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Lamb Shift Excitation Energy in the Ground State of the Helium Atom*
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The evaluation of the Lamb shift excitation requires a knowl-
edge of the oscillator strengths for transitions to all states which
may be reached by dipole transitions from the ground state. The
oscillator strengths for transitions to the continuum states (1s,~p)
and (2s, ep) are calculated, using the 18-parameter ground-state
wave function of Chandrasekhar and Herzberg. For the excited
state in the continuum, a Hartree wave function is evaluated
and used. It is shown that the error due to exchange and polar-
ization in the f value for high excitation energy E of the p-state
electron is only of relative order 1/E, i.e., of absolute order of
E ".The f values for transitions to states other than (1s,ep)
and (2s,ep) are also considered.

An accurate value of the average excitation energy is obtained

by combining these results with a method previously used by
Pekeris. The value obtained by this method is 80.56~0.90 ry,
where the limits represent an estimate of the probable error. The
corrections of order n4 ry to the ionization energy are estimated
roughly and are found to be —0.025&0.01 cm '. When they are
added to the radiative corrections of order o,' ry evaluated by
Kabir, Salpeter, Sucher, Dalgarno, and Stewart, the value of the
Lamb shift becomes —1.361+0.021 cm ', where the error is
mainly due to the uncertainties in the estimate of corrections of
order n4 ry and the value of the average excitation energy. With
this value of the Lamb shift correction, the theoretical ionization
energy becomes 198310.665 cm ', compared with Herzberg's
experimental value of 198310.8+0.15 cm '.

INg=198 317.3743~0.0221 cm '. (2)

The bulk in the uncertainty comes from the uncertainty
of ~0.012 cm ' in the present value of the Rydberg
constant. ' Adding the sum of the relativistic and mass
polarization corrections as evaluated by Pekeris,
DIg=5.3485a0.0005 cm ', the theoretical value of the
ionization energy becomes

I. INTRODUCTION

ECENT experimental measurements of the ion-
ization potential of He initiated by Herzberg''

have stimulated interest in accurate solutions of the
wave equation for two-electron atoms. The best experi-
mental value for the ionization potential of helium
found by Herzberg' is

I, ~=198 310.8~0.15 cm

The best nonrelativistic eigenvalue obtained by
Pekeris4 is

ion, and is given by

8 s3 —
1 E, 19-
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where n is the fine structure constant, 1(137.036. For
helium, EL,1 has the value 3.534 cm '. The second
term on the right-hand side of (4) arises principally
from the self-energy corrections and the change of
energy arising from the polarization of the vacuum by
the nuclear potential, giving

8 1 kp 19
Er, s

———sn'(fI(rr)+b(rs))pp 2 ln ——ln—+—,(6)
3 ry 30

where (8(ri)+5(rs)) pp is the expectation value, in atomic
units, of the operator P(ri)+8(rs) j for the ground state
of the helium atom and kp is the average excitation
energy defined by

(3)
lnko= ro oslnoi odf o

Isirr+DI~=198 312.026a0.023 cm '.
~.o'df o, ro o=&.—&o, (7)

The leading terms in the Lamb shift, to be added to
the ionization potential, are represented' by

IL +L,1 @L,2 +L,2' ~

Here EL,-i denotes the Lamb shift of the one-electron

where the summation or integration extends over all
states to which dipole transitions are possible from the
ground state, and f„p, defined by
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(8)

is the oscillator strength for transitions from the ground
state to the state m. Here Ep and E„denote the energies
of the initial state and of the eth excited state, respec-
tively. Allowing an error of 0.01%%u~ in the expectation
value of the operator $6(ri)+8(rs) j evaluated by
Pekeris, ' EL,2 has the value

Er„s=5.009+0.8235~0.0005 cm ',

where 8 is de6ned by

»&o= 4.390+8,
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II„=1.336+0.8235+t1a0.00152 cm ', (12)

where g represents the contribution of the higher order
radiative corrections, i.e., n' ry, etc.

The present uncertainty in the Lamb shift correction
(12) stems primarily from the calculation of the
excitation energy ks in (6) defined by (7). The calcu-
lation of lnko requires a knowledge of the oscillator
strengths for transitions to all the excited states which

may be reached by dipole transition from the ground
state; Kabir and Salpeter, ' making use of the approxi-
mate values of the oscil1.ator strengths available at that
time, arrived at an estimate of 4.39 for 1nko, with an
estimated uncertainty of the order of a0.2. This
leads to an uncertainty of the order of ~0.2 cm ' in the
value of the Lamb shift and we see that a much better
accuracy is needed before the Sucher's term can be
compared with experiment. Incidentally, this is the
only term which requires the use of the fully relativistic
treatment of the two electrons in an external Ge}d and
tests the Bethe-Salpeter equation in detail. The main
objective of this paper is to evaluate in&0 more accu-
rately so that the Bethe-Salpeter equation may be put
to a more severe test.

