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The radiative corrections to electron-proton scattering are calculated for an experiment in which the recoil
proton is detected instead of the scattered electron. The emission of very hard photons by the scattered
electrons is taken into account in the phase-space integration. This calculation is intended for high-energy
experiments (up to 5 Bev) but is applicable whenever the momentum resolution of the spectrometer is small,
i.e., (AP4(P4 0 1). Me.sonic contributions to the two-photon exchange diagrams are neglected.

""N a recent paper' Tsai has calculated the radiative
~ - corrections to electron-proton scattering for electron
beam energies up to 5 Bev. In that calculation it was
assumed that the scattered electron was detected and
the recoil proton left undetected.

However, when one attempts to observe electrons
scattered at very large angles (i.e. , near 180') the
counting rate per unit solid angle becomes small, and
often the physical limitations of the accelerator and
spectrometer prevent observation of electrons scattered
backwards.

These difhculties have been overcome in some recent
experiments" by observing the recoil proton instead of
the scattered electron. This provides much higher
counting rates per unit solid angle and allows the ex-
perimenter to study even i80' electron scattering by
observing protons in the forward direction.

In this paper we will calculate the radiative correc-
tions to e-p scattering assuming that the recoil proton
is detected. The results will be different from those of
Tsai because the phase space available to the final state
is different.

This paper will be divided as follows: part I is a dis-
cussion of the experimental conditions, part II the
calculation of the elastic correction, part III the calcula-
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tion of the inelastic corrections, and part IV some
numerical results and discussion.

The present work is intended as an addition to the
work done by Tsai in T. The notation, metric, etc. are
identical, and, wherever possible, repetition of state-
ments made in T has been avoided.

I. EXPERIMENTAL CONDITIONS

We assume an experiment in which an electron beam
strikes a stationary proton target. The recoil protons are
analyzed in a spectrometer as shown in Fig. i. The slit
Sr determines the angular resolution (604) and Ss de-
termines the momentum resolution.

A typical momentum spectrum' obtained in this way
is shown in Fig. 2. The most important features of this
spectrum are its near symmetry about the peak and the
fact that AP4«P4" (note P4 ~p4~). The symmetry
about the peak indicates that there is no long radiative
tail to the spectrum (as there is for an electron spec-
trum), and that, by cutting off the data at P4" AP4, —
one is including essentially all of the events associated
with this peak.

Besides the radiative correction there are three other
effects which cause the spectrum to spread:

1. finite energy spread in incident beam (AE,/E&& 1%);
2. finite magnet aperture 604',
3, bremsstrahlung and straggling in target.

ERects 1 and 2 can be quantitatively calculated from
elementary kinematics. The width induced in the proton
spectrum by each effect is given by:

BP4 E4 (61.'t)
P4 s „„„„Et+MalEr I

FIG. 1. Experiment arrangement for observing recoil proton.
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In practice the error introduced into the value of the
Supported in part by the U. S. Air Force through the Air cross section by these two effects is negligible. However,

Force Office of Scienti6c Research. if the proton is observed at angles far from the forward' Y. S. Tsai, Phys. Rev. 122, 1898 (1960).Hereafter referred to
as T. direction Kq. t', i.2j may become important.

' P. Gram and R. Hofstadter (private communication). We assume that the effects of bremsstrahlung and
For example, Berkelman, Cassels, Olson, and Wilson, i»«- straggling on the radiative correction are small, so that

ceedings of t"e ~~60 annual International Conference on +igh- the former can be calculated independently and, in our
Energy Physics at Rochester, edited by E. C. G. Sudarshan (Inter-
science Publishers, , New York, 1960). calculation, we may assume an inhnitely thin target.
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A=
d'ps d'p4

8 (p.+p. p. p-) IM-I (2 1)
E3 E4

for the two cases:

(case 1) A 4
——(Ei/Mr)')desi M t', t)=Et/Es", (2.2)

II. ELASTIC CORRECTION

This correction is worked out in detaii Dy Tsai', and
since the final state consists of only two particles there
is no essentia c angeint l h e in the calculation when the proton
is detected instead of the electron. The energy-mo-
mentum 5 function ensures that a determination o ps
fixes p4, and vice versa.

