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The fine structure separations of para and ortho H; are calcu-
lated by assuming that besides the spin-orbit, spin-other orbit,
and spin-spin interactions, no other perturbation contributes
significantly to the splitting. The interactions are expressed as
contractions of irreducible tensors, and the resulting energy sepa-
rations are obtained by applying the theory of angular momentum
to a representation in strict case & coupling. It is shown that for
Il states the Y2 component of the quadrupole-type spin-spin
interaction gives nonvanishing matrix elements which arise from
the coupling of the electronic states ¥.(A=+1) and ¥,(A=—1).
The additional term in the spin-spin interaction yields anomalous

I. INTRODUCTION

HE work of Kramers! on the fine structure of
diatomic molecules in T states has been the basis
for many subsequent calculations in this field.~¢ The
modified spin-spin Hamiltonian of Kramers, however,
cannot be applied to all states of a diatomic molecule
since it depends on special symmetries of the system.
In particular for 11 states in case b coupling, there is an
additional term not present in Kramers formula which,
especially in H,, makes a considerable contribution to
the fine structure splitting.

The first measurements of the fine structure splittings
of a II state in H, have been made by Foster and
Richardson.” They observed a splitting of each J level
into a “regular’ and “irregular” component, but they
were unable to completely resolve the fine structure.
Only recently, Lichten® resolved the fine structure of
the lowest V=2 rotational level of para Hs by molecular-
beam magnetic-resonance techniques. It is apparent
from his results that neither the spin-orbit nor the
spin-spin interaction alone can explain the observed
splittings and level order. Moreover, it is necessary to
include the spin-other orbit interaction in order to get
the right sign of the spin-axis interaction constant [see
Eq. (17) and Eq. (48)].

In the theory presented here it is assumed that only
the spin-orbit (including spin-other orbit) and the
spin-spin perturbations contribute significantly to the
fine structure splitting. The mixing in of other states
is negligible and the spin-rotational interaction is quite
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alternations of the fine structure separation from one rotational
level to the next, and produces a splitting of the J levels into a
“regular’” and an ‘‘irregular” component. This splitting is quite
different from the usual A-type doubling which arises from the
interaction of the orbital angular momentum with the rotation of
the nuclei. In low rotational states of H; the contribution of the
Y5? component of the spin-spin interaction is considerably larger
than the A-type doubling. The theoretical predictions for the fine
structure of the ¢ 31, state compare favorably with experimental
values.

small. The perturbation Hamiltonian is obtained from
the Pauli approximation of the Breit equation omitting
only the contact term in the spin-spin Hamiltonian Hj
which does not contribute to the level splitting.? The
representation is set up in the Born-Oppenheimer
approximation which is justified because of the large
proton-electron mass ratio. Also, in this approximation
vibrational and rotational states have a definite
meaning.

II. ELECTRONIC WAVE FUNCTION

Since we are dealing here with a homonuclear di-
atomic molecule, the wave function must exhibit all
the required symmetry properties. If we denote by ¢
the normalized product of an invariant function under
exchange of electrons, orbits, and spins, and two one-
particle eigenfunctions referred to center @ or b, having
orbital quantum numbers Iy, w1 and Iy, ms, and spins
a and g, then the following wave functions satisfy all
symmetry requirements:

V1= (1/v/8){(I+14)(I+w0)(I+0S)}¥,
Vo= (1/2/8){(I+n4)(I—E)(I+0oS)}¥,
V3= (1/v/8){({+w0)(I—E)(I+eS)}¥,
Vy= (1/4/8){ (I+14)(I+w0)(I— L)}y

(1

The symbols O, 4, S, and E denote operators which
effect the exchange of orbits, atoms, spins, and elec-
troms, respectively, and the operator [ leaves the wave
function ¢ unaffected. After multiplying out the ex-
pressions of (1) one gets products such as {04S}Y,
which is a wave function obtained from the original
one (Y) by exchanging first the spins, then the atoms,
and finally the orbits. The following operator relations
can be easily verified by successive operations starting

9 H. A. Bethe and E. E. Salpeter: Quantum Mechanics of One-
am{ 871"zz)a—l',‘lectron Atoms (Academic Press, Inc., New York, 1957),
p. .
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on the right of each product.