Most of the contribution to the numerator and the
denominator in (7) comes from the oscillator strengths
for the transitions to those states in which one of the
electrons is in an s state and the other electron is in a
p state. In Sec. II we describe in detail the calculation
of the f values for transitions to (1s,lp), (1s,ep),
(2s,np), and (2s,ep) 'I' states and discuss qualitatively
the order of magnitude of the oscillator strengths for
transitions to all the other doubly excited states
belonging to the class of (s,p) 'I' states.

In Sec. III, we expand the momentum space tran-
sition matrix element in a Born series and describe a

' H. Araki, Progr. Theoret. Phys. Japan 17, 619 (1957).' J. Sucher, Phys. Rev. 109, 1010 (1958).
T. Kinoshita, Phys. Rev. 105, 1490 (1957).

"K.A. Hylleraas, Z. Physik 54, 347 {1929).
"A. Dalgarno and A. L. Stewart, Proc. Phys. Soc. (London)

75, 441 (1960).

and is the error in Kabir and Salpeter's' value for lnko.
The third term of the expression (4) is

El.,s (28/——3)n'(5(r& )s) Min(1/n) ry, (11)

and has the value —0.2082 cm '
Araki' and Sucher' have calculated the remaining

corrections of order n ry using the relativistic two-body
equation, extended to the case where an external Geld

is present. Sucher has evaluated these terms using the
39-parameter wave function of Kinoshita' and the
six-parameter wave function of Hylleraas" and he Gnds

an additional contribution of amount —0.072 cm '.
An improved evaluation by Dalgarno and Stewart"
gives —0.069, with an error presumably less than
a0.001 cm '. Including this correction, the total Lamb
shift correction becomes

method to obtain the Grst two terms of the asymptotic
series for the oscillator strengths for transitions to
(ms, ep) states. We show that the sum of f values for
transitions to all the (ms, ep) and (e's, ep) 'I' states
varies as

with E the energy of the p electron when the p electron
has high excitation energy.

Section IV deals with the evaluation of lnko dehned
by (7) and required for the calculation of Lamb shift.
In addition to the usual method of evaluating lnko,
we shall make use of a slight extension of a method
used by Pekeris' to obtain a more accurate value of
lnko. This section also contains a summary of results.

II. OSCILLATOR STRENGTHS FOR THE
TRANSITIONS TO THE SINGLY AND

DOUBLY EXCITED STATES

In this section we outline the ca,lculation of the
oscillator strengths for transitions to the singly and
doubly excited sta, tes needed for the evaluation of lnko
defined by (7). We need mainly the sums p„a& ssf„z
and P„a&„s' in~„sf„s and will state the errors in the
subsequent discussion for the sum P„~„s'f„s

The calculation of the average excitation energy ko
requires a knowledge of the oscillator strengths for
transitions to all the 'I' states which may be reached
by dipole transition from the ground state '5. %e shall
discuss here only the oscillator strengths for transitions
to those 'I' states in which one of the electrons is in an
s state and the other electron is in a p state. The rest
of the transitions have been discussed by Kabir and
Salpeter and their arguments indicate that the contri-
bution of these states to Q„~„s'f„s is of the order of
1 or 2y.

~e now discuss the contribution of the various
groups of states belonging to the class of (s,p) 'I' states.
Since the exact wave functions of helium are not known
for any of the states, we are obliged to make use of
oscillator strengths calculated with approximate wave
functions.

(i) The oscillator strengths for the lowest two states
of the principal series (1s,ep) 'I' were calculated using
a 6-para, meter HyH. eraas wave function for the ground
state and variational wave functions"" for the excited
states. Our f values (Table I) should be in error by
less than a0.05 for (1s,2p) and ~0.02 for (1s,3p) and
agree with the values used by Dalgarno and Stewart"
to much higher accuracy.

