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The radiative corrections to electron-proton scattering are calculated for an experiment in which the recoil
proton is detected instead of the scattered electron. The emission of very hard photons by the scattered
electrons is taken into account in the phase-space integration. This calculation is intended for high-energy
experiments (up to 5 Bev) but is applicable whenever the momentum resolution of the spectrometer is small,
i.e., (AP:4/P4<0.1). Mesonic contributions to the two-photon exchange diagrams are neglected.

N a recent paper! Tsai has calculated the radiative
corrections to electron-proton scattering for electron
beam energies up to 5 Bev. In that calculation it was
assumed that the scattered electron was detected and
the recoil proton left undetected.

However, when one attempts to observe electrons
scattered at very large angles (i.e.,, near 180°) the
counting rate per unit solid angle becomes small, and
often the physical limitations of the accelerator and
spectrometer prevent observation of electrons scattered
backwards.

These difficulties have been overcome in some recent
experiments®? by observing the recoil proton instead of
the scattered electron. This provides much higher
counting rates per unit solid angle and allows the ex-
perimenter to study even 180° electron scattering by
observing protons in the forward direction.

In this paper we will calculate the radiative correc-
tions to e-p scattering assuming that the recoil proton
is detected. The results will be different from those of
Tsai because the phase space available to the final state
is different.

This paper will be divided as follows: part I is a dis-
cussion of the experimental conditions, part II the
calculation of the elastic correction, part III the calcula-
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Fic. 1. Experiment arrangement for observing recoil proton.
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tion of the inelastic corrections, and part IV some
numerical results and discussion.

The present work is intended as an addition to the
work done by Tsai in T. The notation, metric, etc. are
identical, and, wherever possible, repetition of state-
ments made in T has been avoided.

I. EXPERIMENTAL CONDITIONS

We assume an experiment in which an electron beam
strikes a stationary proton target. The recoil protons are
analyzed in a spectrometer as shown in Fig. 1. The slit
S determines the angular resolution (AQ,) and S, de-
termines the momentum resolution.

A typical momentum spectrum? obtained in this way
is shown in Fig. 2. The most important features of this
spectrum are its near symmetry about the peak and the
fact that AP«<LP¢' (note Py=]|ps|). The symmetry
about the peak indicates that there is no long radiative
tail to the spectrum (as there is for an electron spec-
trum), and that, by cutting off the data at Pel—AP,,
one is including essentially all of the events associated
with this peak.

Besides the radiative correction there are three other
effects which cause the spectrum to spread:

1. finite energy spread in incident beam (AE,/E1$1%,) ;
2. finite magnet aperture AQy;
3. bremsstrahlung and straggling in target.

Effects 1 and 2 can be quantitatively calculated from
elementary kinematics. The width induced in the proton
spectrum by each effect is given by:

1 (AP4> on (AE])
"\ Py /oot Et+M\E, /)

AP, E,
2. (—> =— (* tan(i’)A()’. (1.2)
) P4 E1=const M

In practice the error introduced into the value of the
cross section by these two effects is negligible. However,
if the proton is observed at angles far from the forward
direction Eq. (1.2) may become important.

We assume that the effects of bremsstrahlung and
straggling on the radiative correction are small, so that
the former can be calculated independently, and, in our
calculation, we may assume an infinitely thin target.

(1.1)
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CORRECTIONS TO ELECTRON-PROTON SCATTERING

II. ELASTIC CORRECTION

This correction is worked out in detail by Tsail, and
since the final state consists of only two particles there
is no essential change in the calculation when the proton
is detected instead of the electron. The energy-mo-
mentum & function ensures that a determination of ps
fixes p4, and vice versa.

The only change required is the switching of the
phase-space integration from the final proton mo-
mentum (case 1) to the final electron momentum
(case 2).

