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A gravitational theory compatible with Mach’s principle was published recently by Brans and Dicke. It is
characterized by a gravitational field of the Jordan type, tensor plus scalar field. It is shown here that a
coordinate-dependent transformation of the units of measure can be used to throw the theory into a form
for which the gravitational field appears in the conventional form, as a metric tensor, such that the Einstein
field equation is satisfied. The scalar field appears then as a “matter field”” in the theory. The invariance of
physical laws under coordinate-dependent transformations of units is discussed.

N a recent paper,! a modified relativistic theory of

gravitation, closely related to Jordan’s theory,? was
developed, compatible with Mach’s principle. It was
indicated that the resulting formalism was but one
particular representation of the theory, based upon a
particular definition of the units of mass, length, and
time.

The purposes of this note are, first to discuss very
briefly the invariance of physical laws under units
transformations,® and second to give another representa-
tion of the above theory, completely equivalent to it and
derived from it by a simple transformation of units.

The first representation of the theory' could be
characterized concisely as a relativity theory for which
the gravitational field is described by a metric tensor
and a scalar, but for which the equations of motion of
matter in a given field are identical with those of
General Relativity, not being explicitly dependent upon
the scalar field. Because of the inclusion of the auxiliary
scalar, as part of the gravitational field, the theory is
both formally and in its physical interpretation different
from General Relativity. It will be shown that this is
only apparent, and that a simple redefinition of units
causes the scalar to appear in the theory as a non-
gravitational field, Einstein’s field equations being
satisfied.

INVARIANCE UNDER TRANSFORMATIONS OF UNITS

Everyone, including the college freshman, is familiar
with the usefulness of dimensional considerations in
formulating physical laws. Dimensional analysis is
essentially an elementary group theoretic technique
applied to the equations of physics. It is evident that the
particular values of the units of mass, length, and time
employed are arbitrary and that the laws of physics
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must be invariant under a transformation of units. (The
units and dimensions employed need not be three in
number, nor need they be limited to the traditional
mass, length, and time.)

The invariance which we wish to consider here is
broader than the elementary consideration described
above. Imagine, if you will, that you are told by a space
traveller that a hydrogen atom on Siruis has the same
diameter as one on the earth. A few moments’ thought
will convince you that the statement is either a defini-
tion or else meaningless. It is evident that two rods side
by side, stationary with respect to each other, can be
intercompared and equality established in the sense of
an approximate congruence between them. However,
this cannot be done for perpendicular rods, for rods
moving relatively, or for rods with either a space- or
time-like separation. Their intercomparison for purposes
of establishing equality cannot be made until rules of
correspondence are established.

Generally, there may be more than one feasible way
of establishing the equality of units at different space-
time points. It is evident then, that the equations of
motion of matter must be invariant under a general
coordinate-dependent transformation of units. It should
be emphasized that the coordinate system is to be held
fixed under a units transformation, whereas under a
general coordinate transformation the system of physi-
cal units is held fixed but coordinates are varied. Thus,
under a general transformation of units, the labeling of
the space-time coincidence between two particles (coor-
dinates) is invariant, whereas the scalar curvature and
other purely geometrical scalars, invariant under coordi-
nate transformations, are generally not invariant under
a transformation of units.

It may be noted, for example, that a units transforma-
tion can be used to redefine the Riemannian geometry of
general relativity in such a way that the resulting
geometry is flat. (See Appendix I.)

We are not concerned here with the problem of the
general transformation of units, but rather with one of
more limited scope, the transformation of the formalism
discussed in reference 1 under a limited class of units
transformations. The transformation to be considered is
a simple position-dependent scale factor applied to
units of length, time, and reciprocal mass.

The velocity of light is invariant under such a trans-
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formation and the local-Lorentz invariance of the theory
is preserved. It should beioted that this is not a matter
of necessity but rather of convenience.

The unit of action, hence Planck’s constant, is also
invariant under the transformation. This is a matter of
convenience in the sense that the form assumed by the
equations of a quantum-mechanical formalism are
familiar.

Under this transformation, all three quantities, time,
length, and reciprocal mass transform in the same way.
Hence we may, if we wish, assign the same dimension,
say time, to the three quantities. As mentioned above,
it is necessary to interpret the generalized coordinates
of a point as fixed labels, invariant under a transforma-
tion of units. Then with the assumption that

ds=(gydx'dx?)} (1)
has the dimensions of time, g;; transforms like a time
squared. If the size of the unit of time is scaled by a
dimensionless factor A% an arbitrary function of
coordinates, a time interval (i.e., the number of units
required to represent the interval) scales as A%, Also the
metric tensor components transform as

i = Ngijy @)
g — \igid,
Hence, the transformation of the spatial geometry is
conformal.