The f value for the transition to the (1s,4p) 'I' state
was calculated with a six-parameter wave function for
the ground state and a, product wave function of

"E.Eckart, Phys. Rev. 42, 632 i1932l."L.Goldberg and A. M. Clogston, Phys. Rev. 56, 696 (1939).' A. Dalgarno and A. L. Stewart —Proc. Phys. Soc. (London)
76, 49 (1960). Dr. C. Schwartz has informed us that he obtained a
value 4.381 for lnk0 with an uncertainty of &0.01.
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TABLE I. f values for transitions to (Is,ep) and (2s,ep) 'I states.

(is,up)
(E„—Ep) in

1.5593
1.6966
1.7448
1.7671
1.7792
1.7866

'I' states

J 0

0.2717
0.0706
0.0329
0.0177
0.0115
0.0080

(2s,np) 'I' states
(E,.—Ep) in ry f„p

4.5593 0.00503
4.6966 0.00039
4.7448 0.00020
4.7671 0.00010
4.7792 0.00007
4.7866 0.00005

TABLE II. f values for transitions to (is,~p) and (2s,~p) 'I' states.

hydrogen eigenfunctions with charge Z for the s electron
and Z —1 for the p electron. From n=8 to rz= ~ we
used the form f„o——C/rz'. From requirements of con-
tinuity it follows that the constant C equals 2df/dE~
evaluated at the series limit. Our results (Table II)
with an 28-parameter wave function for the ground
state and Hartree wave function for the p electron in
the continuum give C=3.3792. The f values for
transitions to (1s,zzp) 'P states are given in Table I.

Our value for the contribution of the principal series
to g„co„,'f„o is 1.176~0.20 ry-', compared with Kabir
and Salpeters' 2.29 ry' and Dalgarno and Stewarts'
value of 2.22 ry'.

(ii) Our re-evaluation of the oscillator strengths for
transitions to the (2s,zzp) 'P states is given in Table I.

We used a six-parameter ground-state wave function,
the variational excited state wave function given by
Vinti" for x=2 and hydrogenic product wave function
(Z= 2 for 2s, Z= 1 for 3p) for zz= 3. For I&8 we again
used the asymptotic form f„o=C/n' and used inter-
polation for hz=4 to 7. The contribution to p &o„ozf 0

of transitions to states (2s,zzp) is 0.128 ry' with an error
of about ~0.20 ry'. Previous values of Kabir and
Salpeter' and Dalgarno and Stewart, ' both based on
an estimate by Vinti" for (2s,2p), are about twice of
ours.

(iii) Using Vinti's" method, we estimate that the
transition to (ms, zzp) 'P states (m) 2) contribute to
g„ru„o'f„o approximately 0.054 ry'.

(iv) We now outline the calculation of the oscillator
strengths for the transitions to (rzs, ep) 'P states.

The wave equation for the two electrons moving in
the field of the helium nucleus has the form

2 (Viz+&z')+F+ + P(ri, r,) =0, (13)

where r& and r~ are the coordinates of the two electrons.
If the p electron in the continuum has the wave number
k and the electron in the ns state has the energy E„,
the total energy E is given by

(14)

Energy of excitation
in ry

0.0
0.25
0.50
0.75
1.0
1.25893
1.58489
1.99526
2.51189
3.16228
3.98107
5.01185
6.30958
7.94339

10.0
12.5893
15.8489
19.9526
25.1189
31.6228
39.8107
50.1185
63.0958
79.4339

100.0
125.893
158.489
199.526
251.189
316.228
398.107
501.185
630.958
794.339

1000.0

(is,~p) 'P states

1.6896
1.0392
0.70153
0.51070
0.39380
0.31440
0.24760
0.19152
0.14486
0.10614
7.4758X 10-'
5 0286X10 '
3.2292X10 '
1.9836X10 '
1.1691X10 '
6.6589X10 '
3.6840X10 '
1.9842X 10-3
1.0443X10 '
5.3829X10 4

2.7280X10 4

1-3606X10 '
6.6919X10 '
3 2541X10 '
1.5658X10 '
7.4751X10-6
3.5375X10 '
1.6644X10 '
7.7886X10 '
3.6259X10 '
1.6806X10 '
7.7577X10-'
3.5713X10 '
1.6370X10 s

7,5036X10-'

(2s,ep) 'E states

1.0426X10 '
9.0855X10 '
8.0245 X10-3
7 1396X10 '
6.3849X10 '
5.7077X 10-3
4.9810X10 '
4 2238X10 '
3.4660X 10-3

2.0774X10 '

1.0446X10 '

4 3521X10 4

1.5177X10-'

4 5394X10 '

