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Mach's Principle and a Relativistic Theory of Gravitation. II
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Equations previously proposed are further analyzed in this paper. A locally measured gravitational
constant is defined and evaluated in the theory. Boundary conditions and conservation laws are also dis-
cussed.

I. INTRODUCTION

' 'N previous works, Dicke' and the present author' '
~ ~ have proposed a modihcation of the general relativ-
istic theory of gravitation in an attempt to be more
consistent with Mach's principle and less reliant on
absolute properties of space. The modification involves
a violation of the "strong principle of equivalence'" on
which Einstein theory is based. This was brought about
by the introduction of a scalar function, p, into the
variational principle and field equations in a manner
analogous to 6 ' in Einstein theory. This was done in
such a way, however, as to keep the Lagrangian and
action for matter itself unchanged. This ensures con-
tinued satisfaction of the "weak principle of equiva-
lence, " that is, the statement that the paths of test
particles in a gravitational field are independent of their
masses. For convenience the field equations will be
restated here.

G '=A Q rrt/r, (1 3)

The first question to ask about (1.1) and (1.2) is
whether or not they result in a really observable
dependence of a locally measured gravitational "con-
stant" on universe structure. If so, what is the nature
of this dependence? Further, how is P related to such
measurements. This is considered in Sec. II below, in
which a precise de6nition of a locally measured gravi-
tational constant is made and then evaluated from (1.1)
and (1.2). The discussion of (1.1) and (1.2) in (1) was
partially based on the assumption that P ' does indeed

play the role of a gravitational "constant, "not simply
in the field equations themselves, but in actual obser-
vation. This is directly veri6ed in Sec. II, where it is
shown that in this theory, matter contributes to the
locally measured gravitational constant in a manner
consistent with the conjecture. "

where A is a dimensionless number. A similar analysis
has been carried out' for Einstein theory and has shown
that no such dependence as (1.3) occurs in standard
general relativity, although there had been some
expectations to the contrary. "

That the P-field theory might lead to a relationship
of the form (1.3) is suggested by (1.2). In fact, if g does
correspond to the reciprocal of the locally measured
gravitational "constant" and if curvature effects can
be neglected, (1.3) would provide a solution to (1.2) in
the static case, if A is chosen properly. However, since
(1.2) is a second order partial differential equation,
there is an infinity of solutions to choose from. This
indeterminacy must clearly be removed in any program
which aims at a complete determination of the local
gravitational constant by the structure of the universe.
The most obvious procedure would be to impose
boundary conditions, probably of a form such that
@—+0 outside all matter. The consequences of such
boundary conditions for the case of a static spherically
symmetric mass distribution are discussed in Sec. III.
There it is shown that they would result in pressures
of the same magnitude as densities for Quid matter
within the shell.

y'".
, i =Ss.T/(2(o+3). (1.2)

Here co is a dimensionless constant number and T;;
is the stress-energy tensor for matter itself. T;, is
assumed to have been derived from the Lagrangian for
matter in the usual way. The equations satisfied by
the matter variables themselves are formally the same
as in standard general relativity.

Previous discussions' of (1.1) and (1.2) have included
an analysis of the weak 6eld equations, study of the
"three standard tests, " comparison with the work of
Jordan, ' discussions of boundary conditions for
investigations of cosmology and the general relationship
to Mach's principle. This paper should be considered as
a sequel to (1) and will be concerned with further
analysis of (1.1) and (1.2).
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Finally, Sec. IV briefiy discusses some aspects of
conservation laws in the theory. It is found that there
are really two types of such laws, one giving a conserved
quantity having dimensions of length and the other a
conserved quantity having dimensions of mass. For
asymptotically Rat space and the weak field approxi-
mation, the latter is found to be proportional to inertial
111ass.