The only change required is the switching of the

p ahase-space integration from the final proton mo-
mentum ~case( 1) to the final electron momentum
(case 2).

We evaluate
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. &. T '
l ton spectrum taken on Stanford lineariG. . ypica pro

=10 Mev c.accelerator. P4"=800 Mev/c, AP4= evjc.

The Rosenbluth cross section' for our case is given by

(
do. rs'tn Z' r)P4(E4+M) cos'(8/2) g'

d043 a., 4Ers E,(Et+M) sin'(8/2) 4M'

P4(E4+M)
(case 2) A 4= d04j M ~',

M(Ei+M)

)&I 2(Ft+lrFs)' tan'(8/2)+4'Fssj, (2.6)
(2.3)

and we define

where P4 (E4' M'——)'. —
For the same incident energy and momentum transfer

(q') the ratio of the differential elastic cross section ofq„t eraioo
case 1 to that of case 2 is

n 28 13
8,i

——+— ——+—In (—q'/m')
9 6

+Z4r'Lsin(8/2) —sin'(8/2) juncos'(8/2)$ ' . (2.7)

A s/A 4 Ei(Et+M)——/rl'P4(E4+M). (2.4)

(do ) lrdo i
kdB~J. i Edn )R,

1+-[—&(pips)+&(pipi)

ZE(pspi) ZE(p—4ps)+ZE(p—sps)

+zz(p, p,) zz(p, p,)+z (-p,p,)j
n- 28 13

+— ——+—ln (—q'/4rs')
9 6

+Zm'Lsin (8/2) —sin'(8/2) j
&& Leos'(8/2) j ' . (2.5)

All of the comments made in Tconcerning the separation
of the infrared parts of the elastic diagrams4 and the
deletion of mesonic contributions' ' to the two-photon
dia rams are applicable in the present case as well.

The elastic correction can then be writ
iag

~ ~

ten as follows
Lcf. Eq. (II.13) of Tj:

The angle 8 is still the electron "elastic" scattering
angle. The expression is simpler in this form and 8 is
easily obtained from 8' as follows:

sin8= (P4/E, ") sin8'. (2.8)

k P3

X7„

y ~ rl +

FIG. 3. Feynman
graphs for the lowest
order inelastic e-p scat-
tering.

The last term of our elastic correction is the McKinley-
hb h t . This is a second-order Born approxima-

tion for an electron scattering from a centra ou om
potential and is intended as an estimate of the non-
infrared part of the two-photon exchange diagrams. The
E's are infrared terms and are defined in T.

'D R Yennie, S. C. Frautschi, and H. Suura, Ann. P y .Ph s. 13

R . 115 741 (1959).5 S. D. Drell and S. Fubini, Phys. Rev.
. 123 1005N. R. Wertharner and M. A. Ruderman, Phys. Rev.

(1961}.
M. N. Rosenbluth, Phys. . Rev. 79 615 (1950).

4 W. A. McKinley and H. Feshbach, Phys. Rev. , (



2174 ALLAN S. KRASS

(See discussion at end of IIIa.) The cross section is

given by:

Pg d& inc 1
=

(22r)'EIE2

[(pl p2)2 m2M2]-'*

FIG. 4. Kinematics
for the calculation of
~maX {2 4).

spins, pol.
(M s,t+M ts)e(M s,+M 2,) (3. .4)

X d'Psd P4d k 5 (Pl+Ps —Ps —P4 —k)

Our problem is to perform this final-state integration
for the case in which the proton is detected. In T the
experimental conditions were such that the energy of an
emitted photon had to be less than a value hE [given
by Eq. (III.3) of Tj in order for the event to be counted.
This situation permitted a "soft photon" approximation.