We evaluate

&*ps d
/ — -—64(p1+p2 ps—p) [ M[|* (2.1)
for the two cases:
(case 1) A3= (El/M‘r]2)dﬂ3[Ml2, 1‘]=E1/E3P‘1, (2.2)
Py(EAM)
(case 2) Ay=—————dU|M|2, (2.3)
M(E\+M)
where Py= (E2— M?)%,

For the same incident energy and momentum transfer
(¢, the ratio of the differential elastic cross section of
case 1 to that of case 2 is

As/Ay=Ei(Es+M)/v*Py(Est+M). (2.4)

All of the comments made in T concerning the separation
of the infrared parts of the elastic diagrams? and the
deletion of mesonic contributions®® to the two-photon
diagrams are applicable in the present case as well.

The elastic correction can then be written as follows
[cf. Eq. (I1.13) of T7]:

do do «
(__) = (-) { 1+~ =K (p1ps) +K (p1p1)
d94 el dQ,; Ros ™

—ZK (p2p1) —ZK (paps)+ZK (psps)

+ZK (pap1) — Z2K (paps) +Z*(pope) ]
+f[——+ In(—g%/m?)
il

+Zr*[sin(0/2)—sin2(9/2)]
X [cos? (0/2)]‘1:' } (2.5)

4D. R. Yennie, S. C. Frautschi, and H. Suura, Ann. Phys. 13,
379 (1961).

5S. D. Drell and S. Fubini, Phys. Rev. 113, 741 (1959).
(Ieé\ll\ R. Werthamer and M. A. Ruderman, Phys. Rev. 123, 1005

961).
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P, (Mev/c)

F16. 2. Typical proton spectrum taken on Stanford linear
accelerator. P£!~800 Mev/c, AP;~10 Mev/c.

The Rosenbluth cross section” for our case is given by

()
dQ4 Ros

ro”'mzZZrnP,;(E4+M)‘|cos2(0/2) o q°
2 LB (B M) Jsm4(o/2)[ 4M?

X [2(F14xF2)? tan?(8/2)+2F ] ] (2.6)

and we define

5 +a{ 28+131( )
el= 9 6 n{(—gqg’/m

™

4 Zn?[sin(6/2)—sin2(6/2) J[cos2(8/2) ] } (2.7

The angle 8 is still the electron “elastic” scattering
angle. The expression is simpler in this form and 6 is
easily obtained from 6’ as follows:

sind= (P/ E;*!) sing’. (2.8)
The last term of our elastic correction is the McKinley-
Feshbach term.® This is a second-order Born approxima-
tion for an electron scattering from a central Coulomb
potential and is intended as an estimate of the non-
infrared part of the two-photon exchange diagrams. The
K’s are infrared terms and are defined in T.
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IIIa. INELASTIC CORRECTIONS

The inelastic correction consists of the diagrams of
Fig. 3. The matrix elements are given by:

ALLAN S.

KRASS

(See discussion at end of IIla.) The cross section is
given by:

(27)2E,Es
L(prpo)*—m2M? ]t

T incl=

x/d3p3d3p4d3k 8 (prtpo—ps—pa—k)

=

spins, pol.

Xt (M +M o)1) (M o, +Ms,). (3.4)

Our problem is to perform this final-state integration
for the case in which the proton is detected. In T the
experimental conditions were such that the energy of an
emitted photon had to be less than a value AE [given
by Eq. (IIL.3) of T7] in order for the event to be counted.
Thissituation permitted a “soft photon” approximation.

However, when the proton is detected, the scattered
electron can emit a very hard photon along its direction
of motion without appreciably affecting the energy and
direction of the recoil proton. (The analogous radiation