II. DEFINITION AND EVALUATION OF THE LOCALLY
MEASURED GRAVITATIONAL CONSTANT

In this section an attempt will be made to determine
whether or not the field equations (1.1), (1.2) do lead
to a really observable dependence of a locally measured
gravitational constant on the mass distribution of the
universe. As discussed in reference 5, there seems to be
no such dependence in general relativity. Similarly
here, even though (1.2) indicates that g is related to
the mass distribution, it is still necessary to relate g
to an observed gravitational constant. It is not adequate
to say that since p ' enters the field equations analo-
gously to G in Einstein theory, it will correspond to
the actually measured gravitational constant. As in the
case of general relativity, care must be taken to use
only invariant definitions and to make sure no coordi-
nate effects occur. Further, approximations used in
obtaining solutions and evaluating equations of motion
must not exclude effects looked for.

First of all, a precise definition must be made of
what is meant by the term "locally measured gravi-
tational constant, Gg." This de6nition is, of course,
arbitrary to a certain extent. However, it should
represent a comparison of the observed acceleration of
test particles near a gravitating mass to that predicted
on the basis of classical Newtonian theory.

Of course, such acceleration observations should be
restricted only to situations in which this classical
theory might be expected to have some validity. For
example, this would require that the test particles be
instantaneously at rest relative to the gravitating mass
and that this mass be su%ciently small. More precisely,
the test particles must be far outside the Schwarzschild
radius of the gravitating mass. ' Further, the experiment
should be done over a region of space that is so small
that the components of the background metric can be
considered almost constant. Finally, the length-time
measurements involved must be proper to correspond
to the results of real measurements. It is only under
such conditions that Newtonian theory might be
expected to be valid.

Consider then the following mathematical statement
embodying the above restrictions. The effective, locally
measured gravitational constant will be defined by

' Here, the Schwarzschild radius would have to be determined
by using the gravitational constant, or its substitute, that appears
in the field equations.

Gi,;= —lim limr~'8 A~/Bii
r~&~0 p~o

Here A„ is the proper relative radial acceleration,
d'r~/dr', of a test particle instantaneously at rest at a
proper distance r„(along dh=0) from a spherically
symmetric inertial mass p in a locally time orthogonaL
roordinate system. Equivalently, r„could be defined
as one-half the proper time (as measured on the test
particle) of flight of a light ray to the gravitating mass
and back with no coordinate conditions imposed. Of
course, it is assumed that in defining such proper
distances, the mass p, is represented by some smooth,
extended density and is not simply a singularity. The
partial derivative, BA~/Bp, is u, sed since only that part
of the proper relative acceleration due to the presence
of p is desired for such a definition.

Of course, the limits r„—+ 0 and p, —+ 0 are to be
understood in a physical rather than a mathematical
sense. More precisely, it is assumed that as r„and p
are decreased below certain values, no physically
observable change will occur in the results of measure-
ments of the quantity to the right of the limit signs in
(2.1).

This definition having been chosen, the next step is
to find out what the results of applying it to various
physical situations might be. As mentioned earlier, it
has been conjectured that the gravitational constant
might depend on universe structure. Such a result
might then show up in an evaluation of (2.1). The
dependence of Gg on mass distribution might be
expected to be in general accord with a relation of the
sort

Gs '=Q m/r. (2.2)

This would, of course, follow from (1.2) if p could be
identified with GE ' and if curvature effects could be
neglected. Of course, such effects of the metric would
not be globally negligible in a real situation. However,
(2.2) might be interpreted as

Gp
—' ——(Gs")—'+A Q /rm,

local
matter

(2 3)

I . Infeld, Revs. Modern Phys. 29, 398 (1957).

with A a positive dimensionless constant and G~' the
asymptotic value of Gs. If then each Gs'm/r is very
small compared to unity, it might be expected that
local metric effects are small and that an approximation
procedure is adequate to check (2.3). However, as has
been discussed elsewhere, ' first approximation is not
enough and the equations of motion must be evaluated
keeping terms of second order, i.e., ( G' smr/)'.