OASE=1I, 00=AA=SS=EE=1;

OA=SE;OS=AE;OE=AS; OA=A0;SE=ES;etc.;
ASE=0; OSE=A4; OAE=S; OAS=E. (2)

In (1) the symbols 7, w, and ¢ can assume the values

+1or —1. If (—1)4+2Xyis 41 then we have a g state,
and if (—1)b+Xy is —1 we deal with a # state. For

o= —1 the wave function describes a singlet state, and
for o=+-1 the system is in the triplet state. Finally, for
w=-1 the wave function is even and for w=—1 it is

odd. In ¥, of (1) the antisymmetry of the wave func-
tion which arises from the exchange of the two electrons
is not explicitly exhibited and the parameters 9, », and
o are not independent of each other but have to satisfy
the relation

nwo=—1, 3)
which insures that
E(¥)=—1¥,, 4)
and from (1) we also have
A@)=n¥;; O(W)=w¥;
SW)=0¥;,1=1,2,3,4. (5)

In addition, the quantization of the orbital angular
momentum along the internuclear axis yields

A= m1+m2. (6)

Furthermore, the eigenfunctions of X states either
change sign or remain unchanged under reflection
through a plane which contains the internuclear axis.
For A# 0, however, the ¥,;(4A) state is degenerate with
the ¥;(—A) state, and only the following linear com-
binations satisfy this symmetry requirement.

Vo= (LD (HA)+HE(—4)],
Vo= (VD[ (+A) T (~A)].

In the case of H, the total spin of the two electrons
is not directly coupled to the electronic state (see Fig. 1)
and we shall only use either ¥y, ¥, or ¥;, which can be
written in terms of products of spin and electronic wave
functions.

()

III. COUPLING OF THE INTERNAL STATES
AND SYMMETRY PROPERTIES OF THE
RESULTING WAVE FUNCTION

A comparison of the calculated and observed g values
for H, has clearly shown that the coupling of the elec-
tron spins to the internuclear axis is very weak and that
Hund’s case-b coupling rule is very well satisfied® (see
Fig. 1).

The electron orbital angular momentum is quantized
along the internuclear axis with components A=m+m..
The rotational angular momentum O couples with A
to form the total orbital angular momentum N
(N=A,A+1,A+42, ---). Finally N and the electron
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F16. 1. Vector coupling diagram of the internal states in H,.
The angles © and ® describe the position of the molecular co-
ordinate system with respect to axes fixed in space (X,¥,Z).

spin S couple to form J, the total angular momentum.
In the case of ortho H,, the interaction of J with the
total nuclear spin 7=1 yields the hyperfine levels
F=J,J=+1.

In the following derivation it is assumed that the
internal energy can be separated from the rotational
motion of the system. In the coordinate system which
rotates with the nuclei (molecular coordinate system)
the components of the spin angular momentum satisfy
the usual commutation relations since the total electron
spin depends on the internal coordinates only. The
transformation of the total angular momentum J from
the fixed axes to the molecular coordinate system,
however, introduces an anomalous sign in the com-
mutation relation of the new components of J.1°

If we define the reversed spin angular momentum as

S'=-S8, ®)

then in the molecular system §’ satisfies the same com-
mutation relations as J and we can use the usual
methods to obtain a wave function in the coupled
representation which is diagonal in J,=M and J?
= (N+S').

In view of these remarks we are justified by writing
the wave function for a particular fine structure level as

V=2 m C(NS'T;m, M—m)¥yu¥ s 21—m, (9)

where the Clebsch-Gordan coefficient C is defined as in

10 For a more detailed discussion of the transformation of
angular momenta from a fixed coordinate system to a reference
frame which rotates with the molecule see J. H. Van Vleck, Revs.
Modern Phys. 23, 213 (1951).
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reference 11. The wave function ¥y, is expressed in
terms of products of the rotational and electronic wave
functions.