The mass of a particle transforms as

3)

The electronic charge, the velocity of light, Planck’s
constant, and the electromagnetic four potentials are
invariant under the transformation.

While A may be taken to be an arbitrary function of
coordinates, we may also limit ourselves to the case of
M a definite function of the scaler ¢, of the Brans-Dicke
formalism.! By so doing, rules of measure are estab-
lished, for the scalar ¢ is locally observable. (It is
measured with a ¢ meter, a black box having a pointer
and a scale calibrated in units of MT2L~3. One type of
black box contains a torsion balance deflected by the
gravitational field produced by massive weights, held
mechanically in fixed positions in the box.) Once o,
hence A, is measured, the correction factor to be applied
locally to a rod or clock is determined.

From a slightly different point of view, a unit of
length can be established, in principle, in terms of the
diameter of a planetary orbit in a solar system which can
be transported (at least in time), alternatively in units
of the diameter of the hydrogen atom, or with any
combination of these two lengths. These various units
are not in a fixed ratio in this theory but vary as func-
tions of ¢. It should be noted that it is necessary first to
make a choice of the unit of length before a space-time
geometry is established.

m— \"im.
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MACH’S PRINCIPLE, EXPRESSED IN
TRANSFORMED UNITS

In reference 1 the gravitational coupling constant
Gm2/he~10—40 (4)

(m the mass of some elementary particle) was inter-
preted not as a fait accompli presented to us by nature
and unrelated to other parts of physics, but rather as a
number determined, consistent with the requirements
of Mach’s principle, by the total mass distribution in
the universe. Being a dimensionless number, it is in-
variant under a transformation of units.

It was emphasized in reference 1 that the formalism
developed there was but a particular representation of
the theory, a representation for which 7, ¢, and m were
constant by definition and for which G was coordinate
dependent, being determined by the scalar field ¢. This
representation had the great advantage that the equa-
tions of motion of “matter” in a known and given metric
field were identical with those of General Relativity. For
example, geodesic equations of motion are obtained for
unchanged, zero-spin particles. These advantages are
to be balanced against the disadvantage that the
description of gravitational interactions is more com-
plex, Einstein’s field equation not being valid.

For the particular representation of the theory to be
given here, the gravitational constant G, also #, and ¢
are constant by definition, and the rest masses of all
elementary particles vary with position, being functions
of ¢, albeit in the same way, the mass ratios of different
types of particles being constant.

As was mentioned above, this representation of the
theory has the form of a ‘““general relativity,” Einstein’s
field equation being satisfied. The scalar ¢ of the theory
plays the role of still another nongravitational field. If
the field exists, its effects have not yet been observed
with certainty.

Being a boson field generated by all matter, it is
extraordinarily difficult to observe. The effect of nearby
matter, in the laboratory, in generating this field is
minor in comparison with the dominating influences of
the enormously greater amounts of matter in the
distant parts of the essentially static universe.

We turn now to the transformation of the formalism
of reference 1 under the above described units trans-
formation. This transformation, conformal in type, is
similar to that discussed by Fierz* in his analysis of
Jordan’s theory.?

In reference 1, the equations of motion of matter and
the gravitational field equations are derived from the
variational principle

@i 16w
0=5/|:¢R—w —I——-L:l(—g)%d“x,
@ ¢t

4 M. Fierz, Helv. Phys. Acta. 29, 128 (1956); see also the discus-
sion by P. Jordan, reference 2, and Z. Physik 157, 112 (1959),
O. Heckmann, Z. Astrophys. 40, 278 (1956), and the summary in
D. R. Brill’s article, Varenna summer school notes. 1961
(unpublished).
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where R is the scalar curvature of the Riemannian space,
is the Lagrangian density of matter (i.e., nongravita-
tional fields) and ¢ is the above-mentioned scalar field,
a field to be interpreted as part of the gravitational field
which in this theory is described by both g; and .
o is a dimensionless constant of the order of unity. The
Lagrangian density of matter is assumed to be com-
pletely standard, the usual scalar of special relativity
generalized by replacing the Minkowskian metric
tensor 7;; by the generally covariant metric tensor gi;.

In order to show explicitly the transformation of the
matter Lagrangian density, an example is constructed,
for a system of charged particles interacting electro-
magnetically

1
L= ——( . 2 /[mﬁ(—uiui)%+eAmf]6“(x—- z)dr
_——g 2
1
——FiE,; (6)
16

Here the sum is over all' particles, the particle position
z is a function of the proper time 7, and the four-
velocity is

ui=dx'/dr, (7)
also
ds?=g;dxtdx’= —d7?,
wiu;=—1, ®)
£00<0.
As usual

Measured in the new units defined above the mass of
the particle becomes

m=N\"¥m, (9a)

or
m=\hn.
In similar fashion, the other quantities in Eq. (6) are
m=\hm,
g =N"G4
gi=Ng",
dr=X\"td7,
ds=\"%ds,
(—@t=N2(—g)},
wi=N\?,
A=A,
Fi=F,
Fijﬁ} A2 F’ij’
e

(10)
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For completeness ¢, which has the dimensions of G or
L3TH#M+~T2 is included in the above list. Making
the above transformations we have

L=)L, (11)

where L is L measured in the new units, obtained from
L by replacing all quantities by barred quantities.

