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It is pointed out that by a nonlocal phase transformation of the conventional wave function the quantum
theory of the interaction between charged particles and the electromagnetic field can be reformulated solely
in terms of the field strengths. The assertion of Aharonov and Bohm that the potentials are essential for

expressing the laws of physics is therefore unfounded.

N a recent paper! aimed at clarifying some issues
raised in an earlier paper,>2 Aharonov and Bohm
make the following statements: “It is well known that
the potentials must appear in Schrédinger’s equation,
because there is no way in quantum mechanics to ex-
press the interaction of the electron with the electromag-
netic field solely in terms of field quantities.” And again:
“It is clear that at least in the mathematical theory of
quantum mechanics, the electromagnetic potentials
(and not the fields) are what play a fundamental role in
the expression of the laws of physics.” And finally:
“We must keep in mind that the quantum theory as it is
now formulated requires that the interaction of electron
with electromagnetic field must be a local one (i.e., the
field can operate only where the charge is). Therefore,
in the description of this interaction, only those
quantities which differ from zero in the region accessible
to the electron can account for observable physical
effects on the electron. As a result, when the electron is
confined to a multiply connected region, the fields in
the excluded region---cease to be relevant for the
problem under discussion.” It is the purpose of this
note to demonstrate that these assertions are false.

Although there can be no argument whatever about
the experimentally verifiable results so ingeniously pre-
dicted by Aharonov and Bohm, it follows that the force
of what one may call the “purely metaphysical” side
of their arguments® is negligible.

The demonstration that quantum mechanics can be
formulated solely in terms of field strengths is straight-
forward. Consider first the Schrédinger equation. The
introduction of an electromagnetic field is customarily
described by making the replacement

d
— — ——1ed,,
dx*  Ox*

(h=c=1), (1)

wherever the differential operators 9/9x* (u=0, 1, 2, 3)
occur in the Schrodinger equation for zero electro-
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magnetic field.* Under the gauge transformation,

JA
A/ =4+, (2)

dxH

the wave function ¥ must then transform according to
Y'=exp(ieA)y ©)

in order that the Schrodinger equation remain invariant.
The conventional wave function is, therefore, not gauge
invariant. It is possible, however, to introduce a gauge-
invariant wave function by the following device: One
introduces four arbitrary single-valued differentiable
functions z#(x,£) of the space-time coordinates x* and a
parameter £ which are defined for all 4* and for values
of £ in the interval — o <£<0, and which satisfy the
boundary conditions

a4 (x,0) =x#, (4)

Elim z#(x,£) =spatial infinity. (5)

The term “spatial infinity” here means any limit which

is sufficiently remote in a space-like direction from x*

that the electromagnetic field vanishes there, at which

limit 4, may without loss of generality be set equal to

zero. The gauge-invariant wave function is then.
defined by®

0 Oz#
V= expl:—ie/ A,‘(Z)—df]ll/. (6)
e a¢

It is to be emphasized that ¥, like ¢, is single valued,
and since it differs from the latter only in phase it can
equally well be used in the computation of quantum
mechanical probabilities. Furthermore, by carrying out
an integration by parts and using the boundary con-
ditions (4) and (5), one may readily verify that ¥ may
be used in place of ¢ in the Schrédinger equation, pro-
vided that the operator replacement (1) is changed to

) d dz” 9z°

0
_ ——ie[ F,q(z)— —d§, (7)
dx*  OxH » d¢ Ju+

4 Pauli magnetic moment terms are neglected here since they
involve the field strengths alone from the beginning.

5 Bilinear invariants involving line integrals of the potentials
have previously been suggested by P. G. Bergmann, Nuovo
cimento 3, 1177 (1956).
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where

8)

14"“’5 _—

Nonrelativistic particle mechanics as well as rela-
tivistic quantum field theories with an externally im-
posed electromagnetic field can therefore be formulated
solely in terms of field strengths, at the expense, however,
of having the field strengths appear nonlocally in line
integrals. Needless to say, this formulation yields results
identical to those of the conventional one for all ob-
servable effects. For example, the interference effects
arising from the condition that the wave function be
single-valued over multiply connected regions are ex-
pressed in terms of integrals of the field strengths over
the surfaces swept out by the curves z#(x,£) as x makes
a complete circuit of each such region. These surface
integrals are identical to the line integrals ¢ A4,dx* of
the conventional formulation.