The method used here to investigate this effect is
that due to Infeld. ' In this method the internal structure
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of spherically symmetric masses is neglected and only
their over-all behavior is considered. The matter tensor
in this method is assumed to be representable by a
"renormalized" 5 function. In other words, it is assumed
that all self-interaction effects are already contained
in the adjustable parameters available for each mass.
In this case, these parameters consist of a scalar p and
the "path" of the particle, represented by four coordi-
nate functions of another parameter. In this paper,
this type of matter tensor is used only as a source in
the field equations. The real masses are not assumed
to be actual singularities but rather to correspond to
continuous densities spread over macroscopic dimen-
sions. The use of the Infeld 8 function is mainly for
computational convenience since the matter tensor,
considered as a source, only appears in integrals. The
use of this 5 function in such integrals essentially entails
the assumption that the masses are nonspinning,
spherically symmetric, far removed from each other
compared to their dimensions and, in general, display
over-all point particle type behavior but without the
infinities usually associated with such. Apart from the
last one, these are essentially the same assumptions as
made by Papapetrou and Fock," who use dilute
Quid-type matter tensors. These two methods actually
predict the same observable motion through second
order in the case of the Einstein equations. ' ' There is
good reason to expect that they would also give the
same results in the case of the Eqs. (1.1), (1.2). In
fact, the introduction of p alters the situation only by
requiring the evaluation of the integral of the trace of
the matter tensor. To the approximation required to
obtain equations of motion through second order this
integral gives the same number as the observed inertial
mass, measured in charge units, for both methods. '

The result of an application of Infeld's method to
(1.1) and (1.2) will now be stated. Assume e particles
are interacting and let them be labeled by a, b, c,
so that their inertial masses are p„pq, p. . and their
coordinate positions are a', b', c'. (i=1, 2, 3). Further
define

c) 1 co+1 3co+4
d"= Q Mb —+ V„'-' ——+Vb' ——

bAa c)cb r~b — 4+2 2co +4

.M'. 5co+8) c) 1 2co+3)—+ —4b'b
r, o co+2 I' Bcb' r, b — 2cv+4I

cc2co+3 . /3co+. 4)
+4cikbc/ +cbcbk(

(2co+4 k co+2 i

2co+3 c) 1 c)'r.b—2d'cb" — —+-'b'b'
co+2 c)cb" r.b c)cb'c)cb"c)cbc

1 c) 1 (ice+10
+sZ~. —

ewb r, b ab' rb, k ~+2
cPa

2 8 1

rq, Ba'r, q

(
2co+3 1 c) 1

co+ 2 re c)cb rab

5co+8 GpM c) 1
0'=Goya 1—

co+2 R c)cb' r, b

As a check, it is easily observed that in the limit
~cot —+ ~, i.e. , in the Einstein case, this expression is
identical with that given by Papapetrou. "

The main interest that (2.5) holds for the work of
this paper is in its application to an evaluation of the
locally measured gravitational constant Gz as given in
(2.1). For this purpose let b correspond to the gravi-
tating particle in the lab and a to the test particle
(bc, =O) instantaneously at rest relative to it. Further,
for simplicity, assume b and all the other masses are
also instantaneously at rest. (2.5) then yields

f=dfl«; v.=—L—E(df')'7'', where
+order (r,b ',r,b, ), (2—.6)

—LP (gc cbi)251 ~ r b
—

t P (cbc bc)27s (2.4)

M/E—= g
«& ~accga

Me= Goy~; Go= t (2co+4)/(2co+3)5G; G='lim1/g(r).

A lengthy but straightforward calculation then results
in the following expression for the coordinate acceler-
ation of the ath particle. '-

"A. Papapetron, Proc. Phys. Soc. (London) A64, 57 (1951);
V. Fock, J. Phys. (USSR) 1, 81 (1939); The Theory of Space,
Time and Gravitation (Pergamon Press, New York, 1959).

and where the added terms on the right, order
(r,b ',r, b,

. ), do not contribut—e to the definition (2.1)
because of the limit r, g

—+0 involved in it. Thus,
converting to proper units s an evaluation of (2.1) gives

Gs ——L1—GpM/(co+2)R7Gp. (2.7)

Clearly, as ~co~ ~ oo, GE —+ Go —+ G, independent of )kl
and E. as in Einstein theory. ~ For finite co, however,
(2.7) plainly demonstrates the violation of the strong
principle of equivalence, The effect of the "rest of the
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G,max

min

GoMoo ( 1 1
=1+ . (2.8)

a~+2 ER;„R,„. oo+2

3X10 '"

Similarly, the variation to be expected in a measure-
ment of G~ at a height 10 km above the earth compared
to the value on earth would be approximately

universe" on local, proper gravitational experiments
cannot be even approximately transformed away.

