PROBLEM OF MOTION

universe within a considerably shorter interval of time
than heretofore and so indeed to consider occurrences
almost anywhere to be of a contemporary nature. In any
event the structure of the equations of motion which
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have emerged even for “free particles” may perhaps
provide us with other conceptual possibilities the

starting point of which may lead to a theory with less
startling consequences.
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The CPT theorem and the normal connection between spin and statistics are shown to be consequences of
postulates of the S-matrix approach to elementary particle physics. The postulates are much weaker than
those of field theory. Neither local fields nor any reference to space-time points are used. Quantum commu-
tation relations and properties of the vacuum play no role. Completeness of the asymptotic states and
positive definiteness of the metric are not required, though certain weaker asymptotic conditions prevail.
The proofs depend on unitarity, macroscopic relativistic invariance, and a very weak analyticity requirement
on the mass-shell scattering functions. The proofs are in the framework of the new S-matrix approach to
elementary particle physics, which is established on a formal basis.

I. INTRODUCTION

HE two most important general physical conse-
quences of relativistic field theory are the CPT
theorem'* and the connection between spin and
statistics.> The CPT theorem states that for every
process occurring in nature there is an allowed dual
process in which the particles of the first are replaced
by their respective antiparticles, all spins are reversed,
and paths are changed to their images under inversion
through the origin in space-time. Relationships between
probabilities are stated to be the same for a process and
its dual. The proved connection between spin and
statistics is that wave functions are symmetric under
the interchange of variables referring to two identical
integral-spin particles and antisymmetric for the half-
integral-spin case.

These important results are derived from the postu-
lates of local field theory, which, however, are subject
to considerable doubt. In the first place it is not known
whether the postulates are sufficiently realistic to

* This work was performed under the auspices of the U. S.
Atomic Energy Commission.
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include any theories except trivial ones in which the
scattering matrix is unity.

Secondly, the postulates are very specialized and
restrictive, in that they assign a fundamental role to
hypothetical local field operators defined over the field
of space-time points. Experience does not entail the
existence of such points, and the restriction to theories
in which they play a fundamental role may immediately
exclude all theories connected to physical reality.
Because space-time points are experimentally in-
accessible both in practice and in principle, their
introduction runs counter to the philosophy of quantum
mechanics. This philosophic inconsistency appears to
have its analog in the mathematical structure in which
related inconsistencies seem to arise.!'™3

Even within the general framework of local field
theories, some of the postulates are so restrictive that
many reasonable theories are excluded. In particular,
the requirements of the completeness of the asymptotic
states and the positive definiteness of the metric are
assumed to hold, not only asymptotically, but also
throughout the course of the interaction. But added
states of negative metric not among those observed
asymptotically seem to be exactly what are needed to
remove the apparent inconsistencies from field theory.
A theory based on this possibility is among those being
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most vigorously pursued today.'*! The postulate
requiring the existence of a nondegenerate vacuum
also excludes certain important theories,*'¢ and the
fact that one must be concerned with the properties of
nothing lends an unwholesome air to the whole business,
particularly in the light of previous similar experience.

These abstract objections to the field theoretic
approach are reinforced by an examination of the
course of events in the practical sphere. The trend
today in the practical study of elementary particle
interactions is away from the solving of equations
conjectured to be satisfied by hypothetical field
operators. Rather, the focus is shifting directly to the
S matrix!” and to the consequences of the constraints
imposed upon it by unitarity, macroscopic relativistic
invariance, and assumed analyticity properties.!® This
S-matrix approach to elementary particle physics is,
in practical work, approaching the status of an in-
dependent theory, its connections to field theory
gradually being dissolved. It becomes appropriate,
therefore, to formalize this trend and to explore the
consequences of the altered framework.”® History
encourages the casting away of formal substructures
whose ingredients have no counterparts in experience
and which are not relevant to practical calculations,
and the focusing directly on relationships between
experimental quantities. The new approach, since it
involves only observable quantities and their analytic
continuations, has a claim to probable physical relevance
much greater than that of field theory, with its sundry
hypothetical ingredients of dubious status.

The calculations needed to confront the new approach
with physical fact are, as for the field theoretic case,
far from complete. But the question arises whether
the general results derived from field theory, and in
particular the CPT theorem and the connection between
spin and statistics, can be derived also on the basis of
the new approach. An affirmative answer would be
interesting for several reasons. First, it would show
that the restrictive assumptions of local field theory
are necessary only to guarantee much less stringent
asymptotic properties, which will probably remain valid
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also in possible future forms of field theory. Second, the
proof would be likely to apply to theories such as those
of Heisenberg and Nambu, which are not in the class
covered by the usual postulates. Third, and most
important, if the new S-matrix approach is to constitute
anindependent approach to elementary-particle physics,
replacing unworkable field theory, then proofs of these
theorems in the framework of the new theory are
required.

It is the purpose of this paper to provide these proofs.
Because the aim is also at the widest range of generality
the postulates have been taken in a form that avoids
all mention of space and time. The CPT theorem is
consequently proved in its momentum-space form. The
way in which the concept of macroscopic location would
be introduced is briefly discussed.

In the next section, postulates for the S-matrix
approach are stated in words. Their mathematical
forms will be introduced as they are needed in the
proofs.

II. THE POSTULATES

A. Quantum theory: If the normalized relative
frequencies (probabilities) of the various possible
outcomes of two complete experiments are denoted by
P; and P;/, respectively, these necessarily positive
numbers can be written in the forms P;=|a;|? and
P;/=|a;|?, where a; and a; are linearly related ; for all
sets of a;, and also for all sets of a/,

ai =2 Sija,

where S is independent of the a.

B. Macroscopic relativistic invariance (weak form):
The relationships between the probabilities of the
possible outcomes of two complete experiments are the
same as the relationships between the corresponding
outcomes of two complete experiments related to the
first two by a (real) orthochronous proper Lorentz
transformation (i.e., the real Lorentz transformations
connected to unity).

B'. Macroscopic relativistic invariance (strong form):
The relationship stated in postulate B for probabilities
is also valid for the corresponding amplitudes, provided
the freedom in the choice of phases is properly exploited.

C. Particles: The measurement of the momentum,
spin, and particle type of all particles present constitutes
a complete experiment, in the sense used in postulate 4.
Such a measurement may be considered possible only
in a limiting sense, not necessarily, for instance, during
a reaction or at finite times. Projections on linear
combinations of spin and angular momentum states are
permissible observables, as are projections on self-con-
jugate combinations of particle-antiparticle amplitudes.

D. Conservation laws: The physical interpretation of
the mathematical quantities shall be such that trans-
lation and rotation invariance imply conservation
of momentum-energy and angular momentum, re-
spectively.
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From postulates 4 through D, including B/, a set of
spinor functions, called M functions, satisfying unitarity
relations can be constructed. A consequence of the
unitarity relations is the existence of certain singularities
whose positions are determined by the masses of the
(stable) particles. Cuts defined by relativistic scalar
equations, and terminating at these singularities, can
be constructed by using a scale transformation on the
masses, and a distinguished sheet, the physical sheet,
specified.

E. Maximal analyticity: Except for singularities
required by unitarity, the M functions are regular
analytic functions in the interior and on the boundary
of their physical sheets.

Postulate E, though presumably needed for the
derivation of dynamical relations, is much stronger
than what is needed for the proofs. The following much
weaker postulate is sufficient.

E'. Minimal analyticity: For each M function, a
physical sheet bounded by cuts defined by relativistic
scalar equations can be defined. This sheet contains a
domain of regularity that includes among its boundary
points all physical-type points.

A physical-type point is a point corresponding to real
momentum-energy vectors and it is to be approached
with positive imaginary physical energies and mo-
mentum magnitudes. It is this type of limit that is
expected to give physically interpretable M functions.
The physical sheet of a given M function is that sheet
for which the physical value of the M function is
assumed at the physical-type limit points along the
cut that runs over the points corresponding to the
process described by the particular M function. These
matters are discussed in the section on analytic
structure.

F. Physical connection: Physically interpretable func-
tions obtained by analytic continuation from functions
describing physical phenomena also describe physical
phenomena; they are not mere mathematical chimeras.
Specifically, the M functions at all physical-type
points of a physical sheet correspond to processes
actually occurring in nature. Regarding interpretation,
if a simple connection can be set up permitting a
consistent interpretation of the quantities appearing
in the theory, and also those that could be obtained by
analytic continuation, then this interpretation accords
uniformly to reality if it accords at all.

III. REMARKS CONCERNING THE POSTULATES

Postulate A4 is the basic premise of quantum theory,
the aspect to be used herein being the superposition
principle.??. Quantum commutation relations and the

20 Quantitative experimental evidence for the superposition
principle appears confined to electromagnetic and neutrino
processes in which an approximate linearity of the field equations
occurs. Tests in the realm of strong interactions not depending
on a detailed knowledge of the dynamics of strong interactions are
also possible and should, it would seem, as a matter of principle,
be carried out.
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quantization of action (Planck’s constant), or their
equivalents, are not implied by this postulate.

The relativistic postulate is stated as a relationship
between experimental quantities. From this postulate
and others, objects satisfying spinor transformation laws
will be constructed. No hypothetical objects with spinor
transformation properties are arbitrarily introduced.
This procedure is the reverse of that in field theory in
which objects satisfying spinor transformation laws
are hypothesized and the relativistic invariance of
experimental results deduced. In this latter approach
the relativistic invariance of the experimental results
might be said to be derived from more “fundamental”
requirements, but it is probably a delusion to think that
the objects of a mathematical model are more “funda-
mental” than the experimental results the model is
designed to describe. In any case, by simply requiring
the invariance of the experimental relationships the
relativistic requirement is placed in its weakest form;
all possible ways of achieving this end are included.

The particle postulate also constitutes a certain
completeness requirement. This requirement has force
only in the asymptotic limit, and is therefore much
weaker and more satisfactory than the completeness
postulate in field theory.

The term ‘particle” appearing in the particle
postulate means that with every momentum vector k;
is associated an energy component &9, fixed by the mass
condition (£°)?— (k;)?= (m;)?, where m, is a constant
called the mass of the particle of type ;. The spin states
referred to in the postulate shall, to eliminate possible
ambiguity, refer, for the case of nonmassless particles,
to rest frames of the particles. In such a frame the spin
states are to be basis vectors of a finite-dimensional
representation of the rotation group. The theory of this
group is classical. Only nonmassless particles are
treated in the body of the text. Massless particles are
easily included, as shown in Appendix B.

