y =0.00 -6.000000	-3.000000	6.000000	any
$ \begin{array}{c} 0.4 & 5.960233 & -3.019205 & -6.002097 & -2.979163 & 6.040325 \\ 0.3 & 5.970252 & -3.014153 & -6.002273 & -2.984078 & 6.030251 \\ 0.2 & 5.980265 & -3.009135 & -6.002397 & -2.988099 & 6.020265 \\ 0.1 & 5.990275 & -3.004187 & -6.002472 & -2.933889 & 6.010274 \\ 0.0 & 6.000277 & -3.000278 & -6.002498 & -2.997780 & 6.000278 \\ 0.0 & 6.000277 & -3.000278 & -6.002498 & -2.997780 & 6.000278 \\ 0.0 & 6.000277 & -3.000278 & -6.002498 & -2.997780 & 6.000278 \\ 0.0 & 6.000277 & -3.000078 & -6.002498 & -2.997780 & 6.000278 \\ 0.0 & 5.800000 & -3.100000 & -2.900000 & 6.20000 & 0.3 & 5.6083871 & -3.313326 & -2.413788 \\ 0.5 & 5.298954 & -3.285533 & -6.332307 & -2.452615 \\ 0.4 & 5.454359 & -3.139790 & -6.422228 & -2.489177 \\ 0.9 & 5.800000 & -3.008000 & -2.900282 & 6.180208 \\ 0.8 & 5.840403 & -3.078576 & -6.003597 & -2.918624 & 6.160396 \\ 0.1 & 5.912451 & -3.071360 & -6.485722 & -2.548802 \\ 0.6 & 5.880715 & -3.068101 & -6.005394 & -2.927048 & 6.100276 \\ 0.5 & 5.900837 & -3.036910 & -6.003839 & -2.937490 & 6.120706 \\ 0.5 & 5.900837 & -3.036910 & -6.008379 & -2.956575 & 6.069028 \\ 0.1 & 5.912451 & -3.071360 & -6.485722 & -2.566782 \\ 0.6 & 5.880715 & -3.057542 & -6.006389 & -2.947008 & 6.100828 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.069028 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.069028 \\ 0.1 & 5.920937 & -3.036910 & -6.009869 & -2.985027 & 6.100828 \\ 0.2 & 5.961068 & -3.016816 & -6.009571 & -2.975744 & 6.041036 \\ 0.3 & 5.941014 & -3.002773 & -6.009869 & -2.985027 & 6.021098 \\ 0.1 & 5.981011 & -3.007302 & -6.009869 & -2.985027 & 6.021098 \\ 0.1 & 5.981011 & -3.007302 & -6.009869 & -2.985027 & 6.021098 \\ 0.1 & 5.981011 & -3.007302 & -6.009869 & -2.985027 & 6.021098 \\ 0.2 & 5.7610428 & -3.518721 & -6.6046355 & -2.128952 \\ 0.0 & 5.008334 & -3.321120 & -6.6464555 & -2.128952 \\ 0.0 & 5.001111 & -3.001111 & -6.009296 & -2.985027 & 6.021098 \\ 0.3 & 5.504783 & -3.318125 & -6.701484 & -2.285519 \\ 0.4 & 5.297846 & -3.246929 & -6.71848 & -2.2852519 \\ 0.4 & 5.297846 & -3.246929 & -6.71848 & -2.2852519 \\ 0.4 &$	$\begin{array}{c} 6.320274\\ 6.422832\\ 6.324870\\ 6.226382\\ 6.127357\\ 6.027884 \end{array}$	$\begin{array}{r} -2.672096\\ -2.705861\\ -2.737849\\ -2.766018\\ -2.786623\\ -2.794457\end{array}$	$\begin{array}{r} -6.178931 \\ -6.198804 \\ -6.214060 \\ -6.224853 \\ -6.231288 \\ -6.233427 \end{array}$	-3.190082 -3.142038 -3.098677 -3.062487 -3.037110 -3.027693	5.521435 5.623872 5.725716 5.826976 5.927664 6.027692	0.3 0.4 0.3 0.2 0.1 0.0	6.100000 6.090052 6.080099 6.070141 6.060176 6.050207	-2.950000 -2.954818 -2.959653 -2.964505 -2.969374 -2.974261	y = 0.05 -6.000000 -6.000474 -6.000899 -6.001274 -6.001599 -6.001873	-3.050000 -3.044812 -3.039647 -3.034503 -3.029381 -3.024281	5.900000 5.910053 5.920100 5.930142 5.940178 5.950208	1.0 0.9 0.8 0.7 0.6 0.5
$ \begin{array}{c} 0.4 & 5.454359 & -3.193790 & -6.422228 & -2.489177 \\ 0.5 & 5.80000 & -3.00000 & -2.90000 & 6.20000 \\ 0.3 & 5.840403 & -3.089239 & -6.001900 & -2.909282 & 6.180208 \\ 0.8 & 5.840403 & -3.078576 & -6.003597 & -2.918624 & 6.160396 \\ 0.7 & 5.80570 & -3.068010 & -6.003597 & -2.918624 & 6.160366 \\ 0.7 & 5.805715 & -3.068710 & -6.003597 & -2.918624 & 6.160366 \\ 0.5 & 5.900837 & -3.047173 & -6.007484 & -2.947008 & 6.100828 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.08928 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.080228 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.080228 \\ 0.4 & 5.920937 & -3.036910 & -6.008379 & -2.956575 & 6.080228 \\ 0.4 & 5.920937 & -3.036910 & -6.009879 & -2.966173 & 6.061007 \\ 0.2 & 5.961068 & -3.016816 & -6.009571 & -2.965774 & 6.041036 \\ 0.1 & 5.981101 & -3.007302 & -6.009869 & -2.985027 & 6.021098 \\ 0.1 & 5.981101 & -3.007302 & -6.009869 & -2.985027 & 6.021098 \\ 0.0 & 6.001111 & -6.009969 & -2.985027 & 6.021098 \\ 0.0 & 5.700000 & -3.15000 & -6.000000 & -2.850000 & 6.300000 \\ 0.3 & 5.941842 & -3.13263 & -6.004277 & -2.853408 & 6.270488 \\ 0.2 & 5.709122 & -3.116772 & -6.008929 & -2.876935 & 6.240887 \\ 0.3 & 5.709122 & -3.1165772 & -6.008929 & -2.876935 & 6.240887 \\ 0.4 & 5.2977846 & -3.246929 & -6.71848 & -2.238519 \\ 0.5 & 5.088384 & -3.321120 & -6.640995 & -2.205279 \\ 0.4 & 5.2977846 & -3.246929 & -6.71848 & -2.238519 \\ 0.5 & 5.088384 & -3.321120 & -6.640995 & -2.205279 \\ 0.4 & 5.2977846 & -3.246929 & -6.71848 & -2.238519 \\ 0.5 & 5.088384 & -3.321120 & -6.640995 & -2.205279 \\ 0.4 & 5.2977846 & -3.246929 & -6.719747 & -2.288926 \\ 0.8 & 5.70912 & -3.1165772 & -6.004277 & -2.865408 & 6.2 & 5.709270 & -3.145092 & -6.779747 & -2.288926 \\ 0.8 & 5.70912 & -3.1165772 & -6.004277 & -2.865408 & 6.2710488 \\ 0.2 & 5.791289 & -3.100522 & -6.011448 & -2.890579 & 6.211260 \\ 0.0 & 6.109772 & -3.109772 & -6.804965 & -2.307836 \\ 0.6 & -3.9772 & -3.098772 & -6.804965 & -2.307836 \\ 0.6 & -3.9772 & -3.109772 & -6.804965 & -2.307836 \\ 0.6 & -3.9772 & -3.109772 & -6.80496$	$\begin{array}{c} 7.500000\\ 7.361047\\ 7.221097\\ 7.080126\\ 6.938110\\ 6.795022 \end{array}$	-2.250000 -2.291478 -2.332758 -2.373643 -2.413788 -2.452615	$\begin{array}{r} -6.000000\\ -6.108603\\ -6.198043\\ -6.272087\\ -6.333136\\ -6.382807\end{array}$	-3.750000 -3.623806 -3.514414 -3.418268 -3.333323 -3.258553	$\begin{array}{r} 4.500000\\ 4.662841\\ 4.824118\\ 4.983871\\ 5.142137\\ 5.298954\end{array}$	$1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5$	$\begin{array}{c} 6.030232\\ 6.040232\\ 6.030251\\ 6.020265\\ 6.010274\\ 6.000278\end{array}$	$\begin{array}{r} -2.979163 \\ -2.984078 \\ -2.988999 \\ -2.993889 \\ -2.997780 \end{array}$	$\begin{array}{c} -6.002097 \\ -6.002273 \\ -6.002397 \\ -6.002472 \\ -6.002498 \end{array}$	$\begin{array}{r} -3.019205 \\ -3.014153 \\ -3.009135 \\ -3.004187 \\ -3.000278 \end{array}$	5.960233 5.970252 5.980266 5.990275 6.000277	0.4 0.3 0.2 0.1 0.0
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	6.650836 6.505525 6.359061 6.211414 6.063038	-2.489177 -2.521978 -2.548802 -2.566782 -2.573174	$-6.422228 \\ -6.452187 \\ -6.473231 \\ -6.485722 \\ -6.489864 \\ y = 1.00$	-3.193790 -3.139747 -3.098101 -3.071360 -3.062072	5.454359 5.608387 5.761073 5.912451 6.062072	$\begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \end{array}$	$\begin{array}{c} 6.200000\\ 6.180208\\ 6.160396\\ 6.140562\\ 6.120706\\ 6.100828 \end{array}$	-2.900000 -2.909282 -2.918624 -2.928027 -2.937490 -2.947008	$\begin{array}{r} -6.000000\\ -6.001900\\ -6.003597\\ -6.005094\\ -6.006389\\ -6.007484\end{array}$	$\begin{array}{r} -3.100000 \\ -3.089239 \\ -3.078576 \\ -3.068010 \\ -3.057542 \\ -3.047173 \end{array}$	5.800000 5.820213 5.840403 5.860570 5.880715 5.900837	1.0 0.9 0.8 0.7 0.6 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8.000000 7.819194 7.636745 7.452601 7.266708 7.079011	-2.000000 -2.044389 -2.087457 -2.128952 -2.168444 -2.205279	$\begin{array}{r} -6.000000\\ -6.195007\\ -6.345988\\ -6.466455\\ -6.563410\\ -6.640995\\ -6.701949\end{array}$	-4.000000 -3.803267 -3.647245 -3.518721 -3.411162 -3.321120	4.000000 4.223469 4.443946 4.661526 4.876308 5.088384 5.088384	$ \begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4 \end{array} $	6.080928 6.061007 6.041036 6.021098 6.001111	-2.956575 -2.966173 -2.975744 -2.985027 -2.991142	$\begin{array}{r} -6.008379 \\ -6.009075 \\ -6.009571 \\ -6.009869 \\ -6.009969 \end{array}$	-3.036910 -3.026773 -3.016816 -3.007302 -3.001111	5.920937 5.941014 5.961068 5.981101 6.001111	0.4 0.3 0.2 0.1 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6.889449 6.697962 6.504486 6.308954 6.112801	-2.238519 -2.26908 -2.288926 -2.302987 -2.307836	$\begin{array}{r} -6.701848 \\ -6.747712 \\ -6.779747 \\ -6.798693 \\ -6.804965 \end{array}$ y =1.50	$\begin{array}{r} -3.246929 \\ -3.188125 \\ -3.145092 \\ -3.118691 \\ -3.109772 \end{array}$	5.297840 5.504783 5.709270 5.911417 6.109772	0.4 0.3 0.2 0.1 0.0	$\begin{array}{c} 6.300000\\ 6.270468\\ 6.240887\\ 6.211260\\ 6.181583\\ 6.151859\end{array}$	-2.850000 -2.863408 -2.876935 -2.890579 -2.904337 -2.918199	$\begin{array}{r} -6.000000\\ -6.004277\\ -6.008092\\ -6.011448\\ -6.014349\\ -6.016798\end{array}$	$\begin{array}{r} -3.150000 \\ -3.133263 \\ -3.116772 \\ -3.100522 \\ -3.084513 \\ -3.068752 \end{array}$	5.700000 5.730482 5.760912 5.791289 5.821616 5.851890	1.0 0.9 0.8 0.7 0.6 0.5
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9.000000 8.741312 8.479450 8.214269 7.945621 7.673342	-1.500000 -1.540446 -1.576416 -1.608247 -1.636092 -1.659970	$\begin{array}{r} -6.000000\\ -6.446825\\ -6.741765\\ -6.962050\\ -7.132993\\ -7.266704\end{array}$	$\begin{array}{r} -4.500000 \\ -4.110021 \\ -3.865433 \\ -3.688881 \\ -3.555107 \\ -3.452174 \end{array}$	$\begin{array}{c} 3.000000\\ 3.355981\\ 3.704164\\ 4.044909\\ 4.378571\\ 4.705505\end{array}$	1.0 0.9 0.8 0.7 0.6 0.5	$\begin{array}{c} 6.122085\\ 6.092263\\ 6.062391\\ 6.032470\\ 6.002500 \end{array}$	$\begin{array}{r} -2.932139 \\ -2.946099 \\ -2.959901 \\ -2.972815 \\ -2.980153 \end{array}$	$\begin{array}{r} -6.018798 \\ -6.020352 \\ -6.021460 \\ -6.022125 \\ -6.022347 \end{array}$	$\begin{array}{r} -3.053261 \\ -3.038097 \\ -3.023437 \\ -3.010009 \\ -3.002499 \end{array}$	$\begin{array}{c} 5.882113\\ 5.912286\\ 5.942408\\ 5.972478\\ 6.002499 \end{array}$	0.4 0.3 0.2 0.1 0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7.397260 7.117190 6.832937 6.544309 6.258390	-1.679807 -1.695471 -1.706809 -1.713678 -1.715980	-7.370004 -7.447067 -7.500525 -7.532010 -7.542410	$\begin{array}{r} -3.373506 \\ -3.315208 \\ -3.274918 \\ -3.251234 \\ -3.243417 \end{array}$	5.026056 5.340555 5.649315 5.952612 6.243416	$\begin{array}{c} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0 \end{array}$	6.400000 6.360827 6.321571 6.282231 6.242806 6.202206	-2.800000 -2.817210 -2.834603 -2.852176 -2.869916 -2.867903	y = 0.20 -6.00000 -6.007609 -6.014377 -6.020317 -6.025441 -6.0205441	-3.200000 -3.176869 -3.154219 -3.132040 -3.110331 -3.000102	5.600000 5.640861 5.681628 5.722302 5.762882	1.0 0.9 0.8 0.7 0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.000000 9.670387 9.335929 8.996359 8.651383	-1.000000 -1.028245 -1.049587 -1.066069 -1.078915 1.088002	$\begin{array}{r} -6.000000\\ -6.799871\\ -7.240479\\ -7.556228\\ -7.796529\\ 7.9265\end{array}$	-5.000000 -4.348310 -4.041972 -3.845065 -3.707557 -3.608320	2.000000 2.506039 2.996108 3.471004 3.931618	1.0 0.9 0.8 0.7 0.6	$\begin{array}{c} 6.203290\\ 6.163700\\ 6.124017\\ 6.084247\\ 6.044390\\ 6.004447\end{array}$	$\begin{array}{r} -2.937302 \\ -2.905777 \\ -2.923708 \\ -2.941218 \\ -2.956940 \\ -2.964924 \end{array}$	$\begin{array}{r} -6.033284 \\ -6.036017 \\ -6.037965 \\ -6.039133 \\ -6.039523 \end{array}$	$\begin{array}{r} -3.068404 \\ -3.048363 \\ -3.029349 \\ -3.012725 \\ -3.004442 \end{array}$	5.843766 5.843766 5.884071 5.924285 5.964409 6.004442	0.3 0.4 0.3 0.2 0.1 0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7.943911 7.580689 7.210623 6.833408 6.470153	-1.0365902 -1.096547 -1.102197 -1.106086 -1.108364 -1.109114	$\begin{array}{c} -8.124886\\ -8.230688\\ -8.303847\\ -8.346847\\ -8.361038\end{array}$	$\begin{array}{r} -3.536284 \\ -3.485033 \\ -3.450678 \\ -3.430893 \\ -3.424429 \end{array}$	$\begin{array}{r} 4.378903\\ 4.813806\\ 5.237229\\ 5.649988\\ 6.052696\\ 6.424429\end{array}$	0.3 0.4 0.3 0.2 0.1 0.0	6.600000 6.541844 6.483506 6.424983 6.366275	-2.700000 -2.723903 -2.748101 -2.772581 -2.797304	y = 0.30 -6.000000 -6.017147 -6.032285 -6.045487 -6.056813	$\begin{array}{r} -3.300000 \\ -3.262752 \\ -3.226817 \\ -3.192137 \\ -3.158688 \end{array}$	5.400000 5.461958 5.523698 5.585222 5.646531	1.0 0.9 0.8 0.7 0.6
$ \begin{array}{rrrrr} 0.5 & 5.707627 & -3.126488 & -6.066319 & -2.822197 & 6.307377 \\ 0.4 & 5.768514 & -3.095673 & -6.074042 & -2.847088 & 6.248289 \\ 0.3 & 5.829192 & -3.066586 & -6.080016 & -2.847088 & 6.248289 \\ 0.3 & 5.829192 & -3.066586 & -6.080016 & -2.871600 & 6.189010 \\ 0.2 & 5.889665 & -3.040153 & -6.084266 & -2.894783 & 6.129537 \\ 0.1 & 5.949934 & -3.019027 & -6.086809 & -2.913965 & 6.069868 \\ 0.0 & 6.009989 & -3.009989 & -6.087656 & -2.922357 & 6.010014 \\ 0.6 & 2.980717 & -4.603373 & -10.881012 & 0.894039 \\ 0.6 & 2.980717 & -4.603373 & -10.881012 & 0.804239 \\ 0.6 & 2.980717 & -4.603373 & -10.881012 & 0.804239 \\ 0.6 & 2.980717 & -4.603373 & -10.881012 & 0.804239 \\ 0.8 & 0.8$	14.000000 13.441195 12.872025 12.291766 11.699628	-2.000000 -0.646104 0.347577 0.715784 0.804039	y = 4.00 -7.000000 -8.891806 -9.790278 -10.414467 -10.881012	-6.000000 -4.971140 -4.752786 -4.656370 -4.63373	$\begin{array}{c} 1.000000\\ 1.067855\\ 1.323461\\ 2.063286\\ 2.980717\\ 2.977100\end{array}$	1.0 0.9 0.8 0.7 0.6	$\begin{array}{c} 6.307377\\ 6.248289\\ 6.189010\\ 6.129537\\ 6.069868\\ 6.010014 \end{array}$	-2.822197 -2.847088 -2.871600 -2.894783 -2.913965 -2.922357	$\begin{array}{r}6.066319\\6.074042\\6.080016\\6.084266\\6.086809\\6.087656\end{array}$	-3.126488 -3.095673 -3.066586 -3.040153 -3.019027 -3.009989	5.707627 5.768514 5.829192 5.889665 5.949934 6.009989	0.5 0.4 0.3 0.2 0.1 0.0
y = 0.50 $ y = 0.50 $ $ y$	10.476415 9.844173 9.199046 8.551763 8.084338	0.852107 0.860824 0.865808 0.868419 0.869235	-11.257400 -11.508515 -11.708514 -11.846231 -11.926962 -11.953573	-4.549833 -4.536015 -4.527246 -4.522365 -4.520797	4.729789 5.539532 6.308622 7.029146 7.520797	0.3 0.4 0.3 0.2 0.1 0.0	7.000000 6.905026 6.809575 6.713637	-2.500000 -2.534009 -2.568342 -2.602923	y = 0.50 -6.000000 -6.047861 -6.089120 -6.124414	-3.500000 -3.428711 -3.362579 -3.301043	5.000000 5.105556 5.210466 5.314743	1.0 0.9 0.8 0.7