Consider next the general case in which the electro-
magnetic field is itself subject to quantization. If it is
required that the theory be formulated in terms of a
least-action principle, then the use of potentials is
mandatory at least in the initial stages. Even this, how-
ever, is unnecessary. The introduction of an action
functional is merely a device to obtain field equations
which satisfy certain desired symmetries or lead to
desired conservation laws. The field equations are really
sufficient by themselves to determine all the quantum prop-
erties of the system. The commutation relations of the
free electromagnetic field, for example, are uniquely
determined by application of the uncertainty principle
to test bodies in the manner of Bohr and Rosenfeld.® It
is noteworthy that the potentials do not make a single
appearance in the classic work of the latter authors.

In illustration of these remarks it is instructive to
write the equations of quantum electrodynamics solely
in terms of gauge-invariant quantities:

a 0
y"(——~+m>‘lf e ie’y“/
dxH o

ad 9
O%F = —ie— ¥y, %) +ie— Ty, ¥), (10)
ox* ox’

dz” 9z°
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dE Jx+
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3
(11)
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Here ¥ is a gauge-invariant spinor and ¥ is its Pauli
adjoint. A possible way of obtaining physical conse-
quences from these equations (although by no means
the only way) is to deal with the first two according to
the Yang-Feldman prescription,” with an ‘“incoming”
spinor field satisfying the conventional free-spinor anti-

8 N. Bohr and L. Rosenfeld, Kgl. Danske Videnskab Selskab.,
Mat.-fys. Med. XII, 8 (1933).
7C. N. Yang and D. Feldman, Phys. Rev. 79, 972 (1950).
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commutation relations and an “incoming” electromag-
netic field satisfying the commutation relations of the
Bohr-Rosenfeld analysis. At no stage do the potentials
enter the picture. Equation (11) is an initial condition
which is preserved by the other equations and which is
needed only in the Fourier decomposition of the field
into photon creation and annihilation operators.

None of the preceding remarks is intended to deny
that the use of potentials is a great convenience in
practice. Nevertheless, a formulation in terms of field
strengths has several attractive features. In such a
formulation one works from the beginning in the physi-
cal Hilbert space without ever needing to enlarge it
artificially. The troublesome and essentially uninterest-
ing conventional complications involving gauge condi-
tions and the removal of longitudinal and scalar photons
with the aid of an indefinite metric, etc., are completely
avoided. Furthermore, one is enabled to introduce
“gauge-invariant electrons.” Thus, if for all points %
on a space-like hypersurface 2 the curves z*(x,£) are
chosen to be in Z, then ¥ and ¥ will satisfy the same
anticommutation relations on = as ¢ and y. Therefore,
the operator ¥, like ¥, may be regarded as an electron
creation operator. It is, of course, true that because of
the nonlocality of the interaction in terms of field
strengths, the anticommutator of ¥ and ¥ will no longer
generally vanish for @/l finite space-like separations. On
the other hand, the causal propagators which enter into
calculations of specific physical effects do not satisfy
this condition anyway, and, although the advantage of
working with gauge invariant propagators at first sight
seems to be offset by the appearance of the functions
2*(x,£) (or their Fourier transforms), it should be possi-
ble to use the very arbitrariness of these functions to
re-establish the consequences of the conventional micro-
causality conditions as well as theorems related to
Ward’s identity. In this sense the z#(x,£) replace the
arbitrary gauge parameters of the conventional theory.