That projections on linear combinations of spin
states are permissible observables is a basic feature of
quantum mechanics. It is in this way that spin states
referring to different directions are obtained. That the
projection on the self-conjugate combinations of
particle-antiparticle amplitudes be a permissible ob-
servable of the theory is a requirement that is needed
in the present proof of the connection between spin
and statistics, but it is believed unnecessary and should
eventually be eliminated.

In the conservation postulate the notion of trans-
lational invariance appears for the first and only time.
One may completely avoid the introduction of space-
time coordinates by simply taking energy-momentum
conservation to be exactly the requirement of trans-
lational invariance. However, it is apparent that one
could perform a formal Fourier transformation on the

21 B, Van der Waerden, in Theoretical Physics in the Twentieth
Century, edited by M. Fierz and V. F. Weisskopf (Interscience
Publishers, Inc., New York, 1960).
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momentum-energy variables, introducing thereby
formal space-time coordinates. Formal translation
invariance is then equivalent to energy-momentum
conservation.

It is by this Fourier transformation, using wave
packets, that the notion of macroscopic location will be
introduced into the theory. The restriction of
momentum-energy variables to the mass shell implies
that the wave packets will move as free-particle wave
packets. Wave packets approximating space-time
points cannot be constructed because of the mass-shell
constraint. The unit of action, Planck’s constant, enters
the theory for the first time as the scale constant
relating physical distances to the formal coordinates
introduced by this Fourier transformation.

The connection between momentum-energy and
translation operators introduced earlier leads to a
connection between angular-momentum conservation
and rotational invariance. However, the connection
between invariance properties and conservation laws
is much more general, following also, for instance, in
classical theory. The postulate only asserts that this
general connection is maintained and, avoiding specific
reference to space-time coordinates, requires that which
is important to the proofs, the conservation laws.

Postulate £ (maximal analyticity) asserts that the
only singularities in the physical sheets are those
required by unitarity. (These include the usual anomal-
ous and complex singularities, as will be shown.) This
analyticity requirement evidently contains some extrac-
tion of the usual locality requirement. But since it
applies only to mass-shell functions, it is much weaker
than its field theoretic counterpart. It may in another
way be stronger: The postulated domain of analyticity
may be larger than the one that can be deduced using
field theory. In this case the two theories would be
different, perhaps mutually incompatible, systems.
Indeed, this is the expectation. The apparent in-
consistencies of field theory are expected to be removed
as a result of the weakening of the locality requirement.
What relations between masses and coupling constants
are imposed by the postulated analyticity is the exciting
but still open question.

To give substance to the analyticity postulate the
choice of variables must be specified and the term
“singularities required by unitarity” must be given a
precise meaning. The variables to be used are essentially
the components of the momentum-energy vectors &*.
However, the M functions are defined only over a re-
stricted manifold of this space, due to the mass and
conservation law constraints. Thus auxiliary reduced
sets of variables that specify the position in this mani-
fold will be introduced. The exact statement of the
analyticity postulate is that on the physical sheet, in-
cluding its boundary, the M functions are analytic func-
tions of these auxiliary variables, except possibly where
the functions expressing the momentum-energy vectors
in terms of these variables are singular or where these

HENRY P.

STAPP

momentum-energy vectors coincide with a singularity
required by unitarity. This property is to hold for all
choices of auxiliary variables, so that possible singu-
larities associated with singularities of the mapping
functions are essentially spurious; one uses various
mappings to cover the entire space. The precise meaning
of the term ‘singularities required by unitarity” is
specified in Sec. XII and Appendix H, and the
general definition of the physical sheet is given in
Appendix I.

The postulate of maximal analyticity, though not
used directly in the proofs, is important to the general
philosophy. The object is to start with a set of postulates
that have significance in their own right as a basis for a
proposed theory for elementary particle reactions, not to
prove the theorems starting from postulates chosen
specifically to provide a sufficient basis for the proofs.
However, this latter procedure has a certain merit if
the postulates are such that an extensive class of possible
theories are included. For this reason, the weaker
postulate E’ (minimal analyticity) is used in the proofs
rather than postulate E. The proofs thereby become
applicable not only to the S-matrix theory, but also to
field theory, and to varieties of field theory to which the
standard postulates do not apply.

The postulate of physical connection states that
interpretable functions obtained by analytic continua-
tion have physical significance. This principle is the
basis of the present work. As there is no field theoretic
substructure, related physical processes enter only via
analytic continuation. The principle has its analog in
field theory, where the formalism set up to describe
particle processes is found to have a natural place for
antiparticle processes and the interpretation of the
theory is correspondingly extended. In order to state
the CPT theorem as a statement having physical
relevance, the connection to physical reality of the
extended interpretation must be accepted. It is the
purpose of this postulate to explicitly state that certain
naturally occurring mathematical quantities do have
physical significance,; and to place qualifications on the
manner of interpretation.

The qualification “simple” in simple connection
specifies that the interpretation of a variable referring
to one particle is not to depend on the numerical value
of variables referring to the other particles. A connec-
tion of this kind is implicit in field theory where each
particle has its own field operator, and analytic
continuation in one momentum variable does not alter
the interpretation of variables associated with the other
particles.

For the postulate of physical connection to be
operative, the connection referred to is required to give
a consistent interpretation of quantities that could be
obtained by analytic continuation. Specifically, the
manner of interpretation should be consistent with
regions of analyticity as large as those given by postulate
E’; postulate F should not conflict with postulate E'.
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Postulates A through D assert principles similar to
those used in field theory. Postulates £ and F enunciate
two general principles characteristic of the new S-
matrix formalism: The physical sheets of the scattering
functions contain only singularities required by uni-
tarity, and the analytic continuation of a scattering
function to various physical-type boundaries of the
physical sheet gives functions having physical signifi-
cance.

We proceed to the application of these postulates.

IV. THE M FUNCTIONS AND THEIR PROPERTIES

Using postulates 4 through D, including B’, one
can construct a set of functions M (k;,u;,t;) with proper-
ties similar to the Fourier transforms of the vacuum
expectation values of time-ordered products of field
operators, such as occur in field theory. These M
functions are defined for certain real values of the
momentum-energy variables k; that correspond to
physical processes, and only for real values satisfying
the mass condition k2=m72, and the conservation law
> k;=0. For each momentum-energy variable k;, there
is an associated index ¢; that specifies the type of
particle, and a (25;41)-valued spin index u; built up
out of sets of 2S; spinor indices. Here S; is the spin of
the particle of type ¢;. The spinor indices can be taken
to be lower dotted and undotted spinor indices, corre-
sponding to antiparticles and particles, respectively.
The three quantities &, u, and ¢, taken as a unit, will be
called the variable corresponding to a given particle.

These M functions have the following properties:

A. Spinor character: For real values of the k; corre-
sponding to physical processes, the M (kiui,t;) satisfy
the usual transformation law for spinor functions.
Specifically, for these k;,

M (kipits) =3 TLs (AT (i) IM (Akiyd 22),
where A, is the spinor transformation matrix correspond-
ing to any element of the real orthochronous proper
homogeneous Lorentz group and A is the related
Lorentz transformation operator. (See Sec. IX and
Appendix J.)

B. Uunitarity: For real values of k; corresponding to
real processes, the M functions satisfy the unitarity
relations

M(K’, _Ku) +M*(K”, __K/)

=% / M(K', —K)K-sM*(K", —K)

==Y / M(K,—K")K -eM*(K, —K').

Here the asterisk designates complex conjugate; K,
K’, and K" represent normal-ordered sets of variables;
and —K is the normal-ordered set obtained from the
set K by reversing the signs on all the momentum-
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energy vectors, reversing the order of the variables,
dotting all spinor indices, and changing the type
designations to those of the respective antiparticles
(see below). The normal-ordering convention for
variables with real momentum-energy vectors &;
requires &/ | k| 2 kirt’/ | kirt®|, kA2 kit kE2 kit
and k32 k.3, the various conditions in the set being
operative if and only if the equality parts of the
preceding conditions are realized. The summation is
over all normal-ordered sets K, and the integrations are
over the invariant momentum-space elements d‘%;
2md(k2—m2)/(2x)®. The symbol K-& represents a
product of the (Pauli) spin matrices k# 0,%/m;, one for
each spinor index of the set K. The contraction rule for
the spinor indices is such as to ensure that the unitarity
relation is a proper spinor equation.

C. Antiparticle processes: For certain real values of
the k; (always consistent with mass constraints and
the conservation laws) the M (k;u.t;) relate the
amplitudes corresponding to possible outcomes of two
(complete) experiments, termed the initial and final
experiments. If, for fixed u; and ¢;, the M (k;us,t;) is an
analytic function regular in a domain that includes two
values of some Z; that are negatives of each other, then
the only relationship between the interpretations of the
M (kiyust;) at these two points, consistent with the
postulates, is this: If the variable in one case specifies a
particle occurring in the final (initial) configuration,
then in the other case it specifies the corresponding
antiparticle occurring in the initial (final) configuration
with the same physical momentum-energy but with
opposite spin. It is essential that this connection is not
dependent on the conventions adopted, but follows
directly from the postulates themselves, chiefly the
conservation postulate.

D. Superselection rule: The number of spinor indices
is even on all nonzero M functions.

.E. Order of variables: The interchange of two variables
changes as M function by at most a phase.

With the inclusion of postulate E’ one obtains:

F. Symmetry: The interchange of two variables of
the same type changes an M function by at most a sign.
For a given type of variable this sign is always the same,
irrespective of the numerical values of the variables, the
relative positions of the variables, or of the particular
M function in which the variables occur.

The construction of the M functions and the deri-
vations of these properties are given after the main
body of the proofs, to which we now proceed.

V. EXTENSION TO COMPLEX LORENTZ
TRANSFORMATIONS
According to property 4 the functions M (K’, —K"’)
satisfy the spinor transformation law
M(K', —K'")=A"M(AK’, —AK"), (5.1)

provided the K’ and K" specify real momentum-energy
vectors corresponding to physical processes, and
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provided the A, and A are taken to be the transforma-
tions associated with the real orthochronous proper
homogeneous Lorentz transformations.