However, when the proton is detected, the scattered
electron can emit a very hard photon along its direction
of motion without appreciably a6ecting the energy and
direction of the recoil proton. (The analogous radiation
of a hard photon in the direction of the recoil proton in
case 1 is inhibited by the mass of the proton and the
kinematic demands of the detectors. )

Now for a given recoil proton momentum we can
calculate the distribution of photons in energy and angle
using the requirements of energy-momentum conserva-
tion and the properties of the detectors. Figure 4 shows
the kinematics and defines the angles we use in the
calculation. ' Let

IIIa. INELASTIC CORRECTIONS

The inelastic correction consists of the diagrams of
Fig . 3. The matrix elements are given by:

e' mMZ
Mg, ——

(22r) I (2oIEIE2E2E4) l

— P2+k+m P,—k+m-
XI4(P2) e— V,—V, N(PI)

2P2 k 2pl k

24(P4)r "N(P2)
(3.1)

(Pl-Ps- k)'
e' mMZ 24(ps)y„N(PI)

Mg 2
(22r)'" (2oIEIE2E2E4) l (p, —p;, )-'

p4+k+M
X24(P4) I'2 "e,—— I'"

2p4 k

p2 —%+M—I"e— I', "e„ l(p, ), (3.2)
2p2 k

I'e = 1~'I (q2) pe+ (ss/M) F2 (q2) Ire "q„,
I',e= ye+ (2s/M) Ire "k„.

(3.5)p4= p4"—&P4,

and use energy-momentum conservation to write:

(3.6)(psel)2 —(pl+p2 p4el)2 —m2

(ps)'= (pl+p2 —p4 —k)'=m'. (3 7)

Subtracting (3.6) from (3.7), we derive the energy vs
(3.3b) angle function for the emitted photons:

AP4 M (E4 M) (El+M)—
Olrnex(ttr V,~P4) =

P4 IE4 Es (1 cos )+DrP4(p co4stt cosg —sinu sing cosy)
(3.8)

Here r is the angle between Ils' and k (see Fig. 5) and
P —P el/E el

When EP4«E2" (1—cosr) this has the form of an
ellipsoid with ol =0 at one focus. In the region (cosr = 1)
where AP4 becomes important we can make the ap-
proximations cos p =—1 and e=0—r. Then, since AP4
is unimportant for large r, we can use as the equation
for the ellipsoid,

40~»(r) =l(1—e cosr)-',

where

l= [M(E4 M) (EI+M)/P4E4Esel jh—P4, (3.10)

e= 1—(&E4/Esel)+ (&P4/Esel) cos(0+0'). (3.11)

This ellipsoid is very nearly cylindrically symmetric
about p3". It represents the boundary of the phase space

' This calculation is very similar of that of Appendix A of f, and
(3.9) only the outline is presented here.
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into which photons can be emitted for a maximum
proton momentum loss of hI'4. We now must integrate
the squared matrix element formed from Eqs. (3.1) and
(3.2) over this volume.

The integration is considerably simpliied by breaking
it into two parts. "We first integrate over an isotropic
distribution of soft photons with maximum energy ~
[cf. Eq. (3.12)j.This includes the infrared divergences
which cancel those of Eq. (2.5) and give a result similar
to that obtained in T and of the same form as the well
known Schwinger correction. "

In the remainder of the ellipsoid the photons are
assumed to be hard and nearly parallel to p3" [cf. Eq.
(3.18)j.For this part it is necessary to examine carefully
the matrix element to find which terms become im-
portant when hard photons are emitted.

Before calculating the inelastic corrections, we must
examine the effect on the form of the proton current
[Eqs. (3.3a,b)) of the emission of a hard photon. Re-
ferring to Fig. 3 we see that the proton becomes virtual
with the emission of a real photon. In theory these
diagrams are too complex to be described in terms of
only the two form factors Fj and F2. For an exact
treatment one would have to examine them with respect
to their gauge invariance properties and obtain a more
general form for the proton current containing more
form factors. This corresponds to the extra probe into
the structure of the proton.