One can show in a straightforward way that in a
homonuclear diatomic molecule the wave function ¥xp,
can only contain either ¥,© or ¥, , depending on
whether IV is even or odd.”? For a given total nuclear
spin I and symmetry g or u of the electronic wave
function, the following selection rule can be used to
decide which ¥, belongs to a particular rotational state:

S e it

X(=1¥, (10)
where on the right side the number in the parentheses
is to be used to carry out the multiplication. If the
product of the three terms is +1 (—1), then ¥,* (¥,")
is assigned to the particular level. Thus, for instance, in
the II, state of para Hy (/=0) the ¥, belongs to the
odd rotational states and ¥, to the even rotational
states. We shall show in Sec. V that the spin-spin
Hamiltonian can connect ¥,(A=-1) with ¥,(A=—1)
and the application of the selection rule (10) indicates
that this term contributes to the even rotational levels
with a certain sign and to the odd levels with the oppo-
site sign.

IV. SPIN-ORBIT INTERACTION

The Hamiltonian for the spin-orbit and spin-other
orbit interaction is obtained from the Pauli approxima-
tion of the Breit equation. In the notation of reference 9
we have for a diatomic molecule

eth

7z 2
Hy= {[—n)(pri-——-——(rr“R)
2m2ct Ly |r,—R|?
1 2
Xpl——l‘12XP1+——l’12XD2:|'Sl
712 712

Z2 Zl
+[-I2X p2+[—:—(1’2+ R) X p.

s 1 Rla

1 2
——T1 X P2+-3T21>< Pljl * 82 ] , (1)

719 712

where 1y, p1 and 13, ps are the position and momentum
vectors of electron 1 and 2 referred to nucleus 1 (with
charge Z;) and nucleus 2 (with charge Zs), respectively;
R is the internuclear separation (R originates at nucleus
1 and points to nucleus 2), and r;z=r;—71,. If we intro-

11 M. E. Rose, Elementary Theory of Angular Momentum (John
Wiley & Sons, Inc., New York, 1957).

12 See for instance, G. Herzberg, Specira of Diatomic Molecules
(D. Van Nostrand Company, Inc., New York, 1955), pp. 213,
217, 237-240,
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duce the total spin operator S=s;+s; and the orbital
angular momentum operators l;=r:X p; and L= 12X ps,
then we can show in a straightforward way that all the
matrix elements of (11) using the wave function (9)
vanish except the ones obtained from the following
reduced Hamiltonian (in atomic units)

OL2 Z1 22 3
TR [ A
4 1’13 |r1—R{3 1’123

Zs Z1 3
+(~+——~—)12- S} (12)
79 | 1'2+R‘ 8 i

For the calculation of the remaining matrix elements
it is more convenient to express 1;-S and I;- S as con-
tractions of irreducible tensors. Specifically :

- 8= (4r/3) Za(=1D)*Yre(L)Y1*(S), (13)

and
L+ 8= (47/3) Zp(— )Y # (L) Y:A(8S),
where the solid spherical harmonics Y;%(r) is defined as
Y2 (1)=r¥1(8,¢). (15)

All the variables are referred to a coordinate system
fixed in space. In terms of (13) and (14) we get for the
reduced spin-orbit Hamiltonian

Hy'= (we?/3)[£1(r1yr12) 2o a(—1)*Yi (1) Y1=(S)

(14)

Fa(rarie) 25(—1DPY P (L) YA(S)],  (16)
where we have set
Zy Zy 3
Lryrp)=—~+——""——,
7’13 Il’l-—Rls 7’123 (17)
2 Zy
Ea(rorig) = —+H——"———.
s Il’2+R{3 712

The matrix element of (16) in the coupled representa-
tion (9) now becomes

(JM;N,A,S|HY|JM; N, A,S)
ZE;Z, S CINS'T;m', M—m')C(NS'J; m, M—m)
X{Z (=) (V' | £2Y1 (1) | Nm)
X (S, M—m'|Y:*(S)|S, M—m)
+§(—1)”(Nm'| £2YiP(lo) | Nm)

X(S; M—mll‘ylﬁ(s)lsy M_—m)}' (18)