= ¢ mMz of a hard photon in the direction of the recoil proton in
! (2m)72 (2wE EsE3Ey)* case 1 is inhibited by the mass of the proton and the
TRt kit kinematic demands of the detectors.)
X1(ps) e‘b s m‘y — b " u(py) Now for a given recoil proton momentum we can
2p5-k Lo 2p1-k ! calculate the distribution of photons in energy and angle
1(5TH ) using the requirements of energy-momentum conserva-
X“(P )T u (P 3.1) tion and the properties of the detectors. Figure 4 shows
(pr— ps— k)2 " the kinematics and defines the angles we use in the
o mM 7 A(ps)y () calculation.® Let
-
: (27[')7/2 (20)E1E2E3E4)% (pl—P")g p4=P4El_—AP47 (35)
X i( P4)[Fo”€ » 4+k+MI, u and use energy-momentum conservation to write:
2ps-k
po—k+M (ps)r= (p1tpo—pa):=m?, (3.6)
— T, |u(p2), (3.2
2k Jua, 62 (b= (prk-pa—pu—byi=mt. B.7)
D= Fi(g")y*+ (in/ M)Fa(q?)o gy, (3.32) Subtracting (3.6) from (3.7), we derive the energy vs
Lot=v*+(ix/ M)c*’k,. (3.3b) angle function for the emitted photons:
AP, M (Es— M) (Er+M)
Wmax (ay (p,AP,;) = . (38)
PelEF! EY(1—cost)+APy(Bs— cosa cosf’ — sina sind’ cose)
Here 7 is the angle between p;°! and k (see Fig. 5) and  where
B4=P4el/E4el_ .
When ApsKLE;*'(1—cost) this has the form of an 1=[M (Es— M) (ExtM)/PiEsEsTJAPs, - (3.10)
ellipsoid with w=0 at one focus. In the region (cost=1) e=1— (AEy/Es")+ (APy/Es®) cos(0+0'). (3.11)

where AP becomes important we can make the ap-
proximations cos¢=~—1 and a=0—r. Then, since AP,
is unimportant for large 7, we can use as the equation
for the ellipsoid,

Wmax (1) =1(1—€ cos7)™, (3.9)

This ellipsoid is very nearly cylindrically symmetric
about ps°l. It represents the boundary of the phase space

¢ This calculation is very similar of that of Appendix A of T, and
only the outline is presented here.
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into which photons can be emitted for a maximum
proton momentum loss of APs. We now must integrate
the squared matrix element formed from Egs. (3.1) and
(3.2) over this volume.

The integration is considerably simplified by breaking
it into two parts.’® We first integrate over an isotropic
distribution of soft photons with maximum energy AE
[cf. Eq. (3.12)7]. This includes the infrared divergences
which cancel those of Eq. (2.5) and give a result similar
to that obtained in T and of the same form as the well
known Schwinger correction.*

In the remainder of the ellipsoid the photons are
assumed to be hard and nearly parallel to ps¢! [cf. Eq.
(3.18)]. For this part it is necessary to examine carefully
the matrix element to find which terms become im-
portant when hard photons are emitted.

Before calculating the inelastic corrections, we must
examine the effect on the form of the proton current
[Egs. (3.3a,b)] of the emission of a hard photon. Re-
ferring to Fig. 3 we see that the proton becomes virtual
with the emission of a real photon. In theory these
diagrams are too complex to be described in terms of
only the two form factors F; and F,. For an exact
treatment one would have to examine them with respect
to their gauge invariance properties and obtain a more
general form for the proton current containing more
form factors. This corresponds to the extra probe into
the structure of the proton.

In practice we keep only the form factors F; and Fs,
because the error we make in doing so amounts to a
small correction to an already small correction. This is
true, because the error is introduced by diagrams in
which the hard photon is emitted by the proton current.
But such an event is highly improbable, unless the
proton is very relativistic (i.e., E4~10 Bev). We have
therefore used Egs. (3.3a,b) to describe the two vertices
at which the proton interacts with photons. We assume
the usual Rosenbluth form at the virtual photon vertex
and, under the assumption that the free photon does not

TO ELECTRON-PROTON SCATTERING
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probe the proton deeply, the form (3.3b) at the free-
photon vertex.

IIIb. SOFT PHOTONS

We take for the region of integration a small sphere of
radius AE where AE is the maximum allowable photon
energy in the direction p; [see Eq. (3.8)]:

=[E\(E:+M)/PiEsJAPs= (1/p)AE,,
= (Py)*/ EL(Es+M).
We have used the fact that most photons are emitted
along the directions p;, ps*! to determine AE. The soft-
photon integration takes care of energies up to AE
along p;°!, and the hard-photon integration will include
the rest.