1.2105X10 '

2.9887X 10-6

7.0146X10 '

1.5884X10 z

3 5064X10 '

7.5814X10-9

1 6122XIO '

In the Hartree approximation p(ri, rz) is approxi-
mated by

2

&( i r-) =- u. (ri) -X.„(r ) Vi'"(&2, pz) (15)

where u„(ri) is simply the hydrogenic ns state wave
function for z=2. The radial wave function x,„(rz) for
the continuum p electron satisfies the equation

2
x,„(r)+ &.'- V..(r) ——&,„(r)=0,

dr r2

2 s
V„„(rz)= u„*(ri)2 ———u. (r,)d'r,

rl2 r2

Writing the potential V„„(r) in the form

V„„(r)=2Z„(r)/r,

(16)

iPx*iPe, d'r, d'rz 8(F. 1")—— —(17)

'~ J. P. Vinti, Phys, Rev. 42, 632 (1932).

where Z„(r) is the effective charge seen by the con-
tinuum electron at radial distance ri, we find

Zi(r) =1+(1+2r)e '" Zz(r) =1+(1+—r+rz'+r')e '"

for a bound 1s and 2s electron, respectively. With P
the symmetrized form of Eq. (15) and F the energy
in Eq. (14), we normalize x(r&) so that
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Because of the 5-function normalization, we shall obt ain
the differential oscillator strength

=-:(~i—~o) Z
dE m=1,p, 1

with the matrix elements

(m~M*~0)= Q*M*@d'rid'rg.

The summation is over the magnetic quantum number
m of the excited p electron in a continuum state.

%e shall consider only the momentum matrix
elements

M„p*—— e —+ 0
L~,—+0 ~31 ~S2

In evaluating M„p* we use for the ground-state wave
function P(r, ,r,), the 18-parameter wave function of
Chandrasekhar and Herzberg. ' ' After performing
angular integrations and integration over one of the
radial variables, the momentum matrix elements are
reduced to the form

where
E—P.'0

x„,(r)F„(r)dr, (20)

(r) —p g r g 'zkr+ Q S r—zz~ (z+k)r—
m=1 m=1

and Ak=32cV~/K3 for transitions to (1s,eP) 'P states.
Here E is the normalization constant of the ground-
state wave function. The expressions for the coeS.cients
I. and S as functions of the nuclear charge s and the
variational parameters of the ground-state wave
function are given elsewhere. "

Similarly, the matrix element for the transition to
(2s, ep) 'P state can be written as

8-V~ /2 '
M „,"=-

~

— x„(r)F,(r)dr.
L—I:,&3

(21)

"M. H. Zaidi, Cornell Ph. D. thesis, 1960 (unpublished).
'7 D. R. Hartree, Ãznnerical Analysis (Clarendon Press,

Oxford, 1952), p. 126.

The function F2(r) can be obtained from Fi(r) by
applying the operator (1+8/BZ) to Fi(r) and setting
Z equal to unity after the differentiation has been
performed. The numerical values of the coefficients I,
and S in the overlap functions F,(r) and F2(r) can be
found in reference 16.

The radial differential equations (16) were integrated
numerically, using the formula for two-fold integra-
tion. "The normalizat. ion constant of the wave function
was determined by joining the numerical solution to
the K.K.B. wave function at the maximum or mini-

FIG. 1. The zero-energy wave functions of the p electron moving
in the Geld of effective charges Z1(r) and Z2(r).

mum, in the region where the W.K.B. solution is valid.
At zero energy, ),c„(r) is a linear combination of the
Bessel and Neumann functions outside the Hartree
potential and is given by

x,„(r)= (2r)'*$J3L(8r)'] cos8 —X3[(8r)'*)sin8]. (22)

The phase shift 8 was determined from the location of
the zeros of the numerical solution and the normal-
ization constant obtained by joining the numerical
solution outside the Hartree potential to (22). The f
values for transitions to the (1s,ep) and (2s, ep) 'P
states were calculated on the Cornell Burroughs 220
computer and the results are tabulated in Table II.

In I ig. 1 we illustrate the zero energy wave functions
of the p electron moving in the fields of charges Zi(r)
and Z2(r) along with the hydrogenic wave function
with charge Z—1. The phase shift. is quite small when
the bound electron is in the is state. Incidentally, this
shows that the use of Hartree wave functions at very
low energies would not yield f values for transitions to
(1s,ep)'P states substantially diGerent from those
obtained from the assumption of full screening.