By applying the Wigner-Eckart theorem to the matrix
elements on the right of (18) and by introducing the
Racah coefficients W, it can be shown that the matrix
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element of (18) reduces to the following expression®:
(fM;ZV,A,S[H{!JM;N,A,S)
=3me{ (N, Al[6:Y1 (W) [V, A)+ IV, Al &Y (2)
X (~ )V N1 @S+ ]
XW(NSNS; TH(S[Y(S)IS).  (19)

The reduced matrix element (S||Y1(S)||S) can be evalu-
ated directly in the molecular system since it is not
affected by the transformation from the coordinate
system fixed in space to axes moving with the molecule.
Since Y1(S) is a tensor of first rank in the irreducible
representation, we have

SlIY:S)= 3/4m)[S(S+1) T (20)

The remaining reduced matrix elements in (19), how-
ever, first have to be transformed properly to the
molecular system. The inverse of the Wigner-Eckart
theorem yields

IV, A||&:Y1 (L) ||V, A)= (Nm, A]&:Y°(1:) | Nm, A)
X[C(NIN; mOm) T, (i=1,2),

N, A)}

21

and by applying the addition theorem for spherical
harmonics we get

4\ *
fy1°<lz~>=(~3—> 5 (= )ryH (17 V4(0,3)

=2 (= D*Y#(1#) Dol (eBY), (22)

where 1;* is referred to the molecular coordinate system
and the variables ©, ® are defined in Fig. 1, Dy, (aBy)
is a rotation matrix, and «, 3, v are the Euler angles de-
fining the orientation of the molecular coordinate sys-
tem with respect to axes fixed in space.

The rotational wave function in (9) is of the form

R(rn)Y v (On,0n)=R(rn) 2N+1)1Dma (aBy).  (23)
Using (22) and (23) the matrix element
(Nm, Al &:Y:° (1) | Nm, A)
can now be evaluated in a straightforward way:

NV, Al £:YL(L) | Nm, A)=3 . (— DXEY (1))
XC(N1IN ; mOm)C(N1N; Aud), (24)

and the reduced matrix element becomes

W, A& @IV, A) = (£:Y:°(1#))C (V1N ; A0A), (25)

since C(V1V; AuA) vanishes unless u=0. Finally, sub-
stitution of (20) and (25) into (19) and evaluation of
the explicit expressions of the Clebsch-Gordan* and

13 For the details of the reduction see reference 11, pp, 115-117;
also A. R. Edmonds, Angular Momentum in Quantum M echanics
(Princeton University Press, Princeton, New Jersey, 1957),
pp. 110-111.

“E. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, New York, 1959), pp. 76-77.
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Racah'® coefficients yields the following expression for
the diagonal matrix element of the spin-orbit and spin-
other orbit interaction.!®

(JM;N,A,S|Hs'|JM; N, A, S)

=f 1 % 1(r1,712) Y1° 11* 2(72,712) Y1° I*

() ety sty

X———J(J+1)—-NN+1)-S(S+1)]
2N (N+1)

2

=%(—37—r> %E<€1(71,712) Yo' (1))

A
272,712 0 I,*)) ] ——(N-S).
F(E2(ra,712) Yo )>]N(N+1)< ). (26)

The second line in (26) is obtained from the relation

(N-S)=L[J(J+1)—N{EV+1)—-S(S+1)],

(J=N4+8). (@7
The off-diagonal matrix elements of the spin-orbit
interaction combining different NV states which will be

needed in intermediate case-a—case-b coupling can be
calculated in an entirely analogous way.

V. SPIN-SPIN INTERACTION

The Hamiltonian describing the interaction between
two electron spins is usually written in the form!?

H=—
m3c

e? (Sl- 52)7'122— 3 (Sl' 1‘12) (Sz‘ 1‘12)

| e
7120

where 715 is the distance between the two electrons. Hy'
differs from the Hamiltonian Hs of the Pauli approxi-
mation of the Breit equation by the omission of the
contact term which does not contribute to the fine
structure splitting. In order to be able to apply the
theory of angular momentum in the calculation of the
matrix elements it is necessary to write (28) as a con-
traction of irreducible tensors. The transformation
yields'8

T L AN B GO AL O A

XT ¥ (1) T (89) T2 (110),  (29)

15 A, Simon, J. H. Vander Sluis, and L. C. Biedenharn,
Oak Ridge National Laboratory Report ORNL-~1679, 1954
(unpublished).