Equation (2.7) might have been anticipated from
first order approximation theory. The effect of
y, (crab; cWa) on local calculations is to replace the
boundary value G ' by G 'Ll+GoM/(s&+2)R]. This
follows from a weak-field analysis of (1.1), (1.2).'

Actually, the restrictions on the velocities of the
particles turn out to be unnecessary, as long as u is
instantaneously at rest relative to b as is required in
the definition of Ge. In fact, a glance at (2.5) shows that
the only velocities that would contribute (2.1) would
be those of 6 and a. A simple calculation shows that if
these velocities are equal, the terms involving them
are independent of ~. A direct calculation then shows
that these terms are precisely those that would appear
in a Lorentz transformation (after transforming the
background metric to the Minkowskian) of the rela, tion
(2.6) between acceleration and distance for both
gravitating and test particle instantaneously at rest.
In particular, if all the velocities are the same, this
shows that G& as defined by (2.1) is Lorentz invariant
through order v' and GM/R.

As an example, the maximum variation of GE
measured on earth due to its varying distance from
the sun would be of the order

2Gpm
e2cr ~ i

2co+2) Gom
e'e=1+

~+2) r
'

1 Gom
p= —1+ i; G)0,

G r(co+2) J
(3.4)

flat and the argument that P ~ 0 as r —+ oo (or r —+ ro)
together with (1.2) leads to (3.1) or (3.2) greatly
oversimplifies the situation. In fact, it will be the
purpose of this section to show that in a reasonable
static mass shell universe p —+ 0 anywhere outside all
matter requires that the pressures in the shell be of the
order of densities. Thus the relation of the M in (3.1)
or (3.2) to the ordinary idea of mass may be quite
tenuous.

The most appropriate coordinates in which to study
this problem are isotropic. "Hence, the metric will be
assumed to have the form

ds'= e'~dt'+—e'e$dr'+r'dQ' j (3.3)

with dQ=element of solid angle. Further, n, P, g and
all matter variables will be assumed to be functions of
r only, differentiation being denoted by a dash. The
matter variables themselves are assumed to correspond
to a universe containing only a static spherically
symmetric mass shell between r =R& and r =R2& R&

together with relatively small masses near the origin.
This last assumption is needed only to determine the
signature of n', P', P', and P at the inner edge of the
shell (i.e., at Ri).

Specifically, if the masses inside produce a field for
which the weak-held approximation is valid, then if
(Ri—r)/Ri is a small positive number,

GE+/Ge =1+10—"/(o&+2).

III. BOUNDARY CONDITIONS

(2 9)
Gpm

ns& 0; 0&
Rg

As is well known, an equation of the form (1.2) does
not completely specify a solution. One of the most
common methods for removing this indeterminacy is
the imposition of boundary conditions. Mach's principle
might suggest that G "—+0 at infinity. Hence p —+0
as r —+ ~ for such a universe might appear as an
appropriate boundary condition. Further, this together
with (1.2) would predict that the value of G inside a
static mass shell of mass M and radius R in otherwise
empty universe with a Qat metric is consistent with
the conjecture,

GM/R= 1. (3.1)

There is another possibility, namely, p —+ 0 somewhere

outside all matter, not necessarily at infinity. In this
case, (3.1) would be replaced by

GM/R —GM/ro = 1, (3 2)

where rp, assumed greater than R, is the radius at
which &=0. However, the presence of matter does
curve space so that the metric in such a universe is not

Again, it should be noted that (3.4) will be used only
to determine reasonable signatures for n', P', P', and g
at Ri. That is, (3.4) is used only to justify the assump-
tion that at R& the following inequalities are valid,

p)0; n')0,
P'&0; (2o~+3)g'&0,

(2 +3)( '+P'))0.
(3.5)

T p&0; T &0. (3.6)

These conditions are equivalent to requiring not only
that the pressures and density be non-negative but
also that the sum of the pressures in all three directions

"This choice was suggested to the author by C. Misner.