By virtue of the constraints imposed by the conser-
vation laws and mass conditions, the M (K’, —K"’) can
be considered functions over a reduced set of variables,
the constraints being then identically satisfied, and
the reduced variables can be selected so as to be real
over the (original) domain of definition where the
momentum-energy vectors in K’ and K’ are real.

Real Lorentz transformations are generated by

unimodular spinor transformation matrices subject to
- the constraint that dotted and undotted indices are
transformed by matrices that are complex conjugates
of each other. If this constraint is relaxed, the corre-
sponding Lorentz transformation matrices A are no
longer constrained to be real. However, the invariance
of scalar products of four-vectors continues to be
maintained under this enlarged class of (complex)
Lorentz transformations.

By the method of Hall and Wightman?® one can show
that the validity of Eq. (5.1) for real %; and real ortho-
chronous proper homogeneous Lorentz transformations
implies its validity also for the complex Lorentz
transformations continuously connected to unity, the
k: ranging then over the domain generated from the
original one by the complex Lorentz transformations.
Specifically, since A, and A are given analytic functions
of parameters that specify the Lorentz transformation,
Eq. (5.1) can be used to extend the definition of
M(K', —K'") over the range of variables generated
from the original region by the complex Lorentz
transformations connected to unity. By the method of
Hall and Wightman this extended definition may be
shown to coincide with the analytic continuation
of M(K',—K') into this region, provided that
M(K’, —K'"") was regular in a neighborhood of the
original region.

VI. THE CPT THEOREM

The special class of complex Lorentz transformations
of interest to us are those in which the undotted indices
are transformed by unity and the dotted indices by

As=exp[iga, . 6.1)

For real ¢, these A, form a set of unimodular trans-
formations continuously connected to unity. For ¢ =,
Eq. (6.1) gives A,=—1. The corresponding A is also
minus unity and all four-vectors are carried to their
negatives. The application of (6.1), with ¢=m=, to
(5.1) gives

M(K',—K")=(-1)"M(-K',K"),  (6.2)

where IV is the number of dotted indices of M (K’, —K'"),
and —K' represents the set K’ with the signs of all

2D, Hall and A. S. Wightman, Kgl. Danske Videnskab.
Selskab Mat.-fys. Medd. 31, No. 5 (1957).
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momentum-energy vectors reversed. Because the phase
drops out in the calculation of probabilities Eq. (6.2) is,
in the light of properties C and E, just the completion
of the CPT theorem: If a scattering process is invariant
under the proper orthochronous Lorentz transforma-
tions and if analytic continuationsof scattering functions
to all other physically interpretable boundary points
of the physical sheet give functions corresponding to
physical reality, in accordance with the postulates, then
for every process occurring in nature there is a CPT in-
verse process, and relationships between corresponding
probabilities are identical.

The requirement, stated in postulate E’, that the
boundaries of the physical sheet are defined by rela-
tivistic scalar equations, and hence depend on scalar
invariants, guarantees that the CPT transformation
takes a boundary point of the physical sheet to another
boundary point of this sheet.

The development above is similar to Jost’s! in its
essential use of the complex Lorentz transformation.
Here, however, the transformation is applied directly
to the physically interpretable mass-shell scattering
functions, and the question of whether certain vacuum
expectation values of local field operators are identically
equal is not raised.

If a field theoretic substructure were assumed, then
the original connection between the various related
processes would be conventionally expressed in terms of
transformations on field operators, rather than via the
analytic continuation of the scattering functions.
Consequently, the present remarks do not constitute
a proof when considered in a field theoretic context.
They show that the CPT theorem is valid in the class
of field theories in which analytic continuations of
mass shell scattering functions lead to physically
interpretable quantities, as specified in postulate F.
Relativistic invariance and the conservation laws
guarantee the existence of the required continuation,
the necessary interpretations, and the needed numerical
relationships.

VII. THE CONNECTION BETWEEN SPIN
AND STATISTICS

The unitarity condition reads

M(K’, —K//)+M*(K,/, _K/)

=2 / M(K', ~R)K-3M*(K", —K)

= —% /M(K, ~K"K-éM*(K, —K"). (1.1)

For the case that K'=K"" designates self-conjugate
combinations of particle-antiparticle amplitudes, appli-
cation of the CPT transformation, followed by an
inversion of the order of variables gives
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M(K', —K)+M*(K', =K')

=— (=)o 3 / M (K, —R)K-eM*(K, —K’)
K

=—(=DVor ¥ | M(K', —K)K -sM*(K', —K).
K .
(7.2)

Here N is the number of spinor indices on the variables
of K which, by virtue of the superselection rule, can be
replaced by the number of spinor indices on the variables
of the set K'. The factor o is the sign coming from the
complete reversal of order of the wvariables of
M(K', —K'). The fact is used that for K’ corresponding
to measurements of self-conjugate combinations of
particle-antiparticle amplitudes, the sets K’ and K’ are
identical except for a reversal of order (see Sec. X).

Since K-# is a positive definite Hermitian-form
comparison of Egs. (7.2) and (7.1), for the case K'=K"/,
implies eitherog = (—1)Yor M (K’, —K)=M (K, —K")
=0 for all K. But if K’ contains an odd number of
variables with abnormal symmetries then o g = — (—1)¥
and hence M(K’, —K) and M (K, —K’) must vanish.
By postulate £’ the variables can be switched from one
side to the other and consequently all M functions
containing variables having abnormal symmetries
must vanish.

The variables of the set K’ are, in the above, required
to designate self-conjugate particles. However, the set
K is arbitrary. If there are conservation laws that
distinguish the particle and antiparticle parts: of the
self-conjugate combination of amplitudes, these separate
contributions can be distinguished by appropriate
choice of the variables of K. It follows that the sym-
metry of the self-conjugate combination is the same
as the symmetry of the individual particle and anti-
particle parts, and the normal connection between spin
and statistics also obtains for these latter.

The above proof is similar to the recent proofs of the
connection between spin and statistics by Liiders and
Zumino,® and Burgoyne,® in that it rests on a conflict
in the abnormal case between the CPT transformation,
which follows from relativistic invariance, and certain
positive definiteness requirements. However, the argu-
ments here involve only mass shell quantities and the
positive definiteness requirements arise directly from
unitarity, which is much more secure than the general
requirement of positive definite metric.

The essential result embodied in the above parts of
the proofs is that the CPT theorem and the connection
between spin and statistics are contained already in the
asymptotic properties of the S matrix. We proceed
now to the derivation of these properties from our
postulates, without reference to field theory. It is
necessary to show that the abstract postulates them-
selves ensure the existence of functions with the stated
unitarity and spinor transformation properties, that the
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interpretations of the functions arising from analytic
continuations of these originally defined functions are,
by virtue of the conservation laws, uniquely determined,
and that the analyticity requirement implies the
symmetry property under interchange of like variables
stated above.

VIII. UNITARITY

Let K’ and K" be normal ordered sets of variables
labeling two possible outcomes of an experiment called
the final experiment. Let —K be a normal-ordered set
labeling a possible outcome of an experiment called the
initial experiment. Then postulate A implies the
unitarity conditions (see Appendix A):

> S(K', —R)S*(K", —K)=06x x.

K .

(8.1)

The summation is over normal ordered sets —K, the
asterisk denotes complex conjugation, and éx k- is
unity if K’=K"" and otherwise zero. (Discrete variables
are assumed temporarily.) Let the possible outcomes
of the two experiments be placed in a one-to-one
correspondence so that for every final outcome labeled
by K there is a ‘“corresponding” initial outcome
labeled by — K. The correspondence will be the physical
correspondence of ‘“no scattering” which will be
discussed below.

A convention will be adopted whereby if a particle
of the final configuration is labeled by a momentum-
energy vector k;, the corresponding particle in the
“corresponding” initial configuration will be labeled by
—k;. Then the conservation law for momentum energy
takes the form } k;=0. This negative sign for the
initial k; is represented by the minus sign in front of
—K. In order not to prejudice the arguments, the
particle-type indices will be taken to have opposite
signs for the corresponding variables of K and K.

In terms of R(K', —K")=S(K', —K"")—éxk, the
unitarity condition reads

R(K', —'K”)—l‘R*(K”, ___K/)
=—Y xR, —K)R*(K", —K). (8.2)

If R(K', —K")=R(K', —K")[p(K")p(K"") ]} is intro-
duced, where p(K) represents the number of values of K
per unit element of the product of the invariant mo-
mentum elements d*k (2m) §(k2—m?)0(k%)/(2m)3, then
the summation may be replaced in part by integrations
over these elements, with R’ replacing R. The prime on
R’ will generally be suppressed.

The subtraction of the dx-x» has a physical basis. If
we were to consider processes in a large finite volume V,
then over a time T one expects an initial momentum
eigenstate to gradually decay, and other momentum
eigenstates of the same energy to gradually grow at a
rate that tends to zero as V increases. This characteristic
difference in time dependences allows a particular final
momentum state to be correlated with each initial
momentum state. This physical correlation is the basis
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of the correspondence between initial and final con-
figurations labeled by —K and K, respectively. The
states are correlated so that the subtraction of dx &
just removes from S(K’, —K'"’) the part that remains
finite as ¥V becomes infinite. It is the remainder,
R(K', —K""), which when multiplied by [o(K")p(K"") ]t
is expected to pass over a smooth well-defined continuum
limit as V goes to infinity. This expectation is embodied
in postulate £’ which requires the M functions, which
are spinor forms of the R functions, to be analytic
functions. The S functions are neither expected nor
required to be analytic.

It is the procedure at this point that characterizes the
present development as strictly an S-matrix approach,
and which inserts an essential physical ingredient into
the present proof of the connection between spin and
statistics.