TABLE I. Eigenvalues of the interaction Hamiltonian for I=2.

The quadrupole interaction matrix elements are then element $(I || T^{(2)} || I)$ in Eq. (24) can be eliminated: [see Eq. (18)] т о т

$$(Im|H_{e1}|Im') = \frac{2}{5}\pi(-1)^{I-m'} \begin{pmatrix} I & 2 & I \\ -m & q & m' \end{pmatrix} \times (I||T^{(2)}||I) \frac{\partial^2 V_{e1}'}{\partial z'^2} Y_{2,-q}(\beta,\gamma).$$
(24)

$$eQ = (II | \sum_{p} e_{p} (3z_{p}^{2} - r_{p}^{2}) | II),$$

$$T_{0}^{(2)} = \sum_{p} e_{p} r_{p}^{2} Y_{2,0} (\vartheta_{p}, \varphi_{p})$$

$$= \sum_{p} e_{p} r_{p}^{2} \times \frac{1}{4} (5/\pi)^{\frac{1}{2}} (3 \cos^{2} \vartheta_{p} - 1)$$

$$= \sum_{p} \frac{1}{4} (5/\pi)^{\frac{1}{2}} e_{p} (3z_{p}^{2} - r_{p}^{2}),$$
(25)

$$eQ = 4(\pi/5)^{\frac{1}{2}}(II \mid T_0^{(2)} \mid II).$$
(25a)

Using the conventional definition of the electric quadrupole moment of the nucleus, the reduced matrix Application of the Wigner-Eckart theorem on (25a)

yields

$$eQ = 4(\pi/5)^{\frac{1}{2}} \begin{pmatrix} I & 2 & I \\ -I & 0 & I \end{pmatrix} (I \| T^{(2)} \| I)$$

or

$$eQ = 4(\pi/5)^{\frac{1}{2}} \frac{2I(2I-1)}{[(2I+3)(2I+2)(2I+1)(2I)(2I-1)]^{\frac{1}{2}}} \times (I||T^{(2)}||I).$$
 (26)