Inside the sphere w is very small compared to all
energies in the experiment so that the only important
term in the matrix element is x2 [see Egs. (3.22, 3.23)]:

(Pg e pie ZP4‘8 ZP2 6)

X:

Pk Pk pak ?2

The soft-photon inelastic cross section can then be
written as

(3.12)

dasoit= BsofthRos, (3.13)
wher
a @k
6soft=‘— —‘_[:Z X2] (314)
s w pol

In our metric the sum over polarizations introduces a
minus sign and this becomes

AE k?dk

a
Osoft=—

42

(&)

Zbe  Zpa
x/dm[ AR L Y pg]. (3.15)
Psk Plk P4k pzk

This integration is straightforward, and the techniques
are clearly outlined in T and by Yennie ef al. in their
treatment of the infrared divergences.* It is sufficient
then to quote the result:

a E1E3 —q2 ME4 1 1
Osoft= ——{ In I:ln(————)— 1427 lnar):l—{~Z2 In: l:— ln<—>— 1:| ]»
ml (AE)? m? (AE?LBs \&

ZC(" El—'M E]_—M 2(M" E1) 2E1 M (43 El—Eg El’—E3
e e e A e A e e M ]
™ E1 M M |2E1""MI ™ E1 E3

Za E4—E1 M(E4—E)) 2E;(Es— Ey) 2E; 2E3E,—EM
o o)

m™ 2E3E4—E1M 2E3E4'—E1M M E1[2E3 M!

Zoz E3 M Eg“‘M Z(M'—Es) 2E3 M
1% RE

T Es M M |2E;—M|

Za t1—8) =1 =1 1 M+E,
ol Co )G ), |

m L \g(E+1) £+1 £+1 £+1 £ 2E,

Es) 2F, 2EE4—

2B (Ey—
®

E,r"E;;) < ]‘I(E‘;~
—¢
Es 2E\E4—

AT

E;;M) <2E1E4——

EM
n— n——~————~:|. (3.16)
M Ej|2E,—M|

E3)>
EsM

10 This technique has been used by Tsai in his calculation of corrections to e—e scattering: Y. S. Tsai, Phys. Rev. 120, 269 (1960).

1 J, Schwinger, Phys. Rev. 76, 760 (1949), Eq. (2.105).



2176 ALLAN

HARD
PHOTONS

(H)

SOFT
PHOTONS

F1c. 5. Phase space available to emitted photons. The figure
is an ellipsoid of revolution about P! with one focus at the
origin.

Note that the infrared terms have been cancelled
against those of 8.;. Here ®(x) is the Spence function,?

zln|1—
()= / ]Ty[dy,

(3.17)

and

£=[(1—B4)/(1+B4) T

The most important parts of 855 are the first two
terms and the first term is very similar to the familiar
inelastic corrections.!!!

IIIc. HARD PHOTONS

"Almost all the photons with energy greater than AE
are emitted very close to the direction of p;°. We take
account of this fact by setting

k= (w/E?’eI)PSEIy

wherever £ appears in scalar products with gy, ps, ps.
We also notice that since £2=0, we have

p3-k= (ps*'+Aps—k) -k
=P391‘k+A?4'k

=~ Eylw[1— € cost ],

(3.18)

where
pael k= E3el(.0(1—63 COST).