The transformation of the scalar curvature R under a
conformal transformation is a well-known problem in
Riemannian geometry. The result is® that

R=A(B~43[]InA— N2\ 0\ ,6%), (12)
where )
E] In)\=~(—_~:((—g)%§“7\‘l>\,i),j~ (13)
_.g 2

In similar fashion the last term in Eq. (5) is easily
transformed to give

0t o _ ,
=\? 20\ ,:@ BN N (14)
@ @
Substituting Egs. (11), (12), and (14) in Eq. (5) gives
_ _ LN
0=6/|:¢R+3<2;E] ln)\——%(3+2w)¢—;\2—
Nipt Pt 16w
— 2w —w +——L](—E)5d4x. (15)
? ct

One should be reminded that A in Eq. (15) may be
regarded as a known and given function of coordinates,
or alternatively as a function of ¢. We are interested
principally in a choice of A, a function of ¢, that results
in @ being constant. This is

A=¢/g, (16)

where @ is constant, the value of ¢ at some arbitrarily
chosen point. As @ is now constant, the variational
equation becomes, after dropping the ordinary diver-
gence (—g)¥]1n),
_ At 16w .
0=5 [ [R—%(2w+3)—+—L](—g)’d4x. (17)
v A2 (ad7)
X\ must now be considered a dynamic variable, and it
must be varied in Eq. (17). In addition to the above
second term, A occurs explicitly only in m=mx"}
(m constant).
To cast this variational principle in a form completely
familiar, write

16nGo _  _
0=5 / [R+ (L+L>\)i|('—g’)%d4x, (18)

C4

with Go= & and
_ (3+2w)c]\
Li=——— . (19)
327GoN?

5J. L. Synge, Relativity, The General Theory (North-Holland
Publishing Company, Amsterdam, 1960), p. 318.
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Now A is to be considered a “matter field” and the total

Lagrangian density of “matter” is L+ L. Varying g; in
Eq. (18) gives Einstein’s field equations

(20)

where

9 .
— —[(=9'+L)] (1)
(=2 g
is the energy-momentum tensor of matter. It satisfies
the local conservation relation

Tii = Thii fii=

(T),=0. (22)
Varying Eq. (17) with respect to A gives
_ 167 L &r _
(o) = — A—= T, (23)
Qw+3)act N pct(3+20)
with
o 9 -
I'=Ti=gi———((=2L). (24)
(—9)* g

The second equality of Eq. (23) follows explicitly from
the form of Eq. (6).
If the transformation relation

(25)

T=\—T
is substituted in Eq. (24), one obtains
8
(26)

N=——T,
ot (342w)

which is equivalent to Eq. (13) of reference (1).

While the representation of the theory used here has
certain advantages over that of reference 1, it is clumsy
in some ways. For example, freely falling matter does
not move on geodesics of the geometry, although light
rays still follow null geodesics. Also, the measures
provided by rods and clocks are not invariant in this
geometry. For example, in this formalism the gravita-
tional red shift appears only partially as a metric
phenomenon, the remainder of the effect being described
as due to a “real” change in the energy levels of an
atom with A.

Consider the motion of an unchanged spinless particle
in the gravitational field. The equations of motion
obtained from the variational principle, Eq. (15), are

—(Mga7) — S1g;1., AH 17, ;= 0. (27)

ar
The last term represents a nongravitational force and
results in a nongeodesic motion of the particle. The
inverse of the units transformation applied to Eq. (27)
gives the expected geodesic equation of the old geometry

d
— (mgiu?) — Smgse, miuk=0.
T

(28)
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Note that the gravitational constant measured by a
Cavendish experiment would not be Gy of Eq. (20) as
it does not include the effect of the “nongravitational”
interaction with the \ field.

While dimensional arguments were used above to
obtain the A dependence of inertial mass, the existence
of such a dependence is a consequence of dynamical
considerations and is not a separate assumption. Quite
generally, the mass of a particle varies, being a function
of the potential, if it interacts with a scalar field. This
can be seen by starting with the variation principle

0= / D (— @)y Jar, (29)

where my is the scalar potential and the mass m is
assumed to be constant. The variations in Eq. (29) may
not be taken arbitrarily but must be subject to the

constraint
= —1. (30)

The resulting equation of motion is identical with
Eq. (27) with

m=my. 31)
If the variational equation is taken as
0=¢ / m(—ai;)dr. (32)

The same equation of motion is obtained, as the Euler
equation, without the necessity for introducing the
constraint explicitly.