Using Eqs. (24) and (26), the matrix elements of the electric quadrupole interaction (in system S) become

$$(Im | H_{el} | Im') = \frac{1}{2} \left(\frac{\pi}{5}\right)^{\frac{1}{2}} eQ \frac{\partial^2 V_{el}}{\partial z'^2} (-1)^{I-m'} \\ \times \frac{\begin{pmatrix} I & 2 & I \\ -m & q & m' \end{pmatrix}}{\begin{pmatrix} I & 2 & I \\ -m & q & m' \end{pmatrix}} Y_{2,-q}(\beta,\gamma). \quad (27)$$

3. Combined Electric and Magnetic Interaction

Combining Eqs. (6) and (27), the following expression is obtained for the matrix element $H_{m,m'}$ of the total interaction in system S:

$$H_{m,m'} = -\hbar\omega_{II}m\delta_{mm'} + \hbar\omega_{E}(-1)^{I-m'}(\pi/5)^{\frac{1}{2}} \\ \times \begin{pmatrix} I & 2 & I \\ -m & m-m' & m' \end{pmatrix} Y_{2,m'-m}(\beta,\gamma) \\ \times [(2I+3)(2I+2)(2I+1)(2I)(2I-1)]^{\frac{1}{2}}, \quad (28)$$

where ω_E is defined as

$$\omega_E = \frac{1}{2} \frac{eQ}{\hbar} \frac{\partial^2 V_{\rm el}'}{\partial z'^2} \frac{1}{2I(2I-1)}.$$
 (29)

The eigenvalues E_n and the corresponding eigenvectors u_{Mn} of the matrix H are functions of the angles β and γ . Since the electrostatic field gradient was assumed to possess axial symmetry, the angle γ occurs in $H_{m,m'}$ in the form $e^{i\gamma(m'-m)}$. The diagonalization can therefore be simplified in the following way. It can easily be seen that $H(\beta,0)$ and $H(\beta,\gamma)$ are connected through an unitary transformation $A(\gamma)$:

where

This implies that the eigenvalues of $H(\beta,\gamma)$ are inde-

Fig. 3. The eigenvalues of the interaction Hamiltonian for I=2 as a function of the interaction parameter y for 3 values of β .

pendent of γ , i.e.,

$$E(\beta, \gamma) = E(\beta, 0).$$

The unitary matrix $U(\beta,\gamma)$ which diagonalizes $H(\beta,\gamma)$ is then given by

$$U(\beta,\gamma) = U(\beta,0)A(\gamma).$$

Thus it is sufficient to compute the eigenvalues and eigenvectors of $H(\beta,0)$ from

$$U(\beta,0)H(\beta,0)U^{-1}(\beta,0) = E(\beta,0) = E(\beta).$$

In order to simplify the diagonalization procedure further, the matrix K with the elements,

$$K_{m,m'} = \frac{1}{\hbar\omega_E} H_{m,m'}(\beta,0),$$

is introduced. The matrix elements $K_{m,m'}$ are then functions of the ratio, $y = \omega_H/\omega_E$, only. Explicitly written, the only nonvanishing matrix elements, $K_{m,m}$, $K_{m,m-1}$, $K_{m,m-2}$, have the form:

$$K_{m,m} = -ym + \frac{1}{2}(3\cos^{2}\beta - 1)[3m^{2} - I(I+1)],$$

$$K_{m,m-1} = -\frac{3}{2}\cos\beta\sin\beta(1-2m)[(I-m+1)(I+m)]^{\frac{1}{2}},$$

$$K_{m,m-2} = \frac{3}{4}\sin^{2}\beta[(I+m-1)(I+m) \qquad (30) \qquad (X(I-m+1)(I-m+2)]^{\frac{1}{2}}.$$