IX. RELATIVISTIC INVARIANCE

Postulate B requires, for the case of spinless particles,
that
|R(K', —K")|*=|R(AK", —AR")[%,  (9.1)

where AK is the set of variables obtained from the set K
by replacing each momentum-energy vector %; of the
set by Ak, the vector obtained from k; by the real
orthochronous proper homogeneous Lorentz trans-
formation A. For the case with spins let P(S’, —S”’) be
the projection operator for the spin state specified by
the set of axial four-vectors (s, —s;”’). Then postulate
B requires

|P(S', —S")R(K', —K")|?
=|P(AS', —AS")R(AK', —AK") [, (9.2)

where P(AS’, —AS"’) represents the projection operator
corresponding the set of spin vectors (As/, —As;”).
Using the Hermiticity and idempotent (P*=P)
character of projection operators, one may write Eq.
(9.2) in the form

P(S', —S")R(K', —K")R*(K', —K"")
=P(AS’", —AS")R(AK’, —AK"")
XR*(AK’, —AK"), (9.3)

where P(S’, —S”) now acts between corresponding
indices of R and R*. The order in which the indices are
contracted is irrelevant.

The projection operator P(S’, —S”) is a product of
the elementary projection operators for the individual
particles. The actual form of these operators depends
upon the physical significance of the various spin states.
Or conversely, the physical significance of the various
spin states is determined by the form of the projection
operators. One is free, consequently, in the case of
nonmassless particles, to take the elementary projection

operators to be
P(s)=%(xs" o+1), (9.4)

where o= (61,05,03) is the Pauli matrix vector and s’
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is the value of s in some rest frame of the particle. To
eliminate possible arbitrary rotations, this rest frame
will be taken to be the one obtained from the general
coordinate system by the Hermitian spinor Lorentz
transformation.

If Eq. (9.4) is substituted into (9.3) and the known
behavior of 8’ under rotations is used, one obtains

P(SI, -—S")R (K/, —K")R* (K', _K//)
=P(S, —S")[A~R(AK’, —AK")]
X[ARAK!, —AK™T*, (9.5)

where A, ! are certain of the usual spinor transformation
matrices corresponding to the rotation A. Since Eq.
(9.5) is valid for all " and S”, the projection operator
P(S’, —S"") may be removed and the resulting equation
states that RR* is a spinor function relative to the
rotation subgroup. The indices of RR* that are con-
tracted in Eq. (9.3) with the left-hand index of a factor
(9.4) have the transformation character appropriate to
an upper undotted or lower dotted spinor index, these
being the same for rotations (see Appendix J). The
right-hand index of Eq. (9.4) is contracted with the
corresponding complex-conjugated factor of RR* and
these indices accordingly have the transformation
characters of upper dotted or lower undotted indices
under rotations.

In order to construct a true spinor function we
introduce the operator £(K’, —K""), defined to be the
product of the Lorentz transformations that would take
spinors associated with various momentum-energy
vectors k; from their values in the general coordinate
system to their values in the respective rest frames, in
which the momentum-energy vectors become pure
time-like. To eliminate possible arbitrary rotations we
again take those Lorentz transformations represented
by the Hermitian spinor transformations. Then with
the definitions

M (K, —R") =K', ~R"R(K', ~K"),
and
P(S’, —S”, K’, ___K//)
=P(8', —S")e(K', = K")e*(K', —K"), (9.7)
condition (9.3) becomes ‘
P(sl’ -—S”, K’, _KU)M (K’, __KH)M* (K', _K//)
=P(AS!, —AS",AK’, —AR")M (AK’, —AK'")
XM*(AK’', —AK"). (9.8)
If the Lorentz transformations are taken to be the ones
appropriate to the transformation characters of the in-
dices of R obtained above, thenin P(S’, —S”, K’', —K"")

the elementary projection operators are, according to
Egs. (9.4) and (9.7), by direct calculation,

P(s,k)=3L(k-0/m)£s o ]=3[R*/mts" Jousp,
or

B(s,k)=3[(k-5/m)Fs-7]=3[k*'mTFs*]o,%,

(9.6)

9.9)

(9.10)
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where
(9.11)

(9.12)

The two cases (9.9) and (9.10) correspond to the
alternate choices of upper undotted or lower dotted
for the transformation character of the indices of RR*
contracted with the left-hand index of Eq. (9.4). The
first parts of the two equations (9.9) and (9.10) follow
by calculation and the derived expressions have the
transformation characters indicated on the far right.
Making use of these transformation properties one
obtains

P(S/, __Sll, +K', _KII)M(KI, —K")M* (K’, __Ku)
=P, —S", +K', —R")[A,M(AK', —AK"")]

v-0=0+V- e=1"+v'0;;

V-G=170— V- e=101+vF,;.

X[ASIM (AK!, —AK'")T*, (9.13)
which, being true for all (S’, —S"’), implies
M(K', —K")=A"M (AK', —AK")Xexpia. (9.14)

Apart from possible phase factors, the M (K’, —K'’)
constructed in this way are spinor functions. Postulate
B’ is invoked to permit the choice expia=1, and the
M (K’, —K") are then true spinor functions:

M(K', —K")=A"M(AK’, —AK").  (9.15)
The superselection rule follows immediately from
Eq. (9.15), applied to rotations of 2.
Substitution of Eq. (9.6) into Eq. (8.2) gives

oe(Kl’ —K”)M(K', _K//)
+[e(K", ~K )M (K", —=K")]*

="Z / [e(K', —~R)M (K, —K)]

X[L(K", —K)M(K", —K)T*. (9.16)
There is complete freedom in the choice between the
two alternative possibilities for the Lorentz trans-
formations, the construction being equally valid for
either case. We will choose to use lower spinor indices,
for R and R*, and, consequently, for M and M*. For
a lower undotted spinor index the Lorentz trans-
formation in £(K’, —K"') is

£(k)=exp[— (6/2)e k]

=cosh(6/2)— a-E sinh(8/2)= (k-5/m)}, (9.17)

where £ is the unit vector along the space part of k.
This matrix is Hermitian, as required, so that the
complex conjugate transformation, which operates on
the lower dotted indices, is the transpose matrix.

From the form (8.2) the requirement that the indices
associated with —K"’ transform as the complex conju-
gates of the corresponding ones of K" follows. Equation
(9.16) is then conveniently written in the form
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(K- &P M (K", —K") (K" -5)}
+ (K" )UK, —R) (K" -9)}

> /(K"‘"’)*M(K’, —K)(K-8)}(K -5)}
XM*(K", —K)(K" &)},

N /k;
II <_> N10]
i=1 \M;

N fkH#
()
=1 \M;

=11 (}—)(ky—ki-w).

=1 \m;

(9.18)
where

K¢

Il

U

(9.19)

The superscript (7) on ¢ indicates that ¢ is to
operate on the ith spinor index of K, and k; is the
momentum-energy vector associated with this index.
The order in which the factors are written down in Eq.
(9.18) is such that if K’ contains only undotted indices
and K" contains only dotted ones, and similarly for K
and —K, then the contraction is always with adjacent
indices. For variables that do not satisfy these condi-
tions, the contraction is with the nonadjacent index of
the Lorentz-transformation matrix. '

The reciprocal of £(k) is
£71(k)=exp[(6/2)e-k]=cosh(6/2)+ -k sinh 6/2)
= ((k-a)/m)}.  (9.20)

Multiplication by the appropriate inverses brings Eq.
(9.18) to the desired form:

M(K’, —K”)—*—M*(K”, _K/)
== / M(K', —K)K-éM*(K", —K). (9.21)
K

The contraction rule is as stated above, and Eq. (9.21)
has the form of a spinor equation, as inspection of Eq.
(9.10) shows.

The above development is independent of the choice
of sign of -£8’in Eq. (9.4) ; the transformation properties
are independent of this sign. If one wishes to identify s’
with the physical spin, then the requirement that
conservation of angular momentum be a consequence
of rotational invariance (postulate D) demands that
in the operators P(s) acting on the same type of
indices, the opposite signs of s’ must be used for
initial and final configurations, since it is the difference
of the initial and final physical spins that must enter
into the conservation law. It is for this reason that the
minus sign was placed before the second argument of
P(S’, —S"); then the same mathematical function of
the arguments may be used for both initial and final spin
operators.

The application of the formalism for the case of
particles of spin greater than } is discussed in more
detail in an appendix.
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X. ANTIPARTICLES

The functions M (K’, —K'") have been defined at real
values of the momentum-energy variables correspond-
ing to real processes. Because of the mass constraints
and the energy-momentum conservation laws, these
functions are defined only over a restricted subspace
of the space of energy-momentum variables. Variables
appropriate to this subspace may be introduced.

Consider a possible analytic continuation in these
variables from a region corresponding to a physical
process to a new region where the energy-momentum
vectors are again real, but with perhaps some different
signs. For definiteness suppose only one of the energy-
momentum vectors has a changed sign. Is it possible
to give the function in the new region a physical
interpretation, and if so, is this interpretation unique?

Because the continuation is in the subspace corre-
sponding to the mass constraints and the energy-
momentum conservation law, these conditions will be
formally satisfied also in the new region. But since the
sign of % is reversed, the contribution of this term in the
formal conservation law is reversed. If the interpre-
tation of the other momentum-energy vectors (with
unchanged signs) is to remain unaltered (see postulate
F), then the only way to reconcile the formal conser-
vation law with the physical law of conservation of
energy-momentum (postulate D) is to associate the new
value of the momentum-energy variable with an initial
particle if it was formerly associated with a final
particle, and vice versa, and to reverse the sign of
the connection between the mathematical energy-
momentum vector and the physical quantity. This is, of
course, the same connection that one obtains in field
theory. Here it is the only interpretation consistent with
the postulates.

If a final particle carries a nonzero unit of any
additive constant of the motion, then the initial
particle associated with it by the analytic continuation
described above must carry the negative unit; other-
wise, the conservation laws would require one of the two
processes to vanish, and by analytic continuation both
would vanish. The two particles related by this con-
tinuation are, consequently, not the same particle, in
general, although their masses are the same. They will
be called antiparticles, in accordance with the usual
terminology.

The type designations of the corresponding variables
of K and K have been taken as negatives of each other.
If a variable is called a particle or antiparticle variable,
according to which of these two it specifies when its
energy-sign is positive (i.e., when it refers to the final
experiment), then variables of oppositely signed type
designation are particle and antiparticle variables,
respectively.