For the matter within the shell itself, i.e., for R~&r
&R2, assume a Quid-type matter tensor T & which is
diagonal in these coordinates, i.e., T =0 if ngp,
vanishes outside R~(r(E.2 and satisfies
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8~
(3 7) e-"(—g):e'=

2GJ+ 3
(~()2. (—g)lTdr

not exceed the mass density. Further, in order to avoid that (3.5), (3.6), and (3.7) are all valid. In fact, from
large discrepancies in the deflection of light and (1.2) it follows that for r) Ri
perihelion rotation observations, assume

The main purpose of the following argument will
then be to show that g —+ 0 anywhere outside all matter
violates either (3.6) or (3.7) if the signatures of n', P',
g', and g are consistent with (3.5).

First of all, let us write the field equations in iso-
tropic coordinates.

4p'
4e " 2P"+ +(0')'

r 4'(r) &o 4 (r) &o, (3.16)

+e "'"'0'(Ri)L—g(Ri)3' (3 14)

Hence, as long as no singularities occur, (3.14) and
(3.5) give

(2a&+3)y'(r)((2(v+3)y'(Ri) &0, (3.15)

Thus, since for this solution 2~+3&0, (3.15) together
with (3.7) gives

=e '-e y'n'—

2( '+P')' 2 '0'+(P')'-'+-

T
(3.8)

2&+3

for all r) Ri This. , of course, prevents P —+ 0 as r —+ ~,
and completes the proof that this boundary condition
is inconsistent with (3.5), (3.6), and (3.7).

The reniaining possibility is form I, with (2&v+3) &0.
Using the assumption

~

&u
~
)2, this reduces to ~) 2.

Thus (3.15) gives in this case

(e')"--
= e 'e g" P'P + — +Svr~ T '—

2y

n'+P'
ye '-'e ~"+(~')'-'+ —+p"

T
(3.9)

2&+3

(~')'-
=e -'e Q'P'+ —— +Ss. T2' ——,(—3.10)

r 2Q 2%+3

2 SmT
e " 0 "+0' &'+0'+-

r — 2co+:J
(3.11)

T &,.p
——0. (3.12)

The exact vacuum solution, T t'=0, to these equations
has been obtained. ' For convenience the various
branches of this solution are stated in the Appendix to
the present paper. It should be noticed that from (2.7)
positive contribution of matter to GE ' requires cv&0
which together with

~
&a~ )2 permits only form I of the

solution. This particular form was discussed in (1),
relative to the boundary condition problem, but here
all four forms will be permitted.

It is immediately seen, however, that Q-+ 0 outside
the shell eliminates forms II and IV, leaving only I or
III. This then requires a range of C and cu consistent
with (C+1)'&C(1—(uC/2).

Consider now @—+ 0 as r —+ ~. This eliminates form
I, leaving only III and specifies C to be one of the roots

(3.17)

for r&Ri. This seems hopeful since p) 0 at Ri, so that
a negative derivative will be necessary to bring P to
zero somewhere. However, the following argument will
show that provided p remains positive in the shell
itself, the vanishing of p outside still violates at least
one of (3.5), (3.6), and (3.7). The method will be to
find what restrictions the field equations and (3.5),
(3.6), place on the signatures of a', P', p', and p at R2,
i.e., at the outer edge of the shell. These restrictions
are stated in (3.20). The next step will then be to show
that the range of constants, 8 and X, in form I of the
exterior solution imposed by (3.20) is inconsistent
with p —+ 0 for some r)R2.

The first step will be to obtain some information
about the signature of (n'+P') at R2. This can be done
by adding (3.9) to (3.10) and defining s=—a'+P'. This
gives

3s sP' Ss.e'e S~e'eT
s'+s'+ —+ = — (Ti'+ Tg') — ———.(3.18)

r 2&@+3 rp

It is easily seen that under the above assumptions,
the right side of (3.18) is non-negative so that at every
zero of s, s'& 0. This, together with the fact that s& 0
at Rj implies that s & 0 for all r &EI, assuming, of
course, that no singularities occur and that r remains
in a region for which s is single valued and continuous.