The f values of the spectral head for transitions to
(1s,ep) 'P states turns out to be too large compared to
Huang's value" and most of the increase in the f value,
thus, arises from the improvement in the ground-state
wave function. However, the recent calculations of the
contribution of the free-free transitions to the absorp-
tion coefficient of the negative hydrogen ion indicates
that the exchange and polarization reduces this contri-
bution by 50%. Therefore, our f values for low exci-
tation energies for transitions to (1s,ep) 'P states may
be about 10% higher than the actual values.

(v) For the remaining doubly excited states in which
at least one of the electrons is in the continuum, co is
not bounded, and it is quite possible that they make
large contributions to the sum rules P„cv pf p and
P„a&„o'f„o, so we must consider them more carefully.

However, most probably the important contributions,
if any, will come from those states in which one electron
remains in an s state; so we erst consider transitions
to ™,ep) and (e's, ep) 'P states.

For the states in which the p electron has high

"S.S. Huang) Astrophys. J. 108) 354 (1948).
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l

)p4
I

lpgalp lp~
E~in Ry

Fin. 2. The weight functions p&pd f/d(p derived from the f values
for transitions to (1s,pp), (2s,pp), and (rr)s, ~p) 'P states ()rI& ).
The (2s, pP) 'P-state weight function is multiplied by 22.047 and
the weight function of (ms, ~p) V' states is multiplied by 34,036
to have the same asymptotic values at high energies.

III. ASYMPTOTIC OSCILLATOR STRENGTHS

In the calculation of lnko, high energies are important;
therefore, the Born series for the oscillator strengths is
of interest. The coefFicient of the term of relative order
1/k in the asymptotic form of the oscillator strengths
for transition to (1s,ep) 'P states is —pr, when the p
electron is described by a hydrogenic wave function
with charge Z=1 (full screening). However, the real
coefFicient is —2pr, as though the p-electron wave
function were a hydrogen eigenfunction with charge
Z =2 (unscreened). For this reason, the Har tree
potential was used since it yields the correct value of
the coefFIcient of the term of relative order 1/k.

At low energies, however, the Hartree wave function
for the p electron does not differ very much from the
hydrogenic wave function with charge Z=1 (Fig. 1),
if the bound electron is in the is state. Therefore, the
main error at low energies in K.S. was due to the
neglect of the electron exchange and polarization,
rather than the Hartree potential.

excitation energy, the sum of the f values for transitions
to (ms, ep) (ris) 2) and (e's, ep) 'P states is given by

8 45E "(1 2'/E'*+ —), (23)

which is roughly 3% of the corresponding f value for
transition to (1s,ep) IP states. Most of the contribution
to (23) comes from s states of low excita, tion energy,
f when the s electron has high excitation energy, theorw e

~
Q/

4f values vary with the s electron energy as E '. This,
then, suggests tha, t the contribution to the f sum of
tlaIISltl011S tO (mS 6P) (rrs) 2) (e S eP) ( $1e'LP) P StateS

may be about 4 to 5 percent. In Fig. 2 we exhibit the
shape of the weight functions o)'d f/do) derived from the

f values for transitions to (is, ep) and (2s, ep) 'P states
(Table II) and from (23). The weight functions have
been normalized to give the same asymptotic value at
high energies.

+ x+ ~~)~ (p)v (.p ~)I-(i ' &')—,.
'm

where k '=2(E—E„) and

Z
V,. = d'r, «,„"(r,)2 ———«„(r,).

~1'2
(24)

The diagonal term of the series represents the contri-
bution of the static potential of the nucleus and the
bound electron. The oG-diagonal terms of this series
represent the nonstatic effects of the bound electron
and are termed the "polarization" effects. When we
evaluate the second term of the Born expansion of
matrix elements, it will become evident that the
polarization contributes only to relative order 1/k'.

If one assumes that only those intermediate states
contribute in which the bound electron is in a state of
low excitation energy, then k ' can be replaced by k'.
Ke can now sum over the intermediate states and the
expression for iP(PI, Ps) simplifies to

0(p, p ) =«-(p )&(p —k)+
rr'(Pss —k') lp, —ki'

XLZ«„(pr) —«„(p,+p,—I)). (25)

We require the matrix element D; of the operator
(pi+ps) between the symmetrized form ip(pr, ps) of
Eq. (25) and the ground-state momentum space wave
function p(pr, ps). Using Eq. (25) and with the normal-
ization factor (4prk)'* for iP, we have

D,==Dp,+Di, ,

Dp, (girk) 1 d'pi « *(pi) (pr+k——)~t (p„k),

Kabir and Salpeter have given a method to determine
the asymptotic form of the transition matrix elements
when the excited electron may be described by the Born
approximation. We shall make use of the K.S. method
to determine the high-frequency behavior of the matrix
elements calculated with various Hylleraas-type wave
functions for the ground state and compare them with
the matrix elements calculated directly. We shall also
calculate the next term of the asymptotic series and
also obtain the 6rst two terms of the total contribution
of all the excited states.