For a fixed spin index the corresponding physical
spin is opposite for the cases in which the variable
refers to a particle of the initial or final configuration,
respectively, as mentioned before.
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The formalism arrived at is of the Pauli rather than
the Dirac type: spin-} particles are represented by two
component variables. Particles and antiparticles are
represented by undotted and dotted indices, respec-
tively. Because particle and antiparticle variables have
different spinor characters and, correspondingly, are
contracted differently with the spin operators, it is not
the simple sum of the amplitudes that is measured when
the self-conjugate combination of particle-antiparticle
amplitudes combination is measured. A certain (charge
conjugation) operation is required to bring the ampli-
tudes to a form suitable for direct addition. In the
proof of the connection between spin and statistics one
can first apply the CPT transformation to the various
parts that will form the self-conjugate combinations,
then apply the transformations needed to bring the
various terms to additive form, then use the symmetry
rules to invert the order of the combined variables, and
finally transform the parts back to their original forms.
Thus the fact that the amplitudes corresponding to
dotted and undotted indices do not directly combine
does not have an important effect on the proof. If
both upper and lower indices had been used the uni-
tarity relation would have taken a more complicated
form, and the fact that the symmetry rules apply only
to proper combinations would then play a role.

An alternative formalism in which the no-scattering
part of the S matrix is taken to be the charge-
conjugation matrix

0 —1

(i o)

1 0
in spinor space is convenient in this respect. With this
choice, particles and antiparticles can be taken to have
the same transformation character. The same physical
spins are then represented by the same spin operators
for particles and antiparticles, and the amplitudes are
directly additive. The unitarity relation in this formal-
ism contains explicit factors of C, and it is the relation
Ctr= —(C that leads to the factor (—1)¥. The derivation

of the connection between spin and statistics using this
formalism is given in Appendix C.

XI. ORDER OF VARIABLES

A set of variables with real momentum-energy
vectors k; is normal ordered only if the following condi-
tionsaresatisfied: (k)22 (kip1)?, &8/ | k0| 2 kit | Rt ,
k{2 kiity k22 ki, and k22 ks id, each of the condi-
tions of the set being operative if and only if the equality
parts of the preceding conditions are realized. Except
for cases of relative zero measure, for which k;=k;, for
some %, which can be treated as limiting cases, the
normal ordering condition gives a well-defined order
for the variables corresponding to any physical process.
For definiteness we specify that when the variables are
in this order the M function describes the physical
process. Stated differently, the value of some (say
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original) M function that describes the physical
processes corresponding to some set of &; will be taken to
be the definition of the value of the (standard) M
function when these variables are placed in normal
order. If postulates F and E’ were true for the original
M function they would also be true for the standard one.

Postulate E’ requires all the real points to be (physical
type) boundary points of a single analytic function.
This allows the M function to be extended by analytic
continuation and defined for all orders of the variables.
Observables calculated by using the values of the M
functions obtained by analytic continuation must give
the physical answer, according to postulate F. Hence
the various M functions obtained by reorderings of
the variables can differ only by phases as stated in
property (E). If postulate E’ were not valid and certain
ranges of variables could not be reached from others by
analytic continuation, then one is free to establish
property (E) by decree in cases where it does not follow
from analytic continuation and postulate F.

For the case of variables with the same spin and type
indices and the same energy-sign, one can obtain a
more stringent condition. This is because the inter-
change of such variables, which will be called like
variables, carries an M function back to itself, though
at a new value of the arguments.

Let us denote by M (x) and M (—x) two M functions
related by the interchange of two like variables, and by
| M (x)|2and | M (—x)|? some experimental relationship
calculated using these M functions. That is, we suppress
the remaining variables. According to postulate F,

| M (x)|2= | M (=),

because M (—x) is the analytic continuation of M (x) at
a new physical-type boundary point of the physical
sheet, and the two points have identical physical
interpretations.

Separating M (x) into even and odd parts with
respect to x one obtains

| M (x)]2— | M (—x)|2=4 ReM ,(x) M o* (x)=0.

This implies that M (x) is either even or odd or that the
even and odd parts are relatively imaginary.

The condition that M,.(x) and Mo(x) be relatively
imaginary, which we take to include the case in which
either one vanishes, must obtain for all choices of the
remaining (suppressed) observables. However, by
appropriate choice of the observables (Hermitian
operators) corresponding to the other (suppressed)
variables one can adjust arbitrarily the phases of each
orbital angular momentum state of the two-particle
subsystem. This is easy to see for the simplest case of
the scattering of two spinless particles, since by choosing
the operator for (say) the initial state to project onto
some chosen combination of the initial orbital states the
phases of the final states can be fixed arbitrarily. It is
not hard to show that this result can be generalized to
arbitrary reactions, and that the phases of orbital
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states corresponding to the two-particle subsystem can
be fixed arbitrarily by appropriate choice of the
Hermitian operators corresponding to the observables
for the remaining variables. Thus the general vanishing
of 4 ReM ,(x)Mo*(x) implies the vanishing of either
M.(x) or Mo(x), and M (x) must be either symmetric
or antisymmetric under the interchange of like variables.
Essential to the proof is the assumption, stated in
postulate C, that only the variables specifying mo-
mentum, spin, and particle type are needed to label
the complete set of amplitudes. No other “hidden”
variable specifying, for instance, ‘“which one of the
various identical particles is measured” is permitted.

By the application of the fact that the M functions
must be either symmetric or antisymmetric under the
interchange of any two like variables to both sides of
an equation representing this same fact, one immediately
finds that a single rule, either symmetry or antisym-
metry, holds for the interchange of any two like
variables of a fixed type in a given M function with a
fixed order of the spin and type indices. Using postulates
E’ and F, as above, one can extend the rule also to the
case in which the ordering of the spin and type indices
differ and show that the characteristic sign for the
interchange of like variables depends, for a given M
function, only on the spin and type designations and
possibly on the energy signs.

The above derivation of the fact that the M functions
are either symmetric or antisymmetric under the
interchange of like variables is based upon analyticity
in the physical region and on the principle, contained
in postulate F, that different expressions corresponding
to the same physical quantity must give the same
answer. This is an argument involving indistinguish-
ability. In ordinary quantum mechanics, the analogous
symmetry property of the wave function is postulated
as a boundary condition. In field theory, it is the

- immediate consequence of the postulate that field

operators must either commute or anticommute for
space-like separations. This locality postulate of field
theory draws its support from the principle of micro-
causality ; the postulated commutation relations ensure
that signals never propagate faster than the speed of
light, even over very small distances. This support of
the postulate is rather unsatisfactory both because of
the questionability of the principle of microcausality
and because of the particularity of the way in which it
is achieved. For instance, the possibility that the
commutation relations depend on the states between
which the fields act is not considered. The present
derivation seems more satisfactory because these various
possibilities are included, and because it is based
directly o® indistinguishability and does not intertangle
the logically separate questions of symmetry and
causality.

The symmetry rule can immediately be extended
from the case of equal energy-signs to the case of
unequal energy-signs using postulate E’, because both
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sides of the equation representing the symmetry rule
can be analytically continued from the region where
the energy-signs are equal to the region where they are
unequal. This consequence of analyticity is the root of
the connection between spin and statistics.

The methods used above do not lead to symmetry
rules for the case in which the spin indices differ. Here
an interchange of variables carries an M function over
to another M function in which the order of the indices
is different. This is a different function not connected
to the first by analytic continuation. From postulate F
one obtains a relation like

[ M1 (%) [2= | Mo (—2) %,
instead of
[ M1 (x) |?= | Mu(—x)[?,

the spin indices now being displayed, and the arguments
used above lead to no symmetry rules.

If it is assumed that measurements of linear combina-
tions of spin state amplitudes are possible, one may
obtain relations of the second type with the spin state
“1” now representing a linear combination of the
original states. One obtains, for example, relations
which, when expressed in terms of the original spin
states, read

(cos?8)M 11(x)+cosd sind[ M 12(x)+ M 21 (%) JHsIn20 M 55 (x)
= {cos?M 11(—x)+cosd sind[ M 15(—x)+ Moy (—x)]
+ sin26M22(— x) } 5

where the linearity asserted in postulate 4 is invoked.
Since the relation is true for several values of § one
obtains

Mu(x)=£Myu(—=),

Mzz(x)=:|:M22("—x),
and

Mo () +Mor(+a)= £ [M1o(—x)+Mau(—x)],

where the same sign holds for the three equations. The
first two equations show that the same symmetry rule
holds for both cases of like spin indices, and by the third
line this symmetry also extends to the symmetric
combination of the spin states. The third line is generally
inconsistent with the assumption that the interchange
of variables with different spin indices gives a sign
change opposite to the one for the case of equal spin
indices. Indeed, using the fact that M15(x) and M2 (—x)
can differ by only a phase, the relationship Mis(x)
== M, (—x) is the only one generally consistent with
the requirement that the M functions be analytic
functions of their variables, as one sees by examination
of the other solution:

M1 (—x)= texpiaM 5% (x),

M 15(—x) == expiaM o,* (x),
and
o= arg[Mm (x) +M21 (x)]
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As in the case of different spin indices, the analyticity
requirements alone lead to no symmetry rules for the
interchange of variables of different types. The sym-
metries that prevail are direct consequences of phase
conventions regarding the orders of the variables of the
M functions.

In the development above there is the apparently
arbitrary phase convention that the singular part of the
S matrix [i.e., p(K')dx k] be taken as real and positive
when the variables are normal ordered. It is because of
this convention that the normal-ordering requirement
appears in the unitarity relations we use. Making use
of this particular form of the unitarity requirement, one
can carry through an argument quite analogous to the
one given in the body of the proof of the connection
between spin and statistics, but now without using
self-conjugate particles. If one assumes that the sym-
metry under interchange of antiparticle-type variables
is the same as for the corresponding particle-type
variables, then one can deduce that the symmetry rule
for the interchange of a particle variable with a corre-
sponding antiparticle variable is in accordance with the
normal connection between spin and statistics.

This relationship is of no physical significance. All
that is established is that the symmetry under inter-
change of particle and antiparticle variables is in
accordance with the normal rule. But nothing is said
regarding the rules for the interchange of two particle-
variables or two antiparticle variables. It is these rules
that are relevant to the connection between spin and
statistics. Moreover, the rule that is established is a
direct consequence of the original choice of phase
conventions and can change if other conventions are
adopted.