cosβ	E_1	E_2	E_{3}	E_4	E_5	E_6
any	10.000000		y = 0.00 - 8.000000		-2.000000	10.000000
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	$\begin{array}{c} 9.875000\\ 9.887548\\ 9.900093\\ 9.912631\\ 9.925165\\ 9.937694\\ 9.950217\\ 9.962736\\ 9.975248\\ 9.987756\\ 10.000259\end{array}$	$\begin{array}{r} -2.075000\\ -2.067390\\ -2.059792\\ -2.052205\\ -2.044630\\ -2.037067\\ -2.029516\\ -2.021971\\ -2.014448\\ -2.006932\\ -1.999437\end{array}$	y=0.058.0250008.0398438.0495418.0567678.0623748.0667608.0701538.0726868.0744428.0754798.075822	$\begin{array}{r} -7.975000\\ -7.960471\\ -7.951056\\ -7.944079\\ -7.938690\\ -7.934486\\ -7.931244\\ -7.928829\\ -7.927153\\ -7.927153\\ -7.926168\\ -7.925843\end{array}$	$\begin{array}{c} -1.925000\\ -1.932392\\ -1.939795\\ -1.947209\\ -1.954635\\ -1.962072\\ -1.969520\\ -1.976982\\ -1.984451\\ -1.991933\\ -1.999417\end{array}$	$\begin{array}{c} 10.125000\\ 10.112548\\ 10.100091\\ 10.087630\\ 10.075164\\ 10.062692\\ 10.050216\\ 10.037732\\ 10.025248\\ 10.012756\\ 10.000259 \end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	9.750000 9.775198 9.800376 9.825533 9.850668 9.875782 9.900876 9.925984 9.951000 9.976030 10.001040	$\begin{array}{r} -2.150000\\ -2.134556\\ -2.119161\\ -2.103814\\ -2.088514\\ -2.073262\\ -2.058058\\ -2.042902\\ -2.027790\\ -2.012726\\ -1.997791\end{array}$	y=0.10 -8.050000 -8.080004 -8.099677 -8.114369 -8.125789 -8.134737 -8.141662 -8.144836 -8.150430 -8.1502548 -8.153250	$\begin{array}{c} -7.950000\\ -7.921260\\ -7.902720\\ -7.889027\\ -7.878475\\ -7.870261\\ -7.863936\\ -7.859228\\ -7.855967\\ -7.855967\\ -7.854049\\ -7.853417\end{array}$	$\begin{array}{c} -1.850000\\ -1.864572\\ -1.879188\\ -1.893847\\ -1.908551\\ -1.923298\\ -1.938090\\ -1.952926\\ -1.967808\\ -1.967808\\ -1.982735\\ -1.997624\end{array}$	$\begin{array}{c} 10.250000\\ 10.225195\\ 10.200371\\ 10.175526\\ 10.150661\\ 10.125776\\ 10.100870\\ 10.075944\\ 10.050996\\ 10.025028\\ 10.001040 \end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	9.625000 9.662949 9.700851 9.738704 9.776509 9.814267 9.851977 9.889639 9.927253 9.964822 10.002343	$\begin{array}{c} -2.225000\\ -2.201492\\ -2.178096\\ -2.154811\\ -2.131636\\ -2.108571\\ -2.085612\\ -2.062761\\ -2.040017\\ -2.047378\\ -1.995121\end{array}$	y=0.15 -8.075000 -8.120482 -8.150398 -8.172789 -8.190218 -8.203891 -8.214482 -8.222401 -8.222401 -8.227903 -8.231147 -8.232222	$\begin{array}{c} -7.925000\\ -7.882367\\ -7.855001\\ -7.834860\\ -7.819383\\ -7.807361\\ -7.798119\\ -7.791251\\ -7.786499\\ -7.783705\\ -7.782783\end{array}$	$\begin{array}{c} -1.775000\\ -1.796546\\ -1.818188\\ -1.839925\\ -1.861758\\ -1.883689\\ -1.905719\\ -1.927848\\ -1.950076\\ -1.972406\\ -1.972406\\ -1.994560\end{array}$	$\begin{array}{c} 10.375000\\ 10.337938\\ 10.300834\\ 10.263683\\ 10.226487\\ 10.189245\\ 10.151956\\ 10.114622\\ 10.077242\\ 10.039815\\ 10.002343\\ \end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	9.500000 9.550803 9.601518 9.702692 9.753149 9.803522 9.853809 9.904011 9.954130 10.004166	$\begin{array}{r} -2.300000\\ -2.268191\\ -2.236587\\ -2.205184\\ -2.173982\\ -2.142976\\ -2.112165\\ -2.081548\\ -2.051121\\ -2.020885\\ -1.991488\end{array}$	$\begin{array}{c} y = 0.20 \\ - 8.100000 \\ - 8.161277 \\ - 8.201700 \\ - 8.232011 \\ - 8.255635 \\ - 8.255635 \\ - 8.274188 \\ - 8.288569 \\ - 8.299328 \\ - 8.306808 \\ - 8.301218 \\ - 8.311218 \\ - 8.312678 \end{array}$	$\begin{array}{c} -7.900000\\ -7.843793\\ -7.807906\\ -7.781598\\ -7.761442\\ -7.745825\\ -7.733844\\ -7.724953\\ -7.718807\\ -7.715197\\ -7.714007\end{array}$	$\begin{array}{c} -1.700000\\ -1.728320\\ -1.756804\\ -1.785453\\ -1.814270\\ -1.843257\\ -1.843257\\ -1.901750\\ -1.931259\\ -1.960945\\ -1.990159\end{array}$	$\begin{array}{c} 10.500000\\ 10.450778\\ 10.401478\\ 10.352098\\ 10.302638\\ 10.253096\\ 10.203474\\ 10.153770\\ 10.103984\\ 10.054116\\ 10.004166\end{array}$
$1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0$	9.250000 9.326821 9.403442 9.479864 9.556089 9.632118 9.707953 9.783594 9.835943 9.934303 10.009374	$\begin{array}{r} -2.450000\\ -2.400851\\ -2.352186\\ -2.303996\\ -2.256275\\ -2.209016\\ -2.162210\\ -2.115850\\ -2.069932\\ -2.024461\\ -1.981562\end{array}$	y=0.30 -8.150000 -8.243819 -8.306016 -8.352798 -8.389337 -8.418076 -8.440381 -8.457079 -8.468693 -8.475546 -8.477812	-7.850000 -7.767604 -7.715628 -7.677861 -7.649135 -7.627003 -7.610104 -7.587610 -7.583946 -7.582282	$\begin{array}{c} -1.550000\\ -1.591286\\ -1.632919\\ -1.674905\\ -1.717251\\ -1.759965\\ -1.803053\\ -1.846521\\ -1.890375\\ -1.934607\\ -1.977093 \end{array}$	$\begin{array}{c} 10.750000\\ 10.676740\\ 10.603307\\ 10.529698\\ 10.455909\\ 10.381942\\ 10.307794\\ 10.233466\\ 10.158953\\ 10.084257\\ 10.009374 \end{array}$
$1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6$	8.750000 8.880140 9.009698 9.138680 9.267094	-2.750000 -2.663002 -2.577487 -2.493425 -2.410789	y=0.50 - 8.250000 - 8.412746 - 8.521353 - 8.603353 - 8.667555	-7.750000 -7.619127 -7.539016 -7.482134 -7.439680	-1.250000 -1.315031 -1.380912 -1.447670 -1.515330	11.250000 11.129767 11.009072 10.887903 10.766259

TABLE II. Eigenvalues of the interaction Hamiltonian for $I = \frac{5}{2}$.