Similarly, setting x=—P', (3.8) can be written

(3.13)

These roots (and thus the solution), can be real only if
2co+3&0. As mentioned above, however, this already
contradicts positive contribution of matter to GE '.
However, it is also inconsistent with the assumption

2$ x $$
&+ + +

2 2$

e'& SxT
=—8~TO'— +e '~(y's-

2f — 2%+3

(~')'-—
(3.19)

2p
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This time the right side is non-positive so that x &0
at every zero of x. Thus, since x&0 at Ri, x&0 for all
r)R&. Again, this is subject to necessary continuity
restrictions.

In summary, for a reasonable mass distribution
between Ri and Rs, (3.5), (3.6), (3.7) yield

Q (Rs) &0; n'(Rs) &0; P'(Rs) &0,
n'(R, )+P'(Rs)&0; @'(R,) &0.

(3.20)

The final step in the argument is to assume a range
of values of 8 and X in form I of the solution which will
permit @~0 for some rs)Rs From. p ~ [(r 8)/—
(r+8))~'" this is easily seen to reduce to

R, &(8i; 8C//Z&0. (3.21)

(3.21) will now be shown to be inconsistent with (3.20).
First of all notice that

y'/y&0; n'&0; y'/y=Cn' (3.22)

imply C&0. This together with (3.21) requires 8/X &0.
On the other hand, (n'+P') &0 at Rs requires

X—C~ 28 28

(Rs' —8' Rs(Rs+8)
(3.23)

There are now two choices. First, if 8)0, X&0, (3.23)
becomes

(
1 l 1

1——
i

—i)—)0,
Xl Rs —8) Rs

(3.24)

so that
1—C/X &0; C'&X'. (3.25)

Second, if 8 &0, X&0 (3.23) yields

C/X&8/Rs & —1.

Thus, in either case

(3.26)

(3.27)

However, from the definition of A. this requires

0 & C'tu/2+ C+ 1. (3.28)

Such a range for real C will exist only if 1—2'&0,
which is inconsistent with co )2.

In summary, for a spherically symmetric mass
distribution between Ri and R2, the following assump-
tions imply that there exists a constant L)0 such that
@&I for all r&R2.

(1) )~~&2;
(2) all 6eld quantities are time independent, spheri-

cally symmetric, single valued, and have cohtinuous first
derivatives;

(3) as r approaches Ri from the left, p, the metric
components and their first deriva. tives have signatures

consistent with positive mass and a positive gravita-
tional constant;

(4) for r between Ri and Rs the matter. tensor, T,S

is diagonal, P)0, and Tpp&0, T &0.

IV. CONSERVATION LAWS

Methods have already been given in Sec. II above
for obtaining a "mass" associated with certain solutions
to the field equations. More precisely, ways were
discussed for obtaining experimentally measurable
numbers from constants appearing in the field variables.
Other possible numbers can be obtained from conser-
vation laws. " These will give constants associated
with certain types of solutions which might be called
"tota, l masses" or "total energies. " Of course, these
"masses" are less precisely defined in the sense that
they are not as directly related to experimentally
measured numbers as are the inertial and active
gravitational masses discussed above.

In this section the structure of conservation laws
associated with (1.1) and (1.2) will be studied. In this
case there are really two possible approa, ches. In the
first, the field equations (1.1) are divided by g to give
an Einstein-type equation but with a modified matter
tensor. Procedures used in the Einstein case are then
applicable. Hence the conserved quantity, when ex-
pressed as a function of the metric only, will be formally
identical with that in general relativity. The resultant
conserved total "mass" has units of length, however,
corresponding to some averaged gravitational constant
times total mass, and should more properly be called a
"total Schwarzschild radius. "