16 Tt should be noted that aside from the expression

L& 7)Y 0 ¥ (£ (ra,r12) Y10 {1e*)) ]

the same result can be obtained from a perturbation Hamiltonian
which is of the form £(r)An- S, where n is a unit vector along the
internuclear axis.

17 See paper II of this series.

18 For an expansion of Hj' in Cartesian coordinates see: T. P,
Das and R. Bersohn, Phys. Rev. 115, 897 (1959).
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where we have used atomic units. The tensors Ti(s1)
and T»(sz) are defined such that
s1-82=% 2 p(—1)PTF(s1)T1(s) ;

Tl""*—_— (— 1)“T1~” (30)
and

1
Tokt? (119) =—Y o¥+" (019, 012).
712

(31)

As in the calculation of the spin-orbit interaction, all
variables are referred to a coordinate system fixed in
space.

The spin-spin Hamiltonian can be written as a con-
traction of two quadrupole tensors if we introduce a
spin-dependent tensor Q.(S) whose components are
defined as

05-7(S) = Z[ 2=7!2+! ]5
(1— ﬂ)‘(1+u)'(1 v+ H(1— #+7)‘
XTI #(s1)T*7(sy), (7:#+V)- (32)
Substitution of (32) into (29) yields
A, b
H5'=~a2(—_~> (= 170 7S (1)
N Y
4\ }
=~a‘2<§) 0u(8) Tu(rrs). (33)

The calculation of the matrix element can now be
carried out in exactly the same way as in the case of the
spin-orbit interaction in Sec. IV. From the coupled
representation (9) we get

(JM;N,A,S)|Hs|JM;N,A,S)
= —a2(47/5)}(—1)¥S—IW(NSNS; J2)
XLEN+1D2S+1) W, A'[|T2(r) ([N, A)
X (S[09)]15). (34
The reduced matrix element (IV, A’||T2(712)||A, N) can
again be evaluated by applying the Wigner-Eckart
theorem:
(IV, A’HTQ(TQ) L‘\7, A)
=(Nm; A |TL(t12) | Ny A)[C(N2N 5 mOm) 1,

(35)

and the application of the addition theorem for spherical

PETER R.
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harmonics transforms 15°(r;2) in the following way (see
Fig. 1):

1 z4m\}
Tg"(rm):_;(—s_) 2 Vo7 (01,21) V2(0,2)
7

712

1
T 2 V2 (015,812) Doy (aBy),
n

¥12

(36)

where the Euler angles , 8, ¥ have the same meaning
as the ones in Sec. IV. Using (23) and (36) the integra-
tion over the triple product of rotation matrices yields

2 ®12, 12
m A [Tg“(ru)l \’m A) Z<L‘(——j§i‘l>

XC(N2N; mOm)C(N2N ; A’qA),  (37)

and the reduced matrix element of the electronic state
becomes

(V, A'[|To(r12) |V, A)

Vo (O12,815)
-3 <___>C (N2N; A'gA).  (38)
n

714

All the variables in the remaining matrix element
(V37 (@12,P12)/7123) are expressed in the molecular co-
ordinate system and its expectation value can be
obtained from electronic wave functions in the Born-
Oppenheimer approximation.

If we substitute (38) into (34) we get for the matrix
element of the spin-spin interaction

(JM; A,

4\ } V" (©19,812)
=—a2<~> Z< o >(__1)N+S~J
5 1 7’123

XW(NSNS; J2)C(N2N 5 A'nA)
XLEN+1) @2S+1) TS QAS)IS).