In practice we keep only the form factors Fj and F2,
because the error we make in doing so amounts to a
small correction to an already small correction. This is
true, because the error is introduced by diagrams in
which the hard photon is emitted by the proton current.
But such an event is highly improbable, unless the
proton is very relativistic (i.e., E4= 10 Bev). We have
therefore used Eqs. (3.3a,b) to describe the two vertices
at which the proton interacts with photons. We assume
the usual Rosenbluth form at the virtual photon vertex
and, under the assumption that the free photon does not

wher
dmso f t ~sof tdgRosy (3.13)

0. d'k
[2x'j (3 14)

Q) po1

In our metric the sum over polarizations introduces a
minus sign and this becomes

n ~E k2dk

pr Zp4 Zps
+ . (3.15)

ps. k pr k p4 k ps. k

This integration is straightforward, and the techniques
are clearly outlined in T and by Yennie et a/. in their
treatment of the infrared divergences. 4 It is sufhcient
then to quote the result:

X d~A:

probe the proton deeply, the form (3.3b) at the free-
photon vertex.

IIIb. SOFT PHOTONS

We take for the region of integration a small sphere of
radius ~~ where ~ is the maximum allowable photon
energy in the direction p& [see Eq. (3.8)]:

hE= [E,(E,+M)/P4E4$4P4 (1jP——)&E4,
( 12)1=(P )'/E (E+M).

We have used the fact that most photons are emitted
along the directions p~, p3" to determine bE. The soft-
photon integration takes care of energies up to bE
along pa", and the hard-photon integration will include
the rest.

Inside the sphere co is very small compared to all
energies in the experiment so that the only important
term in the matrix element is x' [see Eqs. (3.22, 3.23)j:

~

~

~ ~

pee p, e Zp, e Zp,
e)x= — — +

p3'k pr'k p4'k ps'k

The soft-photon inelastic cross section can then be
written as

n E F3 —q' ME4 1 tp1

5„pt= ——ln ln —1+2Z 1n31 +Z' ln —1n~ — —1
(~E)3 (~E)' ~.

Zu (Er M( Er M— (2 (M—Er) ) — 2E3 M n Er—E3) t' Er—E3)
+—@'I —c

/

— +c'/
I

—»» +- @ f+c'I—
Er 4 Er E M i M

i
2E3—M[ 3r Le'3 i 4 E3

Za tp E4 Er M(E4—E—r) 2E3(E4 Er) ) 2E3 2E3E4 E3M——C'/ — —4 +C
~

—ln ln
E, 2E3E4 ErM 2E3E4 E—&Mi M E,

t
2E—3

—M
~

Zn tpE3—M) —E3 M) tp2 (M—E3) 2—E3 M

E, i E, i ( M M /2E, —Mf

Z43 E4—E3) M (E4 E3) 2E& (E4 F,—) 2E& 2E&1:4 E3M- —
+—C —

~

—C +4 —1n 1n . (3.16)
E3 i 2E&E4 E3M 2E1E4 E3M —M I 3

~

2E1
' This technique has been used by Tsai in his calculation of corrections to e—e scattering: Y. S. Tsai, Phys. Rev. 120, 269 (1960)."J.Schwinger, Phys. Rev. 76, 760 (1949), Eq. (2.105).
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defined by
e'mMZ

1
Mb, ,—— MbI 2 ~

(21r)"2(24oEtE2EoE4) e

If the quantity

Q lM, '+M, 'l'
sp zns

(3.21)

SOFT
PHOTON S

F&G. 5. Phase space available to emitted photons. The 6gure
is an ellipsoid of revolution about P3" with one focus at the
origin.