We consider a wave function which asymptotically
represents one bound-state hydrogenic (Z=2) electron
with wave function u plus one free electron of momen-
tum k. In Born approximation the potential V(rr, rs)
=2(1/rip Z/r—i) is treated as a perturbation. Up to
first order in this perturbation, the Born approximation
wave function in momentum space is then found to be

lt (p, p ) =«-(p )~(p —k)
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(8nk)l d pld p2

(pi2 —k~)
~
p,—k~~

(Eo—lpga —kk')4 (fii,k) =
27r2

d'q( —Zy(pi+ q, k)

—Zy(P„k+q)+g(y, +q, k —q]/il'. (27)

XLZu-*(1 )—u-*(1 i+li2 —k) j(1ii+P~)A (1i,l ~). (26)

The lowest order Born approximation is contained
in D0;. For its evaluation we can use a simpli6ed form
of the ground-state wave function p(p, k), which satisfies
the equation

FIG. 3. Contour C.

where the contour is shown in Fig. 3. One 6nds that
only the pole at p2=ke" contributes to order Do;/k.
Approximating g(pi, yg) as in Eq. (28), one finds

When either of its arguments greatly exceeds the Bohr
momentum, g(p, k) falls off rapidly (with negative
fourth power of this argument). Thus for large k, the
main contributions to the right-hand side of Eq. (27)
comes from the second term, from regions of the inte-
grand for which ~il+k~ is of the order of the Bohr
momentum. Omitting the other two terms and replacing
1/g' by 1/k2 in the integrand, one finds

e(1 i,k)— d'r y (r,0)e—"» " (28)

Substituting this expression, whose error is only of
relative order 1/k', into Eq. (26) gives

8Zk, k
—'i' d'r u„"'(r)y(r,0).

df 512
(b(ri))OOE i~2=CE

"dE 3
(30)

Using the 39-parameter ground-state wave function
one 6nds C=309.09. For high excitation energies the
doubly excited states thus contribute only about 7%
to df/dE.

The error in Eq. (29) for Do; is only of relative order
1/k', but Di; contains a term of relative order 1/k
which we now calculate. Let I be the 6rst of the two
terms, for D» in Eq. (25). This integra, l can be trans-
formed into the contour integral

d pi u„(pi) tS sln8 cose dp2
0 C

P"e(vi, fii)
y —, (31)

(p 2—k2) (p, ka'~) (p, —kg "'~)—

The integral in Eq. (29) can be evaluated quite accu-
rately when n stands for the 1s state and D0; con-
tributes 287.2E 7" to df/dE. The sum over all e can
be evaluated even more simply by means of a sum
rule and gives

I= 8~Zk —'" dr
—u„*(r)p(r,0). (32)

df 2~ G(E)———287 6E '& 1——+ —.+ ),dE P2 J~'
(33)

where G(E) is a slowly varying function of energy.
For E& 1000 ry it is quite adequate to use the asymp-
totic form obtained empirically from the f value at
E= 1000 ry. The asymptotic form is found to be

df 2m 23.77—= 287.6E-&i' 1——+
dL&' E' E

(34)

The exchange amplitude, which has also been
omitted, contributes to the Born approximation to
relative order 1/k', and is thus unimportant at high
energies. However, at low energies the electron exchange
is very important and may alter the oscillator strengths
substantially.

In Fig. 4 we illustrate the values of the weight
function obtained from the momentum matrix elements
(20), from the one-, two-, and three-term asymptotic
forms, from the f values given by Kabir and Salpeter.
It is easy to see that Kabir and Salpeter did not have
the correct coe@cient of the second term of the asymp-
totic form.

Finally, we compare in Table III the coef6cients of

One can show that the second term of D~; contributes
only terms of order Do;/k'.