S; |HS'|JM; A, S)

(39)

For given A’ and A the summation over 7 is restricted
to one term (y=A—A’). Thus in the diagonal matrix ele-
ments (¥ (+A) | Hs' | ¥(4+A))and (¥ (—A) | H' | ¥ (—A))
only the =0 term contributes and the matrix element
of (39) reduces to

LN (N+1)=3A2][3C(CH+H1)—N(N+1)S(S+1)]

(T) (N sions)

QN=1)N(N+1)2N+3)[(2S—1)S(S+1)(25+3) ¥’

C=J(J+1)—=N(N+1)—S(S+1), (40)

where we have substituted the explicit expressions of the Clebsch-Gordan and Racah coefficients.'*:15
For A=1 (II states) the spin-spin Hamiltonian can connect ¥(A=-1) with ¥(A=—1) and the resulting
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matrix element is of the form

225

BN (N+1)EC([CH1)—N (VA1)S(S+1) ]

_a2<f_’i>%<fi2(§?@>(su@<5)ns)

d

V2(2N—

The remaining spin-dependent matrix element can be
calculated in the following way:

S1Q=(95)
= (Sm| QL (S) | Sm)[C(S2S; mOm) ]
[25=1)S(S+1)(25+3) 1 2
B —S(5+1) Y (=) (14)!
X (Sm; s180| Tr*(81) T1#(89) | Sm; 5152),

(42)

where in the second line we have used the definition
(32) of the quadrupole tensor Q2(.S). The matrix element
on the right side of (42) vanishes for singlet and doublet
states. For triplet states, however, we get

(Sm;s152) Tr*(s1) T1*(82) | S5 5152)

z (=) (144!
=im’—1, (43)

and
(1]]Q:l[1)= (10)#/2. (44)

If we now combine (44) with (40) and (41) we get the
following expressions for the spin-spin interaction.
(1) For 3%, 3A, - - - states:

(V= Hy' |V ,*) 2<4W>%<Y2°(@12,‘1>12)
e 5 € =at — —
5

719

X[N(N+1)—3A2][g(?(c+1)—2N(N+1)]
(AN—=1)N(N+1)(2N+3)
C=J(J+1)—=NN+1)—S(S+1).

b

The result for 32 states agrees with the expression of
Kramers.!
(2) for °II states:

(V% H' | P,%)
=a ( ){[N(N—H) 3A2]<Y20(®”’%)

V£ (012,P12
@ )2N(N—l—1)<———-—( ) }
o 3C(CH1)—2N(N+1)
2QN—1)N(N+1)(2N+3)’
C=J(J+1)—=N(N+1)—S(S+1).

(46)

DN (N4+1) 2N +3)[(2S—1)S(S+1) (25+3)

C=TJ(T+D)=N(N+1)—=S(S+1). (41)

VI. FINE STRUCTURE OF THE c*II, STATE

In II states the presence of the matrix element
¥ AA=41)|H{|¥A(A=—~1)) produces anomalous
fine structure separations. In order to get an idea of
the importance of this term let us apply the results of
the spin-orbit and spin-spin interactions to the ¢ ®II,
states of para and ortho H,, for which there are experi-
mental data available.”8

If we combine (26) and (46), we get for the total
fine structure energy of a *II state

o f4mr\*
"3:_(“) [0 (1) 80 (1)
4\3

[J(J+1)=N(V+1)—2]
x IN(N+1)

I/ZO(Om,tbp)
3K —

+a2<4§)%{ [N(N+1)—

11)

2(@)12,‘1’12) ]

i
F@3) N(N+1><

1C(C+H1)—2V(V+1)
o (47a)
22N—1)N(V+1)(2N+3)
which in Cartesian coordinates becomes
a? JU+D)-NN+1)-2]
E=—[{&:2:.%)+(£al0.*) ]
4 IN(N+1)
"‘7’2
+~l[w(v+1) 3]<
FN(NAH1) < >}
iC(CH+1)—2N(N+1)
(47b)

@N=1)N(N+1)(2N+3)’

where we have set
ri=1(x1—%2)+3j(y1—y2) + k(21— 322) = r=ix+jy+ k.