Note that the infrared terms have been cancelled
against those of 8,1. Here C (x) is the Spence function, "

lnl1 —
ylC(x)=- dy, (3.17)

and

The most important parts of b„f& are the first two
terms and the first term is very similar to the familiar
inelastic corrections. ' "

k —(oo/E el) p el (3.18)

wherever k appears in scalar products with Pl, Po, P4.
We also notice that since k'=0, we have

po k= (po"+l4P4 k) k-
=poet. k+AP4 k
=Eo"&oLI—4 COSr],

where
Po" k=Eo"o&(1 P4 COSr). —

As in Eq. (3.13), we write

~hard~0 Ros da hardy

and a straightforward analysis yields

Eoe'n d'k -4 Q lMo, '+Moe'l2
4a.d=

4'-' H 07E3
where

Eo——Eo"+AE4 —lo,

(3.19)

(3.20)

1
Ro= — ' & l&(po")~.N(pt)~(p"')I'"~(P2) l'.

g spina

Ro is the Rosenbluth matrix element with the usual
numerical factors stripped away. Mb, ' and Mb, ' are

'4 K. Mitchell, Phil. Mag. 40, 551 (1949).

IIIc. HARD PHOTONS

Almost all the photons with energy greater than AE
are emitted very close to the direction of y3". We take
account of this fact by setting

is now written out, the various terms can be classified
with respect to their dependence on to. Using (3.3b) we

simplify the expressions (3.1) and (3.2) and obtain:

-p, . p, .-(&„)»(r~)4,

po k pl. k (q)'
Mb, ' ——

—eked„y„ke — (I' )42

+ +, (3.22)
2po k 2pl k 21 q'

P4'8 P2'8 (V~)31(F )42 (Y )21
Mb, ' ———Z

P4 k P2 k (q+k)' (q+k)'
—eel" I"ke x

—
(q„)»

x + +
2p4. k 2p2 k 42 2M (q+k)'

P4+M P2+M
ke I'&-+I'&— ek, (3.23)

2p2 k 42

where the expression (y„)ot(I'")42 is shorthand for
Lg(P2) V.~(pt) N(P4) I'"~(P2)].

Using the approximation (3.18), we can simplify
(q+k)' as follows:

2p4 k

(q+k)'=q'+2q k

(E /E el)q2

t Eo defined by Eq. (3.20).]With this simplification the
quantity

Q lMo, '+Mo, 'l2
spans

sp ins

nz2 1 2E22 4o 2E2)
Ro+ — — + + lRo

(p .k)2 p .k ~E el E el E elj

(Eoe')2 4Z(q 1/q) E-
+Z'Q Ro+ Ro (3.24)

E3(o' Q 07

Eel Eel
+ ~1+ %+ A+2I4,

E3" co E3

Q= l q2/(ME, Eo")']LE,E2"+-',q']= sin tl/M'2—

can be written out and with the help of (3.18) all the co

dependence in each separate term can be isolated into
a factor multiplying a more or less complicated trace of

y matrices.
We give here a schematic representation of the result

in which the 8's represent sums of traces. It is not
necessary to specify them precisely since, as we shall
show, no terms involving complicated traces are im-
portant in the final result.

Q l
M o,'+M 4,'l 2
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r= ~(E, Ete')/—EiEte .

Then (3.19) becomes (with @=cosr):

(3.24a)

n
~herd +

27/

l/(1—ep, ) P el

de

XL(-,' P JM „'+baht'(')/Z, ]. (3.25)
SP ins

We may now insert (3.24) into (3.25) ancl perform the
integrations. In all cases these can, with the aid of the
Spence function, be worked out completely. When this
is done, it is found that the terms containing 1/pt k and
Ep give the major contributions and that the terms
containing the complicated traces are smaller than these

by a, factor AE/Et"
In the Appendix we give the results of the individual

integrations, and here we give the result for b~„d ..

2@,ei g ei
p gae

chord
——+—2 ln ln +~ ln- ln

tr rhE v2AE 2 rhE

r
+-', (1+—+Z(E ")'~~ t+ln—

4(n —
n ')

X &Q+
g'

(3.26)

Now the total radiative correction is calculated by
combining (2.7), (3.16), and (3.26):

fttotel ~ei+i5eoft+Iiherdy

This now has to be integrated over the hard-photon
region [Eq. (3.19)] which is the ellipsoid of .Fig. 5.
From Eqs. (3.9), (3.10), (3.11),and (3.12) we can write

t=raz,
e= 1 rhE—//EteI

where

These corrections are somewhat smaller than the corre-
sponding ones for electron detection (see T, part IV).