			•	,		
$\cos\beta$	E_1	E_2	E_3	E_4	E_5	E_6
0.5 0.4 0.3 0.2 0.1 0.0	9.394948 9.522246 9.648999 9.775212 9.900891 10.026041	$\begin{array}{r} -2.329535\\ -2.249639\\ -2.171069\\ -2.093822\\ -2.018030\\ -1.952587\end{array}$	$\begin{array}{c} y = 0.50 \\ - 8.718135 \\ - 8.757432 \\ - 8.786874 \\ - 8.807364 \\ - 8.819455 \\ - 8.823455 \end{array}$	-7.407485 -7.383216 -7.365453 -7.353302 -7.346211 -7.343881	-1.583924 -1.653476 -1.724007 -1.795518 -1.867871 -1.932166	$\begin{array}{c} 10.644132\\ 10.521516\\ 10.398405\\ 10.274795\\ 10.150675\\ 10.026047\end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	8.125000 8.324296 8.522206 8.718755 8.913969 9.107875 9.300495 9.491856 9.681980 9.870891 10.058593	$\begin{array}{c} -3.125000 \\ -2.984020 \\ -2.846799 \\ -2.713289 \\ -2.583397 \\ -2.457008 \\ -2.334011 \\ -2.214334 \\ -2.098073 \\ -1.986272 \\ -1.903289 \end{array}$	y=0.75 - 8.375000 - 8.631214 - 8.802696 - 8.932320 - 9.033846 - 9.113829 - 9.175959 - 9.222498 - 9.2524879 - 9.273984 - 9.273984 - 9.280304	$\begin{array}{c} -7.625000\\ -7.441121\\ -7.334227\\ -7.261424\\ -7.208984\\ -7.170423\\ -7.170423\\ -7.142043\\ -7.121702\\ -7.107997\\ -7.100080\\ -7.097491\end{array}$	$\begin{array}{c} -0.875000\\ -0.965980\\ -1.058573\\ -1.152852\\ -1.24888\\ -1.346755\\ -1.446509\\ -1.548171\\ -1.651600\\ -1.755716\\ -1.836140 \end{array}$	$\begin{array}{c} 11.875000\\ 11.698039\\ 11.520088\\ 11.341131\\ 11.161148\\ 10.980120\\ 10.798027\\ 10.614850\\ 10.430569\\ 10.245164\\ 10.058631 \end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0\\ \end{array}$	$\begin{array}{c} 7.500000\\ 7.771399\\ 8.040191\\ 8.306439\\ 8.570211\\ 8.831568\\ 9.090572\\ 9.347282\\ 9.601757\\ 9.854054\\ 10.104147\end{array}$	$\begin{array}{c} -3.500000\\ -3.296348\\ -3.100232\\ -2.911731\\ -2.730646\\ -2.556664\\ -2.389486\\ -2.228989\\ -2.075679\\ -1.933357\\ -1.844293\end{array}$	y=1.00 - 8.500000 - 8.858009 - 9.097076 - 9.277452 - 9.418487 - 9.529431 - 9.615508 - 9.679923 - 9.724708 - 9.751122 - 9.759854	$\begin{array}{c} -7.500000\\ -7.272210\\ -7.149174\\ -7.070459\\ -7.016819\\ -6.979233\\ -6.952737\\ -6.934375\\ -6.923227\\ -6.915491\\ -6.915277\end{array}$	$\begin{array}{c} -0.500000\\ -0.613241\\ -0.728867\\ -0.847000\\ -0.967763\\ -1.091261\\ -1.217547\\ -1.346513\\ -1.477450\\ -1.606410\\ -1.691030\end{array}$	$\begin{array}{c} 12.500000\\ 12.268410\\ 12.035158\\ 11.800203\\ 11.563505\\ 11.325022\\ 11.084707\\ 10.842517\\ 10.842517\\ 10.598407\\ 10.352325\\ 10.104306\end{array}$
$1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0$	$\begin{array}{c} 6.250000\\ 6.675202\\ 7.093838\\ 7.506154\\ 7.912394\\ 8.312789\\ 8.707567\\ 9.096942\\ 9.481122\\ 9.860306\\ 10.234093 \end{array}$	$\begin{array}{r} -4.250000\\ -3.886892\\ -3.546435\\ -3.230809\\ -2.938458\\ -2.667142\\ -2.415089\\ -2.181855\\ -1.970309\\ -1.794847\\ -1.713001\end{array}$	$\begin{array}{c} y = 1.50 \\ -8.750000 \\ -9.337645 \\ -9.723127 \\ -10.011139 \\ -10.234798 \\ -10.409851 \\ -10.545154 \\ -10.545154 \\ -10.716189 \\ -10.757457 \\ -10.771093 \end{array}$	$\begin{array}{r} -7.250000\\ -6.967326\\ -6.850755\\ -6.793397\\ -6.763716\\ -6.748360\\ -6.748360\\ -6.74719\\ -6.737213\\ -6.735814\\ -6.735368\\ -6.735281\end{array}$	$\begin{array}{c} 0.250000\\ 0.101633\\ -0.050238\\ -0.205757\\ -0.365017\\ -0.527974\\ -0.694242\\ -0.862502\\ -1.028552\\ -1.177074\\ -1.250000 \end{array}$	$\begin{array}{c} 13.750000\\ 13.415030\\ 13.076718\\ 12.734947\\ 12.389597\\ 12.040539\\ 11.687639\\ 11.330756\\ 10.969742\\ 10.604440\\ 10.235281\end{array}$
$\begin{array}{c} 1.0\\ 0.9\\ 0.8\\ 0.7\\ 0.6\\ 0.5\\ 0.4\\ 0.3\\ 0.2\\ 0.1\\ 0.0 \end{array}$	5.000000 5.593252 6.173446 6.741224 7.297213 7.842019 8.376223 8.900380 9.415015 9.920620 10.415224	$\begin{array}{c} -5.000000\\ -4.408163\\ -3.881440\\ -3.424036\\ -3.022374\\ -2.665655\\ -2.347448\\ -2.066095\\ -1.827256\\ -1.651425\\ -1.582237\end{array}$	y=2.00 -9.000000 -9.853854 -10.396040 -10.795478 -11.103039 -11.342382 -11.526632 -11.663736 -11.758686 -11.814544 -11.832988	$\begin{array}{c} -7.000000\\ -6.726831\\ -6.678215\\ -6.681504\\ -6.700052\\ -6.722050\\ -6.742779\\ -6.760098\\ -6.772960\\ -6.7780840\\ -6.780840\\ -6.783492\end{array}$	$\begin{array}{c} 1.000000\\ -0.826751\\ 0.649865\\ 0.469415\\ 0.285671\\ 0.099348\\ -0.087876\\ -0.272093\\ -0.443902\\ -0.580406\\ -0.636629\end{array}$	$\begin{array}{c} 15.000000\\ 14.568847\\ 14.132385\\ 13.690380\\ 13.242581\\ 12.788720\\ 12.328511\\ 11.861643\\ 11.387790\\ 10.906595\\ 10.420121\end{array}$
$1.0 \\ 0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.0$	$\begin{array}{c} 4.000000\\ 3.792472\\ 3.601667\\ 4.171499\\ 5.385280\\ 6.547949\\ 7.657873\\ 8.720997\\ 9.742864\\ 10.727704\\ 11.617086\end{array}$	$\begin{array}{c} -6.000000\\ -4.787622\\ -3.861439\\ -3.184919\\ -2.657587\\ -2.233058\\ -1.890222\\ -1.620945\\ -1.424488\\ -1.303989\\ -1.263266\end{array}$	y=4.00 -10.00000 -12.310361 -13.486465 -14.309787 -14.927549 -15.400689 -15.761065 -16.027284 -16.210744 -16.318344 -16.33819	$\begin{array}{c} -8.000000\\ -7.396562\\ -7.549406\\ -7.716668\\ -7.860829\\ -7.978963\\ -8.072516\\ -8.143317\\ -8.192851\\ -8.222166\\ -8.231872\end{array}$	0.000000 1.458523 2.822011 3.350578 3.171192 2.991740 2.827396 2.686034 2.575939 2.505451 2.481114	$\begin{array}{c} 20.000000\\ 19.243550\\ 18.473631\\ 17.689298\\ 16.889491\\ 16.073020\\ 15.238535\\ 14.384515\\ 13.509282\\ 12.611346\\ 11.750758\end{array}$