It should further be noted that the convenience of
using potentials is restricted to electrodynamics. There
exist theories, notably that of the Yang-Mills field® and
Einsteinian gravitation, which are invariant under non-
Abelian infinite dimensional invariance groups and for
which the use of potentials is much less satisfactory.
These theories share with electrodynamics the feature
that coupling is introduced by changing an ordinary
derivative into a ‘“covariant” derivative based on a law
of affine connection relative either to physical space-time
itself or to another product space. The wave-function
transformation (6) is merely a special case of a general
transformation applicable to all these theories, in which
¥ is defined to be the result of effecting a “parallel”
displacement of the original ¢ along the curve z#(x,£) to
the chosen reference point at £=— . It is equivalent
to “viewing”’ ¢ in a special “coordinate system’ based
on and “propagated” from an ‘“observer” located in-

8 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
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stantaneously at the reference point in question. In
gravitation theory the world line of the “observer” need
not even be located in a field-free region, and the space-
like character of the curves z#(x,£) may be ensured by
choosing them to be geodesics with an initial space-like
direction. In all cases the “observer” provides a special
reference frame with the aid of which an invariant ¥
may be constructed. It will be observed that the space-
like character of the curves z¢(x,£) removes any diffi-
culties in the construction which might otherwise arise
in connection with the ordering of operators, e.g., the
A,.(2) in Eq. (6).

Note added in proof. In a reply to the present note in
the following paper, this issue, Aharonov and Bohm?®
make the valid and significant point that the nonlocal
formulation of electrodynamics is transformable back
into a local one with potentials. The question is: Does
this give the potentials physical significance? And if so,
what sort of significance? The author disagrees with the
effort of Aharonov and Bohm to tie this question to the
question of complete sets of observables. In the author’s
opinion the significance of the existence of a local
formulation of a theory is that it permits a simple
causal description of the propagation of small dis-
turbances in the system, in terms, for example, of re-
tarded and advanced Green’s functions. There are two
things which occur simultaneously in such theories,
however. Not only do the “potentials’ provide a local
formulation of the theory but they also provide a linear
representation of a certain infinite dimensional in-
variance group (the gauge group in the case of electro-
dynamics). Only the group invariants, not the potentials
themselves, are observable by a measuring apparatus.
It is not true in the case of electrodynamics that the
potentials provide a complete set of commuting ob-
servables on each space-like hypersurface. The po-
tentials can be made to perform this duty only if the
Hilbert space of the theory is extended in a nonphysical
way, in which case they constitute an overcomplete set.

Within the framework of the formalism suggested
here a complete set of commuting or anticommuting
operators is easily obtained. One may choose, for ex-
ample, the magnetic field together with the gauge-
invariant spinor ¥ taken over a space-like hypersurface

9Y. Aharonov and D. Bohm, following paper [Phys. Rev.
125, 2192 (1962)].

in which the curves z*(x,£) are made to lie. Are these
quantities local? Yes, in the sense that each is associated
with a definite space-time point. No, in the sense that
they are involved in nonlocal field equations.

Which is more significant, the fact that nonlocal
formulations of causal theories exist which deal only
with observables, or the fact that in all known cases
local formulations in terms of “potentials” also exist?
There may even be a theorem (which would be very
interesting if true) that any nonlocal theory formulated
solely with observables, which satisfies certain causality
requirements, also has a local form related to the non-
local form via an infinite dimensional invariance group.
But would this imply that the potentials which provide
the linear representation of the group have in themselves
a special physical significance transcending that of the
observables? Not obviously.

In a similar vein the author disagrees with the asser-
tion of Aharonov and Bohm that quantum electro-
dynamics is ultimately determined by the requirement
that it be expressible in a local form. Quantum electro-
dynamics is really determined by experiment. Maxwell
derived his classical equations ultimately from the ex-
periments of Faraday and others. The fact that two of
his equations, from a purely mathematical viewpoint,
proved to be statements of the necessary and sufficient
conditions that the field strengths be expressible in
terms of potentials is certainly interesting, but may
well be more a consequence of the demands of causality
than of any physical significance to be attributed
directly to the potentials. The flexibility of being able
to work in various gauges is an admitted mathematical
convenience, but all of the post-Maxwellian theory—
Hamiltonian, quantization, etc.—could have been
worked out in the special gauge

0
.

The author is happy to acknowledge a stimulating
correspondence with Professor Bohm and, although
maintaining a different viewpoint, wishes to express his
wholehearted agreement with the effort to shift the
controversy over the significance of potentials to the
arena of local vs nonlocal theories.
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