One can also evaluate the first two terms in the Born
expansion for the momentum space wave function in
which the continuum electron is considered to move in
the Hartree potential. The 6rst term is identical with
the first term in Eq. (25) and leads again to Do;. The
contribution to D, of the second term can be evaluated
easily and, to order Do,/k, is found to be identical with
Eq. (32). This shows that our use of the Hartree
approximation contributes only errors of relative order
1/k' to df/dE for high excitation energies.

When the bound electron is in is state, the asymptotic
oscillator strengths are given by the expression,
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TABLE III. Values of the asymptotic coefhcients.

20 Wave
function

1-parameter
3-parameter
6-parameter"

10-parameter b

14-parameter'
18-parameter'
10-parameterd
39-parameterd

181.8
271.1
290.9
284.2
285.2
287.599

255.4
280.0
288.3
286.3
286.7
287.157
286.68
287.199

1s state
Momentum

matrix K.S.
elements method

15.47 14.08

13.04455 13.2399

2s state
Momentum

matrix K.S.
elements method

I

IO

1

10

I

IO a See reference 10. b See reference 19. & See reference 2. d See reference 9.
Pro. 4. The weight functions s&'d f/Cku for transitions to (1s,ppl 'P

states obtained from the momentum matrix elements, from the
one-, two-, and three-term asymptotic forms, and from the f
values given by Kabir and Salpeter.

IV. CALCULATION OF Ao AND SUMMARY
OF THE RESULTS

Recently Pekeris4 has given a method of inferring
the order of magnitude of lnkp. We outline his method
below. Let S(k) and P(k) be defined by

S(k) =Q„(E„—Ep)"f„p, P(k) =d lnS(k)/dk. (35)

Then lnkp is equal to P(2). Now the various S(k) are
known from the sum rules:

S(—1)=-'( + )'&oo,

S(0)=Z,

S(1) sEp+(Pl p2)ppy

(36)

(3/)

(38)

S(2)=(16 /3)(~( )+&( ))oo (39)

It is also known from the work of Kabir and Salpeter'
that S(2.5) = ~. By fitting a polynomial for 1/S(k) at
the points k=1, 0, 1, 2, and 2.5 and evaluating the
derivative of the polynomial at k=2, Pekeris' obtained
the value 4.5 for Inkp.

We shall now describe the calculation of the sum
rules S(—1), S(0), S(1), and S(2) and the sum S'(2)
using the oscillator strengths discussed in Secs. II and
III. The evaluation of the contribution of transitions
to the discrete states is straightforward so we shall now
discuss the calculation of the integrals over the f values

the asymptotic oscillator strengths derived from Dp,.

with those obtained directly from the momentum
matrix elements (20), for the various ground-state
wave functions. It is evident that the coefficient
derived from Dp; would be more accurate since it is
obtained by iterating the wave equation satis6ed by
the ground wave function in momentum space. The
two methods should yield identical results for the exact
ground-state wave function. It is seen from Table III
that the values of the asymptotic coefficients obtained
from the two methods get closer and closer as the
number of parameters increases.

for transitions to the (s, ep) 'P states. These contri-
butions may be classified into three groups.

(i) The integrals over the f values for transitions to
(1s,ep) 'P states are evaluated numerically from E=O
to 1000 ry. For E)1000 ry, the asymptotic formula
(34) is used, and integrations performed analytically.

(ii) For transitions to (2s, ep) P states, the integrals
over the energy interval E=O to 631 ry are evaluated

numerically. For E&631 ry the asymptotic form is
found by using the f value at E=631 ry obtained from
the machine calculation and is given by

2~ 18.9
=13.045E—'"i 1——+

r.
(40)

(iii) As already discussed in Sec. II, the contribution
to the f sum of the transitions to states (ms, ep) (m) 2)
and (e's, ep) may perhaps amount to 4 or 5% of those
from (1s,ep) 'P states, and may, in fact, be proportional
to them in the whole energy range. However, we have
pointed out in the last section that the f values for
transitions to (1s,ep) 'P states are probably 10%higher
than their actual values for low excitation energies. In
order to compensate for this overestimate, the f values
for transitions to (ms, ep) (m) 2) and (e's, ep) states are
taken to be zero from E=O to E=4vr',. from E=4vr' ry
to infinity the asymptotic form (23) is used.