An alternate procedure yields a conserved quantity
having true units of mass and to which T;~,~&„ instead
of p 'T,&,«„c ntorib teus directly. This "total mass"
is found to equal to the "total Schwarzschild radius"
times the asymptotic value of P. Further, both are
linearly proportional to the inertial mass associated
with the solution. Hence, the not-too-surprising result
is obtained that for an isolated system inertial mass is

conserved as well as the "total Schwarzschild radius. "
The first and most straightforward procedure for

obtaining conservation laws is based on the assumption
that p never vanishes. After division by P, (1.1) can be
considered as Einstein equations having for source not
the matter tensor itself, but a modification of it con-

taining contributions from P. (1.2) can then be con-
sidered simply as part of the equations to be satisfied

by the modified "matter" variables. Hence, the
standard procedure, as described for example by
Mufller,

"may be used. In this method a quantity X,'

"For an extensive discussion of conservation laws and their
uses see J. Fletcher, Revs. Modern Phys. 32, 65 (1960).

"C.Mgller, The Theory of Relativity (Oxford University Press,
New York, 1960).
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is defined by

where

.i —g.i' ~

again identically conserved. Specifically, following a
(4.1) method proposed by Freud, " it is noted that P;&' can

be written
+,i= U, ik

k (4.8)

The "conservation law" is then

& jk= ( g)-', f gli( I' k+ g kI' n +. g kI' ~ ) where

+28,&g'"(—I'ik„+5,'I'„„)j. (4.2) g ki — U ik= ( g)-;(g i(gi I,k gkiI, )
+g k(gjlP n gt~I j )+gklP j gjly k ) (4 9)

.—0

The quantity ;& is an affine tensor and the quantity

Hence, for the P-field theory, define a quantity

Thus
(4.10)

P;= d'xZ, —0 (4 4)
g-.~ .=0

and g,' is also an aSne tensor and

(4.11)

is an affine vector and has been called "total momen-
tum. " Further, P; is constant for an isolated system,
that is, one for which the integral of T, (n=1, 2, 3)
over a bounding surface is always negligible.

An evaluation of P; for form I of the static spherically
symmetric solution given in the Appendix gives

P =0 for n/0,
Po =28 (C+1)/X.

(4.5)

This is the form of the solution which is physically
significant, corresponding to large positive ~. An
interpretation of the constants, 8, C, and X can be
obtained by comparing an expansion of this form of the
solution to that obtained from the Infeld approximation
procedure described above in Sec. II. The result is'

2(v+2
Pp = Gp)

2M+ 3
(4.6)

where G is the asymptotic value of P ' and where

p = d &+0 rnatter. (4.7)

As shown in Sec. II, p, turns out to be the inertial mass.
Thus, for an isolated system, the "total Schwarzschild

radius" is constant. From (4.6) this means that for a
single particle the inertial mass times the asymptotic
value of @

' remains constant.
It would be interesting to find out whether a quantity

having units of mass is also conserved. Noting that the
direct contribution of matter to Y;&' in (4.1) is through
a term of the form p '( g)'2';&~« «iit see—ms that
P;& must somehow be multiplied by p. However, for
nonconstant P this would destroy the conservation
equation (4.3). To get around this, construct the
conserved quantity as the divergence of an antisym-
metric affine tensor. The latter can then be multiplied
by g and the divergence of the resulting quantity is

P.=— d'x& ' (4.12)

is an alone vector. As in the case of P, above, P; is
constant for an isolated system. Here, however, Pp
will have units of mass. Further, for the static case at
any rate, it is clear that

Po= Zo'd'x=Pp limg=G 'Po, (4.13)

with Po defined in (4.4) above. Again, an application
to the case corresponding to form I of the solution in
the Appendix shows that Pp is proportional to the
inertial mass in the case of a single particle and is
constant.

This result might have been expected from the
following argument. The first conservation law, (4.3),
gives a constant "total Schwarzschild radius" for an
isolated system. However, for such a system, 6, the
asymptotic value of P ', might also be expected to be
constant. If this were true, G 'Pp, having dimensions
of mass, would also be constant. This line of reasoning
is borne out in the argument leading to (4.13) above.

The author is indebted to R. H. Dicke and C. W.
Misner for their helpful suggestions on various aspects
of these problems.

APPENDIX

"P.Freud, Ann. Math. 40, 417 (1939).

This Appendix contains a statement of the exact
static spherically symmetric vacuum solution to (1.1),
(1.2) expressed in isotropic coordinates. This was
derived in (2) with slightly different notation.