From the selection rule (10) we deduce that for a 3II
state the minus sign in front of the ¥»* component of
the spin-spin interaction applies to odd rotational
levels in para H,; and to even ones in ortho Hj, and
consequently the plus sign refers to even IV in para H,
and to odd N in ortho H,. The remaining matrix ele-
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ments in (47) can be easily estimated by retaining only
the 1s(1)2p7(2) and 1s(1)2p#(2) terms in the wave
function of the 3II state, and by using a united atom
approximation (R=0). In this case only a small frac-
tion of the 2p orbit penetrates the 1s core and we can
replace 112 by ry without introducing a large error.® In
this approximation we obtain

EYPM*)=0; (&Y (1%)
= (3/4m) (Z*=2)(1/rs), (48)
’Y20(®2,(p2) 5 3
X C(121;000){1/rs)
5}
=—(-)%ﬂﬂf% (49)
212(O2,P, S\*
<E(—i)f—) =<— CU121; F1, +2, 1)
& T (1215 000)(1/7)
5\i/6
=—<—)~—ﬂﬂﬂ, (50)
<) 5
d
- A/rd)y=(Z*)3/24, (51)

where Z* is the effective nuclear charge of the 1s core.
Finally, if we substitute (48-51) into (47) we get the
following expressions for the fine structure levels of the
¢ 11, state:

o} (2P (2—2%)

E(J=N+1)=
9% | N+1
3 1 37 N
1) —1
+[<N(N—}-1) )sis]zNJrs}’ 2
Q2253 (2—2*
S (>|+< )
96 N(N+1)
{Gam sl ©
NW+1) /5 sd)
QQ(Z58  (2—2Z¥)
E(J=N—1)= l+
96 N

3 1 37N +1
+I:<———— 1>~:i:—] I (54)

N(N41) 5 542N—-1
The plus sign in front of the last term in Eqgs. (52)—(54)
refers to odd NV in para H, and to even N in ortho Ho,
and the minus sign to even &N in para Hs and to odd V
in ortho Hs. In Fig. 2 we have plotted the fine structure
19 See for instance, reference 9, Secs. 39-40. For a more accurate

wave function of the ¢ 3T, state of H»see A. Ameniya, Proc. Phys.-
Math. Soc. Japan 21, 394 (1939).
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para H,

¥ 1000 Mc/sec

I O.lem™

F16. 2. Fine structure separation of the first eight rotational
levels of the ¢ 31, (v=0) state of para and ortho H,. The energy
separation of the rotational levels is arbitrary. The heavy lines in
the N=2 level of para H, refer to the experimental values of
Lichten.8

separations of the first 8 rotational levels of para and
ortho H,. An effective nuclear charge has been chosen
such that the J=2— J=3 energy difference of the
N=2 level of para H. agrees with the experimental
value of Lichten.® The comparison yields a Z* of 1.06
which corresponds to almost complete screening (Z*
=1.00). The energy separation of the rotational levels
is arbitrary. The heavy lines in the N=2 level of para
H, refer to the experimental values of Lichten.? In the
“regular” levels (even N in para H, and odd N in
ortho Hy) the contribution of the ¥»* component of the
quadrupole type spin-spin interaction adds to the one
of the ¥ component. The J=N level is positive,
whereas the J=N-1 and J=N—1 levels are negative.
In the limit of large N the J=N level is 3475 Mc/sec
above the center of gravity, whereas the J=N+1 and
J =N —1levels coincide, and the degenerate level is 1738
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Mc/sec below the center of gravity. In the “irregular”
levels (odd N in para H and even N in ortho H,) the
V22 component of Hj' subtracts from the ¥'s° component
and in the resulting fine structure the J=N—1 level
is on top of the J=N-+41 and J=N levels. In the limit
of N— « the J=N level is 1738 Mc/sec below the
center of gravity and the coinciding J=N—1 and
J=N-1 levels are 869 Mc/sec above the center of
gravity.

The fine structure of the N=1 level in para H,,
however, is different, since here [3/N(N41)—1] is
positive and the two contributions of the ¥? and V5
components of Hs' add to give an anomalously large
splitting. The fine structure splitting of the N=1 level
in para H, is very similar to the 2 3P state of helium.

For N >4, the alternation of the fine structure from
one rotational level to the next becomes more pro-
nounced since as N increases the contribution of the
spin-orbit interaction diminishes while the energy of the
spin-spin interaction tends to a finite value.