The results of integrations along with the contri-
bution of the discrete states are displayed in Table IV.
The sums S(—1), S(0), S()), and S(2) calculated here
differ by a few percent from their more accurate values
obtained from the sum rules. The ratio of S'(2) and
S(2) yields

lil (kp/ry) =4.436, (41)

We shall now use a slight modification of the Pekeris
method to obtain a much more accurate value of the
average excitation energy. Let E(k) be the difference
between the value of S(k) obtained from the sum rule
and that evaluated by using the approximate f values;
then the error in S'(2) is given by E'(2). We also know
that E(3.5) = po since the error in f„p varies as E 'i'
with the energy of the electron for high excitation
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TAnrz IV. Various contributions to the sums S(k) and S'(k).

Sum

~(—1)
S(0)
S(1)
S(2)
S'(2)

(1s,ep)

0.53985
1,5771
6.8522

109.445
487.687

(2s,ep)

0.00384
0.0282
0.3180
5.578

24.897

(1s,lp)
0.27188
0.4421
0.7194
1.176
0.5802

(2s,np)

0.00130
0.0060
0.0277
0.1284
0.1934

(ms, ep) (m)2)
(c's,ep)

0.00000
0,0001
0.0060
1.4130
9.261

Total

0.81687
2.0535
/. 9233

117.740
522.618

Exact value

0.75249756
2
8.1674502

121.3354

energies. By fitting polynomial for E(k) at k= —1, 0,
j., 2, and 3.5 and evaluating the derivative of this
polynomial at k=2, we get

E'(2) =9.913. (42)

For the helium ion EI, ~' has the value 0.06| cm '.
There are also corrections of relative order Z'n' arising
from the fourth-order radiative corrections but they
are expected to be much smaller than the corrections
of relative order Z'n'

~

For the two-electron atom, there are a large number
of corrections of relative order n' ry (i.e., Z'n', Z'n' inn,
Z'n', Zn4 inn, and Zn4), but the leading terms again will

be of relative order Z'n4. These terms arise from the
relativistic corrections to the Lamb shift terms E»„2
and can be estimated quite easily if one assumes that

"S.Chandrasekhar, D. Elbert, and G. Herzberg, Phys. Rev.
91, 11/2 (1953).

'0 M. Baranger, H. S. Bethe, and R. P. Feynlnan, Phys. Rev.
92, 482 (1953)."R.Karplus, A. Klein, and J. Schwinger, Phys. Rev. 86, 288
(1952).

Adding E'(2) to S'(2) and dividing by the value of S(2)
obtained from the sum rule, we get

ln(ko/ry) =4.389+8', (43)

which differs very little from the value obtained by
Kabir and Salpeter. The value of lnko obtained by
Pekeris' differs from (43) roughly by 2%. It would
then appear most likely" that the error in E'(2) is not
more than 10% and that 6' almost certainly lies between
~0.01. Dalgarno and Stewart" obtain a value 4.37 for
lnko with a probable error of +0.03.

There remains to be discussed the contributions of
relative order n' ry; for the one electron ion, the major
contribution comes from the relativistic corrections to
the Lamb shift and is of relative order Z'n4. This
correction has already been calculated by several
authors"" and is given by

z'
Er, r' ——8vrZ'n4 —1+ ——ln2+ ry. (44)

128 2 192

where the expectation value of the operator $6(rr)
+8(rs)j is to be evaluated with the Hartree wave
function for the ground state. For the ground state of
helium E» ~' has the value 0.086 cm '. Thus the
corrections of relative order Z'n4 contribute to the
ionization energy, the amount

(46)

Since we have neglected a large number of corrections
of order Z'n4 inn, Z'n', etc. , the uncertainty in the value
of the corrections p of order n' ry is probably ~0.01
cm ' using the estimate (46) for r), and putting 6'
= a0.01 in Eq. (43), I„q becomes

I&», = (198 310.665~0.043) cm '. (47)

This is in excellent agreement with the experimental
value, Eq. (1).

The major part of the uncertainty in the theoretical
vulue of the ionization energy is due to the uncertainty
in the experimental value of Rydberg's constant
(109 722.267&0.012 cm '). For an exact value of the
Rydberg constant, the error in I&& would only be
+0.02 cm ', appreciably less than the Sucher term of
—0.069 cm '. However, the present uncertainty in the
experimental value in Eq. (1) is about twice the Sucher
term and a significant comparison of Sucher term with
experiment must await a further refinement in the
experimental determination of Rydberg constant and
the ionization energy.
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the electrons move independently of each other in a
fiel V(r). On the basis of such a picture one would
expect these corrections to be given by

11 1 5
s~, '=8 s' '(l(r, )+5(r,))(1+ ——ln2+ ~, (41)
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