In field theory there is an analogous situation. It is the
commutation relation between two like fields that
determines the connection between spin and statistics.
The commutation relation between a field and its
adjoint is not relevant unless it is shown that this
commutation relation must be the same as for a field
and itself. In recent studies of the connection between
spin and statistics®? it is only the commutation relation
of a field and its adjoint that is shown to be normal, and
the arguments consequently do not prove the connec-
tion between spin and statistics.? Earlier proofs have
been objected to because they either apply only to the

% Note added in proof. I have been informed that Dell’Antonio
has been able to prove that the commutation relation for two like
fields is the same as for a field and its adjoint. This would complete
the field-theoretic proof of the normal connection spin and
statistics. Formerly, the field theoretic proofs were valid only with
some added assumption giving status to the Hermitian conjugate
combinations of a field and its adjoint. Such an assumption would
be analogous to my assumption regarding self-conjugate combina-
tions of amplitudes. Thus the field-theoretic and .S-matrix proofs
were formerly on a par, on this point. Dell’Antonio has now
supplied for the field-theoretic proof the element that will be
filled for the S-matrix theory when the considerations discussed in
Appendix I are developed into a full S-matrix proof of the normal
connection between spin and statistics that does not require the
added assumption.
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nonphysical free-field case or assume restrictive sym-
metry requirements.

In the extension of the symmetry rule for the inter-
change of like variables to the case of differing spin
indices the physical requirement, stipulated in postulate
C, that projections on linear combinations of spin-state
amplitudes be, in principle, observable quantities
played an essential role. In the analogous extension to
particle and antiparticle variables the corresponding
situation prevails; the requirement that projections on
combinations of the particle-antiparticle amplitudes be,
in principle, observables is again essential. This require-
ment underlies our proof, which depends critically on
the fact that one can choose variables referring to the
self-conjugate combinations of particle-antiparticle
amplitudes. When these variables are used, the CPT
transformation followed by an inversion of order takes
the arguments of M (K’, —K') into identically them-
selves and there is no phase ambiguity. Also, the
symmetry is derived directly for the self-conjugate
combinations, and from this the symmetries of the
particle and antiparticle parts are obtained.

To complete the discussion of order of variables we
must show that the symmetry rules for the interchange
of like variables are the same for all M functions, as
stated in property F. This follows from the unitarity
relation. For real k;, the unitarity relation reads

M(K', —K”)—*-M*(K”, __K/)
=—Z /M<K', ~K)K-eM*(K", —K),
K

which, with the introduction of

M’ (KI, __K//) =M* (KII*’ _K/*),
becomes

M(K', —R")+M' (K", —R")
-y f MK, —R)K-M'(K, —R"),
K .

This form permits analytic continuation in the variables
k.

Suppose K’ contains two like variables with real ;.
According to postulate E’, these may be interchanged
by an analytic continuation. An application of the
symmetry rule for like variables then gives

O'(K“)M(K/, "K~,I)+0'/(K”)M,(K’, —K”)
—-% [owME, ~R)K-2M' (K, ~K"),

where o(K) is the sign change induced in M (K’, —K)
by the interchange of the two like variables, and
o’ (K" is the sign change for the two corresponding like
variables of M*(K”, —K'). For the case K'=K" we
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have ¢(K')=0¢'(K’), since an application of both
transformations to M (K', —K’) must leave the sign
unchanged in order not to conflict with the sign on the
right of the unitarity relation. This gives

o(K[M(K', —K)+M*(K', —K")]
==3 /U(K)M(K’, —K)K-eM*(K', —K).

The integrand factor M (K’, —K)K -eM*(K', —K) is a
positive definite Hermitian form, as mentioned earlier,
so that comparison of the above equation to the original
form of the unitarity relation implies

7(K)=0(K"),

and the symmetry rule under interchange of like
variables is the same for all M functions that can be
brought to the form M(K’, —K). One can take K’
to contain just the two variables in question, and then
all M functions containing these variables can be
brought to this form using postulate E’.

XII. ANALYTIC STRUCTURE

Postulate E requires the M functions to be regular in
the interior of a physical sheet whose boundaries are
fixed by unitarity. This needs explaining.

The essential idea is that there are some singularities
of the M functions which are direct consequences of
the unitarity relations; if the M functions occurring
on the right of the unitarity relations were assumed
free of singularities, those on the left would nonetheless
have singularities arising from limitations in the range
of integrations occurring on the right.

Specifically, the unitarity relation contains on the
right terms each containing a factor of the form

[ [(dzf)am) ]

X (2m)'8 (2 ki—T),

which is multiplied by other functions that may or may
not have singularities. Here T is the sum of the initial
(or final) momentum-energy vectors of the process.
As is well known, the delta functions place limits on the
(real) range of integration and the above factor intro-
duces a singularity at T?= (3_ m,)? that corresponds to
the threshold for the reaction involving the process
described by the k;.

Equation (12.1) gives singularities that would occur
in one or both of the M functions occurring on the left
of the unitarity relation even if the M functions occurr-
ing on the right were free of singularities. Possible
singularities of the M functions on the right can lead to
additional singularities on the left. To get some of
these, one may substitute the expression for the singular
part of the M function obtained from the first appli-

(12.1)



2152

cation of unitarity back into the right-hand side of the
unitarity relation. Proceeding by iteration, one obtains
structures of the form

/H[MYMthwﬂwmwﬂ
(27) ]

i

XIT (2r)'s(S,—T)), (12.2)

where Y ; is a sum over some subset of the k;, and T'jis a
sum over some subset of the (external) momentum-
energy vectors of the M function. Various structures
may be correlated with various Feynman-like diagrams,
with the lines associated with the mass-conservation
delta functions and the vertices now involving the
arbitrary numbers of particles entering into a reaction.
The conservation laws are maintained at vertices.

The variables &; and T'; are originally constrained to
be real, but one can eliminate the § functions in favor
of contour integrations and thereby obtain expressions
that can be analytically continued in the variables T';.
The set of singularities obtained in this way will be
called the singularities required by unitarity. It is
shown in an appendix that the set of singularities
required by unitarity coincides with the set of singu-
larities obtained in the terms of the perturbation
solution of field theory. This allows the extensive body
of results concerning singularities of the terms of
perturbation theory*~3 to become immediately avail-
able. A possible alternative approach of simply asserting
the singularities to be the same as in the terms of the
perturbation solution is less satisfactory, since field
theory is at once rejected and placed in a fundamental
role.

The equations defining the locations of the singu-
larities required by unitarity are relativistically in-
variant and define manifolds in the space of the scalar
invariants of the M function of dimension generally one
(complex variable) less than the full dimensionality of
the space. The locations of the singularities depend only
on the masses m; corresponding to the various internal
lines of the diagram. Cuts terminating at these singu-
larities can be defined by the locus of singularities
obtained with the m; replaced by am;, with a a real
parameter, independent of 7, varying between one and
infinity. These cuts separate various sheets of the M
function. Postulate E asserts that one particular sheet

2¢ R. Karplus, C. Sommerfield, and E. Wickmann, Phys. Rev.
111, 1187 (1958); 114, 376 (1959).

25 I, D. Landau, Nuclear Phys. 13, 181 (1959).

26 J. Tarski, J. Math. Phys. 1, 149 (1960).

27 R. Eden, Phys. Rev. 119, 1763 (1960).

28 J. C. Polkinghorne and G. R. Screaton, Nuovo cimento 15,
289,925 (1960).

2 L. B. Okun and A. P. Rudik, Nuclear Phys. 15, 261 (1960).

3 J. C. Taylor, Phys. Rev. 117, 261 (1960).

31 R. Eden, Phys. Rev. 121, 1567 (1960).

% P. V. Landshoff, J. C. Polkinghorne, and J. C. Taylor, Nuovo
cimento 19, 939 (1961).

3 R. Eden, P. V. Landshoff, J. C. Polkinghorne, and J. C.
Taylor, Phys. Rev. 122, 307 (1961).
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of each M function, the physical sheet, is free of
singularities.

The physical sheet is defined in the following way:
Among the cuts there will be one preferred cut that
runs over values corresponding to the real momentum-
energy vectors for the process described by the M
function. The physical values of the M function for
the process are required to coincide with the boundary
values of the M function on the physical sheet for the
“physical-type” limit along this cut. The physical-type
limit is the limit approached using points for which the
imaginary parts of the physical energy and the physical
momentum magnitudes k= (k-k)? are positive imagi-
nary. The physical arguments are, of course, the
negatives of the mathematical arguments for variables
referring to the initial momentum-energy vectors.

The definition of the physical sheet is not arbitrary
but is closely tied to unitarity, analyticity, and the
connection to space-time variables. In order to acquire
an orientation, consider the simple case of the scattering
of a nonrelativistic particle from an everywhere-finite
potential that vanishes for r>R. For a particular
channel (partial wave), the radial wave function
f(—Fk, ) that goes asymptotically like exp[4k7] can be
shown to exist for all %, real or complex.* Generally,
these functions do not vanish at the origin =0 as is
required for a solution, but the combination

Jle) =L (%,0)/ f(—k,0)1f(—k, 7)

has this property, and the S matrix is
S(k)=(—1)'f(k,0)/ f(—k, 0).

This function is regular for all values of & for which
f(—k, 0) is nonzero. At points of the upper-half % plane
(Imk>0) for which f(—%,0) vanishes, the f(—k,7)
are (normalizable) eigenfunctions, and the energy
eigenvalues are required, by unitarity, to be real. The
singularities of the S matrix in the upper-half % plane
are therefore confined to the imaginary axis.®

If one transforms to the E plane and defines there the
physical sheet to be the one containing the positive
imaginary & axis (on the real E axis), then the physical
sheet of the E plane is free of singularities except for
those on the real axis. These singularities have a direct
relationship to bound states and physical thresholds,
and their positions are fixed by the masses of the stable
particles. The corresponding statement for the other
sheets is not expected to be valid; resonances and
unstable particles lead to singularities in the unphysical
sheets.36-39

# R. Jost and A. Pais, Phys. Rev. 82, 840 (1951), Eq. (29).
35 For a more complete discussion see N. N. Khuri, Phys. Rev.
107, 1148 (1957).
38 R. E. Peierls, in Proceedings of 1954 Glasgow Conference on
Nuzclear and Meson Physics (Pergamon Press, New York, 1955),
69

p- R
37 G. Killen and V. Glaser, Nuclear Phys. 2, 706 (1956/57).
38 M. Levy, Nuovo cimento 13, 115 (1959).