As in Eq. (3.13), we write
5hardd¢7Ros= dahard;

and a straightforward analysis yields

E3"la d’k [% Z [Mbll+M bzl l 2
J,

472 wkEs Ry
E3= E3el+ AE4'—(J),

Ohard=

:|, (3.19)

where
(3.20)
and

1
Ro:f 2 a(ps )y yun(pr)a(pae)THu(ps) 2.

Ry is the Rosenbluth matrix element with the usual
numerical factors stripped away. M’ and M, are

12 K. Mitchell, Phil. Mag. 40, 351 (1949).
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defined by
emM7Z

= (3.21)
(2m)712(20 E1EoFs Eg)t

’
brg br2 -

If the quantity
% Z IMbll+Mb2,|2
spins
is now written out, the various terms can be classified
with respect to their dependence on w. Using (3.3b) we
simplify the expressions (3.1)-and (3.2) and obtain:

[ Ii_i’if P1'3:| (Yu)s1(T*) 42

Mbllz -
ps-k prrkd ()

eky, v.ke (T¥) g2
[ ko] @)
2p3-k 2p1rkdn @
szlz_Z[[iP‘i.e Pz'e—](7y)3l(ru)42+ (G
pok parkl (gHRE gy
|:ekI‘“ I"‘ke:‘ k (vu)a
X _
2p4°k  2pa-kd 2M (q+k)?
PH‘M p2+M
X[ke [éTh— ek:l } (3.23)
2puk 2pyk 42

where the expression (v,)s1(I'¥)s is shorthand for
Laa(ps)y an (p1) it (p)T  u(ps) .

Using the approximation (3.18), we can simplify
(g+k)? as follows:

(q+ky=g+2¢-k
= (Es/EsY) ¢,

[E; defined by Eq. (3.20).] With this simplification the

quantity
i Z IMbll+Mb21|2
spins
can be written out and with the help of (3.18) all the w
dependence in each separate term can be isolated into
a factor multiplying a more or less complicated trace of
v matrices.

We give here a schematic representation of the result
in which the B’s represent sums of traces. It is not
necessary to specify them precisely since, as we shall
show, no terms involving complicated traces are im-
portant in the final result.

% Z lell_*_szllz
spins

m2 1 2E32 W 2E3
Ro+ (— + + )Ro
(ps-k)? D3 k\wEzel  Egel  Egel

Esel 3 4Z —_ 1 ESeI 2
Q( ) Ro+ Y /ﬂ)/ ) Ry (3.24)
30)2 q2 \ w

E3el

+22

E3e1
Bi+—By+
E e

3 w Es

Q=L[¢¥/ (ME,Es)? ][ E1Es®'+3¢* ] = —sin®0/ M2,

E;

_|..

Bs+ By,
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This now has to be integrated over the hard-photon
region [Eq. (3.19)] which is the ellipsoid of Fig. 5.
From Egs. (3.9), (3.10), (3.11), and (3.12) we can write

l=7rAE,
e=1—rAE/E;,

where
r= M(El—Egel)/ElEgeI. (3243.)
Then (3.19) becomes (with y=cos7):
a 1 1 (1—ep) wE3el
5hau'dz +—/ dﬂ/ dw
2r )1 AE E;
XLG X [My/+Mu'[?)/R]. (3.25)

spins

We may now insert (3.24) into (3.25) and perform the
integrations. In all cases these can, with the aid of the
Spence function, be worked out completely. When this
is done, it is found that the terms containing 1/p3-%k and
R, give the major contributions and that the terms
containing the complicated traces are smaller than these
by a factor AE/Esel.

In the Appendix we give the results of the individual
integrations, and here we give the result for Shara:

o 2E3e1 Eael E3e1
Ohard = +_[ +% In—In
rAE V2AE 2 rAE

m

w 7
+%(1 +g> +Z(E3e1)2(1+ln—2-)

x[zq+ﬁ%—lz] ] (3.26)

Now the total radiative correction is calculated by
combining (2.7), (3.16), and (3.26):

8total= 6el+Bsoft+6hard;

do do
(_) = ("“) (1+6total)-
aQ total aQ Ros

IV. NUMERICAL EXAMPLES AND DISCUSSION

and

(3.27)

It is interesting to compare the radiative corrections
obtained here for proton detecting experiments with
that obtained in T for electron experiments. We would
also like to compare our result in the limit of low-inci-
dent electron energies with that obtained by Schiff.13

Case 1: E;=900 Mev, F3=327 Mev, n=2.75, AP,=10 Mev.

e+p (Z=+1) et+p (Z=-1)
Oel +8.1% +5.9%
Ssoft "—302% —_ 229%
Shard 'f—ss% +60%
Stotal —16.6% —~11.09,

13 1,. I. Schiff, Phys. Rev. 87, 750 (1952).
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These corrections are somewhat smaller than the corre-
sponding ones for electron detection (see T, part IV).