SUMMARY AND CONCLUSION

The field equations compatible with Mach’s principle
which were previously formulated,! are here transformed
in such a way that the required modification appears as
part of the nongravitational field, Einstein’s field
equations being valid. The rest masses of all particles
are affected by an interaction with a scalar field. This
interaction reduces the masses of the particles and the
gravitational coupling constant, Eq. (4), may be
interpreted as small because the particle -mass 7 is
reduced drastically by interaction with the field,
generated by the enormous amounts of matter in the
universe.

In similar fashion the relation®

GM/Re*~1 (33)

is understandable. (M is the mass of the universe out to
visible limits, and R, the Hubble radius, is a measure of
the radius of this visible portion.) Measured in the new
units, the masses of elementary particles adjust them-
selves, through the scalar field generated by all the

¢D. W. Sciama, Monthly Notices Roy. Astron. Soc. 113, 34
(1953), R. H. Dicke, Am. Scientist 47, 25 (1959), R. H. Dicke,
Science 129, 621 (1959).
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other matter, in such a way that the ratio M/R stays
constant and of the order of magnitude of G¢c2!

APPENDIX 1

Transformation of the Metric of a Riemannian
Space to that of a Flat Space

As a first step a coordinate system, time orthogonal,
is chosen. This can be done, at least for a finite coordi-
nate patch, by erecting a family of geodesic curves
normal to any space-like surface and using it to define
a second space-like surface everywhere equidistant from
the first. Corresponding points on the two surfaces,
labeled by the same space-like coordinates x%, 42, %3, are
points joined by the same normal geodesic curve. The
time coordinate is assigned different values on each of
the two surfaces. The procedure can be iterated to assign
coordinates to all points in the coordinate patch.

Let g; be the metric tensor in a particular time
orthogonal coordinate system. Then

g0.=0, a=1,2,3. (34)
Introduce the tensor 7’7 having the inverse 77
TT =%, (35)

such that for this particular coordinate system the tensor
(interpreted as a matrix) is orthogonal,

Tiiz T]’ (36)

It is a well-known theorem of matrix algebra that any
symmetric matrix can be diagonalized by an orthogonal
transformation. Hence, it is always possible to so
choose T that

Tkigijle= Jrl, @37

with gr: purely diagonal in this coordinate system.

Corresponding to the coordinate intervals dx?, one
can define new intervals through the transformation

dzi=Tidxi. (38)

It must be emphasized that this transformation does
not generally represent a coordinate transformation.

The infinitesimal separation of two neighboring points
is ds with

ds?=gydxidal, (39)
This can now be given as
dS2=giijiTniTka1"dxkdxl=g¢,‘d£l—:id3-7j. (40)

As §i; is diagonal, the intervals d#’ are all mutually
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orthogonal. Now by redefining the measure of time, and
of length along the three mutually perpendicular space-
like directions dZ*, §i;; can be transformed into any
other diagonal tensor of the same signature. In particu-
lar, it can be transformed into the Minkowskian metric
tensor 7;;. The resulting measure of interval between
the two points is

32 =n,dTdT’. (41)

Because the original coordinate system was time
orthogonal, the orthogonal transformation

dxi="Tidw (42)

represents a space-like local rotation, hence the Minkow-
skian tensor 7;; is invariant under this transformation.
Consequently,

d32=1,dEdT = ndx'dx. (43)

Note that Eq. (43) gives a new measure of interval and
a new melric tensor for the old coordinate system.

The new measure of interval leads to a flat space with
a Minkowskian metric tensor. It should be noted that
the transformed coordinate intervals are mutually
orthogonal both before and after units are redefined.
Hence, the criteria for orthogonality of these vectors
are independent of units and the condition of local
orthogonality may be meaningfully imposed.

Null geodesics are generally not invariant under this
transformation of units. The velocity of light varies,
being a function of both coordinates and spatial direc-
tions. Physically, with the redefined units, space might
be considered to have some of the electromagnetic
properties of an anisotropic medium. However, these
properties can be eliminated by a units transformation
and they are without a physical significance, invariant
under this group. It should be noted that the same ob-
jection, based on considerations of invariance under
units transformations, can be leveled against the reading
of physical significance into the geometrical invariants.
These “invariants,” such as the scalar curvature, are
not invariant under a units transformation.

Because of the various nonequivalent ways of estab-
lishing standards of mass, length, and time within the
framework of the Brons-Dicke theory, invariance under
the units transformation group is particularly impor-
tant. This is of lesser importance in standard general
relativity. However, even here it is possible, in principle,
to construct rods and clocks whose units are dependent
upon some scalar field variable such as a curvature
“invariant” or a Maxwell invariant.