# R. E. Peierls, Proc. Roy. Soc. (London) A253, 16 (1956).
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If the condition that the potential vanishes for >R
is replaced by the more realistic requirement that it be
representable by a sum of Yukawa potentials, then the
numerator function f(k,0) can have singularities, but
these are just those coming from unitarity in the crossed
channels®# and are therefore among those required
by unitarity.

The definition of the physical sheet for the relativistic
many-particle problem is taken to be the generalization
of the one occurring for the simple potential scattering
problem, and in particular, the momentum vectors are
required to move to the region corresponding to ex-
ponentials that decrease at large radius as one goes from
the physical point into the interior of the physical sheet.
This insures that bound states give singularities below
the physical threshold and lying on the physical sheet.
The unitarity relation likewise leads to singularities at
locations corresponding to these bound states, since
they are stable particles. The unitarity relation is
therefore expected to hold below the physical thresholds
on the physical sheet.

The fact that, for the potential scattering problem,
the physical sheet is free of singularities depends jointly
on unitarity and the fact that the scattering was from
a local potential. Postulate E can therefore be considered
some extraction from a locality requirement. The
question of exactly what coordinate space conditions
are necessary or sufficient for the postulated momentum-
space analyticity property lies outside the scope of the
present paper.

XIII. CONCLUDING REMARKS

The present study provides two useful results apart
from the proofs that were the primary object. First, it
has been shown how the appeal to field theoretic
concepts can be completely avoided and the new
S-matrix formalism built up from simple principles that
are relatively secure. This development, which was
necessary to the proofs, leads also to a considerable
simplification in practical problems, since the shuttling
between field theoretic expressions and the scattering
functions needed in field theory is eliminated ; one works
only with the directly interpretable scattering functions.
Second, the treatment of spin is in terms of the simple
Pauli matrices, and the redundant variables associated
with the use of Dirac matrices are not introduced. Thus,
for instance, the scattering of two spin-3 particles is
described by a spinor function with 16 matrix elements
rather than 256. The troublesome projection operators
needed to eliminate the redundant variables of the
Dirac theory are not required. Conditions imposed on
the M functions by the separate requirements of
invariance under spatial reflection, antiparticle conju-
gation, and time reversal are easily handled, as shown
in some of the following Appendices.

4 R. Blankenbeckler, M. L. Goldberger, N. N. Khuri, and S. B.

Treiman, Ann. Phys. 10, 62 (1969).
4 A, Klein, J. Math. Phys. 1, 41 (1960).
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APPENDIX A
Derivation of Unitarity from Postulate 4
From postulate 4,
(d,a")=(Sa,Sa)= (a,a)

for all ¢. But the quadratic form determines the bilinear
form,% and so

(Sa,S8)=(a,S7Sb) = (a,d)

for all ¢ and 4. Hence StS=1. Therefore Sfa’=a and
SSt=1 is derived from

(a,0)= (STd’,Sta')=(a’,a’).

In effect, the completeness requirement may be taken
to mean that the metric preserving transformation .S
is unitary.®

APPENDIX B
Massless Particles

For massless-particles, which have no rest frame, the
procedure used in the text breaks down. In this case
the assignment of spin quantum numbers can be related
to the direction of motion of the particle. For the
spin-3 case, the projection operators analogous to Egs.
(9.9) and (9.10) can be taken as

P(k)=(1/2ko)(k-0), 9.9
and

B(k)=(1/2k0) (k-5). (9.10")
They absorb a factor m/ko from the density of states.
These have the same transformation properties as the
operators to which they correspond. Unlike the P(s,k)
and P(s,k), these operators are idempots and they can
therefore be directly interpreted as the projection
operators for the two states. This allows the trans-
formation to rest frames to be eliminated. Unlike the
nonmassless case, where both spin states could be
described using either type of spinor, upper dotted or
lower undotted, here we have one spin state correspond-
ing to one assignment, and the other spin state corre-
sponding to the other assignment. If we continue to use
only the lower indices, then the neutrino will have only
one spin state, as is experimentally observed. The
V—A interaction is represented by (¢,)(c,) in the
present notation.

The projection operators (9.9") or (9.10’) should be
inserted for the intermediate states of the unitarity
relation, and the symbol K -# appearing in the unitarity
relation will include this factor for the case of massless
particles.

12 P, R. Halmos, Introduction to Hilbert Space (Chelsea Publish-
ing Company, New York, 1951), Theorem 1.

4 See Béla Sz.-Nagy, Appendix to F. Riesz and Béla Sz.-Nagy,
Functional Analysis (Frederick Ungar Publishing Company, New
York, 1960).



2154

APPENDIX C
Related Formalisms

In order that the term dx-x/» be invariant under
rotations, the corresponding indices of K and —K
must be transformed by inverse matrices; if particle
variables transform as lower undotted or upper dotted
indices (which transform the same for rotations) then
the corresponding antiparticle variables must transform
as lower dotted or upper undotted indices. We have
arbitrarily chosen to use always lower indices. For a
lower undotted index the Lorentz transformation
applied to R in constructing M is (k-o/m)} Had we
chosen to treat the index as an upper dotted index, then
the Lorentz transformation would have been rather
(k-&/m)}, which is just the inverse of (k-o/m). Thus
one can transform an M function with an upper dotted
index to the value it would have taken if the index had
been treated as a lower undotted index by multiplying
it by (k-o/m). It is purely a matter of choice which one
is used. Indeed, in the Dirac formalism both choices are
carried along in parallel.

There is no compulsion to take the no-scattering part
of S to be 8k/k++. Another rather useful choice is
Cx-k+, the product of the charge conjugation matrices

0 —1
c~( )
1 0
With this choice, particle and antiparticle variables
have the same transformation character under rotations
and one can, for instance, take all the indices of M to be

lower undotted indices. In this case the unitarity
relations take the forms

CK"-3M (K', —K"")+[eK’-éM (K", —K')*

=—Z /M(K,; —K)K'EM*(K”, —K)7
and

et (K -#M(K', —K")+[e*K"-¢dM (K", —K") J*
==Y / M(K,—K")K-e¢M*(K, —K').

For K'=K"' representing self-conjugate combinations
of amplitudes, the CPT transformation followed by an
inversion of order takes the right-hand sides of these
equations into each other. The left-hand sides are also
transformed into each other, except for a factor (—1)¥
needed to change @ to @ and a factor ok needed to
reverse the ordering. The connection between spin and
statistics then follows as before.

APPENDIX D
Higher Spins

The formulas given in the text apply directly to
spin-zero and spin-3 particles. For particles of higher
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spin, one constructs in the rest frame an appropriate
combination of the elementary spin-} spinors using
Clebsch-Gordon coefficients or spin-state projection
operators. The Lorentz transformations that take the
R matrix, which refers to the rest frame spin states, to
the M matrix, commute with S-S and hence with the
projection operators. The projection operators can be
considered either as acting directly on the M functions,
or as contained in the M functions as factors. In the
latter case the equations of the text apply unaltered,
but with the index u simply a set of spinor indices. In
the former case, the K-& appearing in the unitarity
relation is replaced by K-&P(S) where P(S) is the
projection operator. For instance, P(S)=%(3+o¢®-o®)
for the case of a spin-1 particle. The projection operators
commute with the K -& and can be placed on either side,
or on both sides of it.

APPENDIX E
Invariance Conditions

The transformations
(ki Ksyuits) — (B Kiuats) p= (RS, — ki, pi, 1),
(k'ioyki’#'iat‘i) - (k'ioykia:ui:ti)cz (kioy ki, iy "‘ti),

and
(RO Kiuits) — (B Kiuits) = (—kd k; pi, —15)

take the variables associated with a given experimental
measurement to those associated with certain trans-
formed experimental measurements connected to the
original ones by spatial reflection, antiparticle conju-
gation, and time reversal, respectively. Correspondingly,
we can define the transformations

R(K', —K") = Ry(K', —=K")=R(K,, —K,"),
R(K', _KH) N RC(K/, —K”)ER(KCI, _Kc//)’

and
R(K', —K")— R/(K', —K")=R(K/, —K/").
If the equations
R(K', —K")=0,R,(K', —K""),
R(K', —K")=0.R,(K', —K'"),

and B _
R(K/, —‘K"):O'LR;‘(KI, —R")

are satisfied, where op, 0., and ¢, are constant phase
factors, then the relationships between probabilities for
the transformed measurements are the same as for the
original experiments.

In the time-reversal operation the change of sign of
the %0 effects the required interchange between initial
and final states and the reversal of physical momentum
and spin. The transformation to antiparticles that it
also induces is compensated by the change { — —¢.

In the operations of charge conjugation and time
reversal the change { — —¢ can be generated by an (up
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to a phase) equivalent change k®« k? p®e i for
the class of R functions in which the particle and anti-
particle variables can be grouped in corresponding pairs.
The k* and p® are the particle momenta and spin
indices, and k® and 4 are the antiparticle quantities.
If the R functions are considered matrices with the
undotted indices on the left and the dotted indices on the
right, then the spin transformation is generated by

R— € Rve,

where R is the transpose of R and € is the product of
the elementary charge conjugation operators C defined
by

CoCl=—otr.

The operator C effects the transformation between
dotted and undotted indices. When this form of the
antiparticle conjugation transformation is used the
three operations are, to within phases, given by*

P: k,'()(—)kio, k,'-—')—ki, T 0,
C: k*—k?® o> —0a T.ofO;

T: (k9o —(k0® koo k?, T. of O.

Here “T. of O.” represents an inversion of the order
of occurrence of all Pauli spin matrices o, and £;* and
k:® are corresponding particle and antiparticle mo-
mentum-energy vectors.

The requirement of invariance under antiparticle
conjugation imposes constraints on the M functions
describing processes in which both members of each
particle-antiparticle pair occur in the same configura-
tion, initial or final. Time-reversal invariance imposes
constraints on the M functions describing processes in
which each particle occurs in both the initial and final
configurations. The analyticity properties allow these
constraints to be carried over to the M functions for
processes in which these constraints are removed.

It is sometimes convenient to express the variables
(K’, —K"”) in the form (K¢; K?), where the physical
particle variables are in the first group and the anti-
particle variables are in the second. One may then write

M(K*; K*)= (K*-0)'R(K®; K*)(K®-0)?,

c— —o,

where the contractions are now always on adjacent
indices. The variables represented by the set (K¢; K?)
will be taken to be normal ordered.