Some care must be taken in comparing the results of
Schiff’s calculation with those obtained in this problem.
Schiff’s calculation was intended for an emulsion ex-
periment in which the protons were resolved only in
angle and not in energy. All protons with momenta
above some small value were to be observed. Clearly
this situation is inconsistent with our assumption that
AP4/Pyis very small (ie., AP,/P,50.1).

We can get a rough comparison with Schiff’s result by
using (AP4/P4)=0.1 in both his formula and ours. For
6’=0 Schiff’s formula in our notation becomes [cf.
Eq. (7), reference 137:

o 2FE,
(t0tal) Schitt= —[ |:ln(—> — %:I
™ m

(x—1)? 117 17 7
o 22
x 6

where x=2F1/qn and ¢n= P4 min.
Now for E,=100 Mev, E;=82.5 Mev, AP.=18
Mev/c,
atota]: —24%

atotalz - 38%

(Schiff),

(our value).

This agreement is quite good and serves as a check on
the validity of our approximations.

We can summarize the regions of validity of the two
corrections as follows:

1. The Schiff correction is valid for a nonrelativistic
final proton (i.e., 84<1) and for APs;~ P

2. Our correction is good when 84>0.3 and AP;/P,
0.1,

This latter restriction is quite conservative, and in high-
energy experiments AP4/ P, will usually be much smaller
than this.
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APPENDIX

We wish to perform the integrations indicated in Eq.
(3.25) using the expression (3.24) for the matrix ele-
ment. After a reduction involving the partial fraction
expansions,

(Es*)? 2 o 1
=—+—+
E32w E 3 E32 w

(A1)
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and

Esft 1 1
=—t- (A.2)
an E3 w

the integral (3.25) becomes
P U (—ew) m
Ohara="—" dﬂf dw{ B
2rJa Jam (E5*)*(1—en)?

1 1 1 |-E3el 2E;3!
sl d
E3 w Egel(l—ﬂl)l— E3 w
—_—m1 el)2 !
=) E, o B
¢ J o EfR
Esel Bz’
E; Ro

+|:Z2Q+

E*' By By
———+———}. (A.3)
E?2 Ry Ro

The (B’)’s differ from the B’s only in the possible addi-
tion of extra terms from partial fraction expansions. If
the integrals involving (B’)’s are worked out, it is found
that all of them are of order AE/E;°! compared with the
terms involving Ry. Since AE<K E;*! and B'/Ro~1, these
terms are all negligible.

The first three terms can be integrated directly, and
the results are as follows:
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U (l—epw) mZ
el/ d”/ w[:
-1 (E3e1)2(1__ e,u)
1 1 m?
<G -law)
E3 w (AE)2
We assume AE>>m and therefore can drop this term.
1 U (—ep) 1 1 2 1
/ du / dw l}——"‘—— ]
_1 AE (1—' e,u) E3 w Esel
2E3el E3el 0 E3el 7l"2
+In-In +<1+—~), (A1)
rAE V2AE 2 6
where p and 7 are given by (3.12) and (3.24a).
1 I (1—ep) E3e1 7
E3°1/ du/ dw( )=2(E391)2<1+1n—>. (A.5)
-1 AE w 2

We have consistently negle:ted Spence functions
®(x) in which | #|<1. When < —1 we can approximate
&(x) by

~4 In
rAE

2

O(x)~———3Inx 2 (xK—1). (A.6)

This equation has been used in (A.4). Now Egs. (A.4)
and (A.5) are inserted into (A.3) to give (3.26).