The level scheme of ortho H, also applies to the ®II,
state of Hes,. Mulliken and Monk*® who measured the
fine structure of He; noted that the intensity ratio of
the two observed lines ending on the regular levels (odd
N in 1L, of He,) is 2:1. They also mentioned that the
same ratio of the lines ending on the N=2 level is
appreciably larger (3:1 to 6:1). If one calculates the
ratio of the statistical weight of the upper J level
(J=N) in the odd rotational levels to the average
weight of the two lower levels (J=N—1,J=N+1),
one finds that it is 2: 1. Furthermore, the intensity ratio
of the lines ending on the N=2 level turns out to be

para H, ortho H,
theory experiment theory experiment

Jz23 —y— _1_.
J22 = N=3
N=3
J =34 J=2,4
J 22 m—— J = | —y—
N=2 N=2
J =13 J=23

I 1000 Mc/sec
J =2 0 em—m— e——
0.l cm™

J=
N =1

N=1I
J =12 J =02

Fic. 3. Comparison of averaged theoretical [Eqgs. (52)-(54)] and
experimental (reference 7) fine structure separations.

20 R. S. Mulliken and G. S. Monk, Phys. Rev. 34, 1530 (1929).
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N —=

F1G. 4. Energy separations of corresponding ‘regular” and
“irregular” fine structure levels [Eq. (57)].

4:1, which is in agreement with the observation of
Mulliken and Monk.

Recently, Mizushima and Frey* calculated the fine
and hyperfine structure of the lowest rotational level
of the ¢ *II, of Hs. They do not mention to which state
of H, their results refer, but since only the rotational
states of ortho H, show a hyperfine structure it is
assumed that the results apply to the N=1 level of
ortho Hs. Their predicted transition frequencies are
11500 Mc/sec (J=0—J=2) and 7500 Mc/sec
(J=1-— J=2). Thus neither the level order nor the
energy separations agree with our results of Egs.
(48)-(50).

Foster and Richardson” have measured the mean fine
structure splitting of the first 3 rotational levels of the
lowest vibrational state of the ¢ ®II, state in para and
ortho H,. In Fig. 3 their results are compared with the
properly averaged theoretical splittings. The rather
good agreement seems to indicate that indeed besides
the spin-orbit and spin-spin interactions no other per-
turbation contributes significantly to the fine structure
splitting.?2

The spin-spin interaction does not shift the center of
gravity of the fine structure levels, but since the con-
tribution of the V,* component of Hj affects corre-
sponding J levels of para and ortho H, differently,

2 H. Mizushima and D. A. Frey, Bull. Am. Phys. Soc. 2, 165
(1961).

22 For an estimate of the contributions of other perturbations
see W. Lichten (to be published).
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there is an apparent splitting of each fine structure level
into a “regular” and ‘“‘irregular” component. The en-
ergy difference between corresponding J levels of para
and ortho H; is given by

4m\1/3\} 3C(C+1)— 2N (N +1)
w5))
(2N —1)(2N+3)

Vo2 (010,81,
( )>, (55)

2

d

719

which in the united atom approximation becomes
(Z*)P3C(CH+1)—2N(N+1)
AE=qa? , (56)
40 (2N—1)(2N+3)

or if we separate out the different J components we get
(in a.u.)

a2 (Z *) 3 N

AE(J=N-+1)=

80 2N+3
a2 (Z*)&
AE(J=N)=———" (57)
80
«2(Z*)% N+1
AE(J=N—1)= N .
80 2N—1

FONTANA

In Fig. 4 we have plotted AE of (57) as a function of V.
For large N we have AE(J=N4+1)=AE(J=N-1)
=AE(J=N)/2. It is seen that the contribution of the
V22 component of H' to the fine structure splitting is
sizeable. In low rotational levels the magnitudes of the
energies in Fig. 4 are appreciably larger than those
caused by the usual A-type doubling which arises from
the interaction of the orbital angular momentum with
the rotation of the nuclei.® In addition, the V depend-
ence of the doubling due to the spin-spin interaction is
quite different from the one of the A-type doubling
which in general increases with increasing N. In article
IT we shall investigate this doubling of the J levels
due to Hs' more intensively. In particular, we shall
show that in some II states of N the doubling is almost
entirely due to the spin-spin interaction.
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