Some care must be taken in comparing the results of
SchiB's calculation with those obtained in this problem.
Schi8's calculation was intended for an emulsion ex-
periment in which the protons were resolved only in
angle and not in energy. All protons with momenta
above some small value were to be observed. Clearly
this situation is inconsistent with our assumption that
AP4/P4 is very small (i.e., AP4/Pt&0. 1).

We can get a rough comparison with Schiff's result by
using (AP4/P4) =0.1 in both his formula and ours. For
8'=0 Schiff's formula in our notation becomes Lcf.
Eq. (7), reference 13]:

0! 2Ey
(tttot i) Sohiff

7r — m

(x—1)' 11- 17
X ln +x+————,

x 6 13 6

wherex=2Ei/q andq =P4
Now for E~——100 Mev, 83=82.5 Mev, AP4=18

Mev/c,

5t.t.i= —2.4% (Schiff),

(our value).

This agreement is quite good and serves as a check on
the validity of our approximations.

We can summarize the regions of validity of the two
corrections as follows:

1. The Schiff correction is valid for a nonrelativistic
final proton (i.e., P4«1) and for AP4= Pt".

2. Our correction is good when p4&0.3 and Apt/P4
&0.1.

and
(do ) (dtT

(1+~t.t.i).
kdni, .„, Idn a.,

(3.27)

This latter restriction is quite conservative, and in high-
energy experiments AP4/P4 will usually be much smaller
than this.

Case 1:E1=900 Mev, J'3=327 Mev, g=2.75, AP4=10 Mev.

~ei

~soft

&hara

~tot ai

e +p (Z=+1l
+81%
30.2'

+5.5%%uo

—16.6%

e++p (Z= —1)

+5.9%
—22.9%%uo

+6.0%%uo

—11.0%

L I Scbiff
p Ph&s Rev 87 750 (1952 )

IV. NUMERICAL EXAMPLES AND DISCUSSION

It is interesting to compare the radiative corrections
obtained here for proton detecting experiments with
that obtained in T for electron experiments. We would
also like to compare our result in the limit of low-inci-
dent electron energies with that obtained by Schiff."
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APPENDIX

We wish to perform the integrations indicated in Eq.
(3.25) using the expression (3.24) for the matrix ele-
ment. After a reduction involving the partial fraction
expansions,

(E3")' 2 cd 1
=—+ +-

+3 Q) +3 g3 Q)
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and E" 1 1
+

E3o) E3 co

(A.2)
E' dp

l/ (1—ey)

do)
(E3")'(1—~~)

the integral (3.25) becomes

n
~hara=—

—1

l,/ O—ep) m2

de
(E,e))2(1,q) 2

I 2E el

+ —1
E3'

X —+—+-
E3 M E3 (1 fp) E3

&/ (&—ep) 2
+

(1—
e)M) E3 (a E3"

2E E p Ese'
=41n ln +ln —In + 1+—,(

rhE %26E 2 rhE 6

4Ve assume AE))m and therefore can drop this term.

where p and r are given by (3.12) and (3.24a).

(A 3) E3" d)

I

r
d ( =2(Z,")'(1+In- . )'A. 5),E 2

h (8')'s differ from the 8 s only in the phe ossible addi-
tion of extra terms from partial fraction pex ansions. If
he

'
I (8')'s are worked out, it is found

d hE/E "compared with the
he inte rais invo ving s

that all of them are of or er
AE&(E3" and 8'/Eo= 1, theseterms involving Rp. Since

terms are all negligible.
directl andThe first three terms can be integrated direct y, an

the results are as follows:

7r2

e(x) =——-', Plnx12 (x«—1).
6

(A.6)

This equation has been used in (A. . q ..4 . Now E s. (A.4)
and (A.5) are inserted into (A.3) to give (3.26).

We have consistently negl~;te pS ence functions
C (x) in wh)c x

'
h

I )
«1 When x&&—1 we can approximate

C(x) by