TABLE II (continued).

In the following the eigenvalues of the matrix K are denoted by E_n (see, e.g., Tables I and II).

III. RESULTS

The numerical calculations have been performed on the IBM-704 of MURA in Madison (Wisconsin). In addition, some of the results for I=1 and $I=\frac{3}{2}$ were computed on an IBM-7090 in New York. The calculations were performed for the following values of the nuclear spin: $I=1, \frac{3}{2}, 2, \frac{5}{2}, 3, \frac{7}{2}, 4$, and $\frac{9}{2}$. For $I=1, \frac{3}{2}$, and 2 the computation was made for 20 values of y between y=0 and y=20, and for $\cos\beta$ in intervals of $\Delta \cos\beta=0.05$. For $I=\frac{5}{2}, \dots, \frac{9}{2}$, the calculations were performed for 12 values of y between y=0 and y=4, and for $\cos\beta$ in intervals of $\Delta \cos\beta=0.1$.

Typical curves for I=2 and $I=\frac{7}{2}$ are shown in Fig. 3 and Fig. 4. for three different values of β . Lists of the numerical results for I=2 and $I=\frac{5}{2}$ are presented in Table I and Table II.

The results for the different parameter series mentioned above will be published as a special report.⁸ The program is written in FORTRAN II and allows the computation of the eigenvalues and eigenvectors for any value of I, y, and $\cos\beta$. Copies and details are available on request.

ACKNOWLEDGMENTS

The authors are indebted to Professor K. Siegbahn for his kind support and his interest in this work, and to Professor K. Alder of the University of Basel for many discussions and advice concerning the formulation of the theory. We would also like to thank Mr. H. Johansson and Mr. B. Kleist for performing the test runs of the program on the IBM-7090 in New York and to IBM-Sweden for granting free machine time for this purpose. We are grateful to the MURA Computer group for their cooperation in using the IBM-704 computer. One of us (W.S.) would like to thank the "Schweizerische Kommission für Atomwissenschaft" for financial support. One of us (R.M.S.) is indebted to the National Science Foundation of the United States for their support during his stay in Uppsala.

⁸ Submitted for publication to the U. S. Atomic Energy Commission Technical Information Service.