There are four forms for this solution corresponding
to different ranges of the arbitrary constants available.
In the following these will be denoted by no, Po, Po, C,
and 8 and have values in the indicated ranges. The
metric is assumed to be of the form (3.3).
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1—8/r 't'
~n ~rrp

1+8/r

III: n=np —r/8,

r r
—

1—8/r- (x—c—I)/x
et)= etta(1+8/r)s

1+8/r
8/r- ct)

4=$p
1+8/r

&'—= (C+1)'—C(1—(oC/2) )0.
2

n=np+ tan—'(r/8),
A

2 (C+1)
P =Ps—— tan '(r/8) —inLr'/(r +8s)j

A

p —p e2C/A tan t (r/B)

A'=—C(1—coC/2) —(C+1)')0

P=Pp —2 ln—+(C+1)—
8 8

y —y e CrtB—

—1+(—2(o—3)1

C=
co+2

IV: n =n p (1/—8r),

P =Pp+ (C+1)/8r,

y —ape C/Br—

—1a (—2(o —3)&
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Theorem on Crossing Relations and Its Application to KN and@ N
Scattering Processes*

BENJAMIN W. LEE)
Department of Physics, Unioersity of Pennsylpania, Philadelphia, Pennsylvania

(Received August 3, 1961)

It is proved that the contributions of the intermediate state, e, of the process 8+B~ A+A to the AB
and AB potentials are of the same magnitude and same sign (opposite signs), if the G parity of the state
n is even (odd). This theorem is discussed in detail for the exchange of a pion pair in KIV and E1V scattering
processes in conjunction with the application of the Mandelstam representation to these processes.

I. INTRODUCTION

T has been known for a long time that the exchange
~ - of an even (odd) number of pions gives the same
(opposite) contribution(s) to the nucleon-nucleon and
antinucleon-nucleon potentials. ' In the formulation of
strong-interaction dynamics based on analyticity, uni-
tarity, and crossing relations satisfied by the scattering
amplitude, ' it means that when the partial wave ampli-
tudes of channel I, 1V+1V —& 1V+1P, and of channel II,
1V+1V' —+1V'+1V, are compared in the same angular
momentum and isotopic spin states, the left-hand cuts
of the two amplitudes associated with intermediate
states of an even (odd) number of pions in channel III,
1Vr+1V' —+ 1V+1V, have the same magnitude and the
same sign (opposite signs).

* Supported in part by the National Science Foundation and
the Atomic Energy Commission.

$ Now on leave of absence at the Institute for Advanced Study,
Princeton, New Jersey.' See, for example, J. S. Ball and G. F. Chew, Phys. Rev. 1Q9,
1385 (1958).' G. F. Chew, Les Houches Lectures, 1960 (unpublished); Uni-
versity of California Radiation Laboratory Report UCRL-9289
(unpublished).

It is the purpose of this note to present a generaliza-
tion of the above theorem. The generalization is actually
twofold: The generalized form of the theorem is appli-
cable to any elastic two-particle scattering processes oo
the one hand, and to "potentials" (or interactions, see
Sec. II), associated with any intermediate states in
channel III, on the other (Sec. II). In this sense, the
proof to be given in Sec. II is a modi6ed and detailed
exposition of the remark recently made by Dalitz. ' The
proof we shall present here is elementary, instructive,
and, we believe, rigorous.

An interesting example of this general theorem is
aGorded by the connection between the long-range
forces arising from the exchange of two pions in E-
nucleon and E-nucleon scattering processes. 4 ' In a re-
cent publication, an erroneous conclusion is arrived at

'R. H. Dalitz, Revs. Modern Phys. 33, 471 (1961), p. 481,
especially footnote 54.

a B. W. Lee, thesis, University of Pennsylvania, 1960 (un-
published); Phys. Rev. 121, 1550 (1961). See also M. M. Islam,
Nuovo cimento 3, 546 (1961).

I".Ferrari, G. Frye and M. Pusterla, Phys. Rev. 123, 308, 315
(1961);Phys. Rev. I,etters 4, 615 (1960).