The symmetry operations and conditions have so far
been expressed only in terms of the R functions. Let
the applications of these same operations to the M
functions be represented by M,(K®; K?), M ,(K*; K?),
and M.(K2; K?), where the new way of writing the
variables is introduced for clarity in what follows. We
define now the more complicated quantities

“ For an extensive discussion of the symmetry operations,
including a derivation of these relations from field theory, see
H. P. Stapp, Lawrence Radiation Laboratory Report UCRL-8859,
1959 (unpublished).
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M5(K*; KP)=K,* oM, (K*; KMKpb- o
=K,* (K" 0)*Rp(K*; K?) (Kp*-0) K, &
= (Kp*-5)*R,(K*; K*) (K ,*-5)*
= (K®-0)*R,(K*; K?)(K®-0)?,

M;(K*; K)=K* oM ,(K*; KK ¢
— Ko o[ (K*-0)IR(K*; K¥) (K®-0)}],Kb o
=K% g(K*#)*R,(K*; K*) (K" 5)}K? o
= (K®-0)*R.(K*; K")(K*-0)},

and

Mi(K*; K")=M ,(K*; K”)

[(Ke0)'R(K*; KO)(K* )31,

— (K*-0)'Ry(K*; K¥) (K" o).

Inspection of the last lines in each of these equations
shows that the conditions of invariance R=o,R,,
R=0.R., and R=¢,R;imply M =0,M 3, M =0,M 3, and
M=9:M7, respectively. These invariance conditions,
which might at first appear cumbersome for the cases
of parity and antiparticle conjugation, are in fact quite
easy to apply and lead immediately to simple forms for
the M functions satisfying the various conditions, as
examples given in subsequent appendices show.

A double application of any of the symmetry opera-
tions shows that the phase factors ¢ can only be +1.
The phase factors need not be strictly independent of
the wvariables (K’, —K''); parts corresponding to
amplitudes that cannot interfere may have different
factors. Both signs may occur therefore, and the set of
M functions separate into four parts corresponding to
the two signs of ¢, and o,. The sign of o, is fixed by the
CPT theorem and the connection between spin and
statistics.

APPENDIX F

Form of the M Function for a Scattering of
Spin-1 Particle by Spin-Zero Particle

Relativistic invariance requires the M functions to be
a sum of terms each of which is the product of an
invariant scalar times a product of spin operators &;-o
and k;-&. These two types of operators must appear
alternately and the former type must appear on each
end. Letting k* and k® be the physical momentum-
energy vectors associated with the particle and anti-
particle variables of the spin-} particle, and letting
the corresponding mass be unity, one obtains as the
condition for spatial reflection invariance:

M5(K*; Kb)=ky® 6 M »(K*; K¥)ky®-&
=ke oM (K,*; Kp®)kb o
=+ M (K*; KP).

Using the relations
kpo=k-¢ and k-ck-G=Fk-dk-0=1,
one immediately obtains as the general solution:

M(K*K?)=9v-04 (k*-0)(v-5) (k®-0),
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where v is a combination of the momentum-energy
vectors of the problem. The relations

a-cbét+boad=a5bot+b-6a0=2ab,
and
a0b-&c-o=ilabc]-o+a-o(b-c)—b-c(a-c)+c-a(a-b)

where [abc h=a"b"cre,m are useful (ess=-+1). The
elementary combinations with well-defined o, and o; are

s1=k*o+kb 0o, oi=+1, op=+41;
se=k* 0c—kbq, o=—1, o,=—1,
ss=n-o+k%on-kto, o=41 op=+1;
ss=n-o—k%on-gkto, o=41, op=-—1;

where n=p3+4p® is the sum of the physical energy-
momentum of the other particle. The contribution with
n replaced by (p>— p*)= (k*—k?®) gives zero for 53, and
s4 becomes twice s; so that nothing new is added. One

can also use
(ke+RP)[ (ko+-k%) -]
(ke-+R?) (Ro+RY)

if the denominator is nonvanishing. The vector » is
normal to k%+%® and k*—k® and hence to k% and &°. All
other combinations can be expressed in terms of these
four forms and we may write

M=Z ai5i=z di'sq",

where s;” represents the s; with #’ used in place of #.
Then, with 3; the operator obtained from s; by the
transformation ¢ — — ¢ and T. of O., one obtains

% TIS’;/M = ai'N;',
where
Ni'= (k) (ko4 RY),
Ny = (ko= k) (k= k),
Ny'= (n'-n’) (k*—k®) (k*—k?),
N{=@'-n') (k*+k?) (ko+ kD).

The expressions have been written down in terms
of the physical momentum-energy vectors in the case
where the particles occur in both the initial and final
configuration. The vectors k® and $® occurring here
should generally be replaced by the negatives of the
corresponding mathematical momentum-energy vectors
occurring in the arguments of M. The expressions are

then valid for all the processes described by the M
function.

APPENDIX G
The System of Two Identical Spin-} Particles

There are six combinations of the elementary spin
operators s; that are invariant under spatial reflection
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and time reversal:
T1 =35151,
T2=3282,
T3= 383,
T 4= 5484,
T'5=s153+ 5351,
and
To=s5153—5351.

The remaining 10 combinations change sign under at
least one of the two operations. The final combination
T's changes sign under a simultaneous interchange of
both the initial and final particles and is ruled out for
identical particles.

There is also the possibility of using 8-decay forms,
in which there is a contraction on the vector index of
operators ¢, or &, appearing in the spin spaces of the
different particles. In terms of the combinations

t=ke o4p* o=kt ot pt o,

d*=k* o—p°-q,
and
a’=kbo—pbq,
convenient forms are
(9,) (), or=-+1, e=—1;
(t5,8) (t5,), a=4+1, e=-—1;
(d°6,d°) (d°G,d"), o=-41, e=+1;
(15,d°) (15,47)+ (d°6,1) (d%6,t), o=—+1, e=—1;
and
(d°5,d°) (t5,0)+ (d°6,2) (t5,d°) + (t6,4°) (d°6 1)
+ (t&ltt) (dn&udb); 0= +1, €= +1 5

where the metric (4, —, —, —) is assumed and where
e is the sign change under interchange of two initial
(or two final) particles. This interchange induces the
transformation &% <> p° (or k% <> $2) and an interchange
of the initial (final) spin state. The effect of the latter
can be obtained using the rearrangement theorem

({alou|8)) (c]ou|d))=— ((aian[d>)(<6|°'ulb>)~

The sum and difference of each of these terms with the
one obtained from it by application of the trans-
formation P are elementary spin functions that have
well-defined values for o, o, and e.

APPENDIX H

The Location of the Singularities
Required by Unitarity

With the substitution of the definition
M’(K', _KII)EM*(KH*’ __K/*)
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the unitarity relation becomes

M(K’, _K//)+MI(K/, ___K//)
——% (MK, ~RoK-aM(K, K,
K

a form that is suitable for analytic continuation from
the originally real values of the momentum-energy
vectors. The right-hand side contains a sum of terms
each of which contains a factor of the form

d4ki2 270(B)5 (k.2 2) |(27)%4 b—T
4/'I;[|:(27I_)4 mz"’(z)(z—m@):l( )0t (> ki—T).

The delta functions represent the mass constraints and
the energy-momentum conservation law, and T is the
sum of the (external) momentum-energy vectors in
K" or K".

Because the internal-momentum vectors k; are
constrained to be real, the factor above vanishes for
T2< (3 my)? but not for 72> (3_ m;)? and introduces,
generally, a singularity at 72= (3_ m,)? into one or both
of the terms on the left of the unitarity relation. It may
be assumed for the purpose of the construction that the
singularity occurs in both terms on the left. The other
alternative would lead only to a smaller set of singu-
larities and we wish to obtain the largest possible set.

The singularities occurring in the various expressions
of the above form arise purely from the limits of
integration in the unitarity relation—those that would
occur even if the M functions on the right of the
unitarity relation were free of singularities. Singularities
in these latter would lead generally to additional
singularities in the M functions on the left. If one
substitutes the singular parts of the M functions
obtained by the above first application of unitarity
back into the right-hand side of the unitarity relation
and proceeds by iteration, expressions of the form

N [ d*k, M
/ n[ 2mio(ki°>a<kﬁ—mf>]n (2n)5(E,—T)
i L(2m)* i

are obtained. Here Y ; and T; are subsums over the
internal and external momentum-energy vectors, respec-
tively, and the 6(3_;—7T;) give momentum-energy
conservation in the various intermediate states.

The iterative processes may be represented diagram-
matically. For instance, Fig. 1 gives one possible
sequence. The lines represent the particles (on their

- ECE -0}

F1c. 1. Typical development of a diagram by iterative
substitution of singular parts.
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ReXorImk’

F1c. 2. Boundary of regular region.

mass shells) and the steps represent the substitution
of particular terms from the unitarity relation. In the
second step, contributions to the new M functions in
which certain of the particles do not scatter have been
displayed. The singularities corresponding to all
possible finite sequences will be called the singularities
required by unitarity.

The momentum-energy variables are originally
constrained to be real. As we are interested in singu-
larities also for complex T, the expressions above must
be put in a form permitting analytic continuation. In
particular, the delta functions must be removed.

Near the point 7;=0 the form is, for nonmassless
particles (m;>0), clearly regular. The analytic continua-
tion will be started from this region. Because N 2> M, the
M momentum-space delta functions can be used to
eliminate the last M momentum integrations (by an
appropriate reordering of variables, if needed). The
energy-conservation delta functions may be replaced
using the relation 278(x)=1lim(e — 0%)2¢/ (x>4¢), and
the energy integrations over 276 (k2)é (k32— m?) replaced
by contour integrations clockwise about the poles at
k= (mi+k2)i=w; of i/ (k2—m2).

The functions 2¢/ (x2+¢€?) give dipoles in the planes
of the various energy variables %0, the locations of
which depend on the positions of the contours in the
remaining energy variables, and on the energy parts of
the external variables T;. For T;=0 these conservation
dipoles lie in the left-half energy planes, as long as the
contours are all confined to the right-half planes. The
contours may therefore be deformed to run up just
right of the imaginary axis, and be completed with large
semicircles to-the right. The dipoles then lie just to the
left of the imaginary axis, with extensions to the left
corresponding to the semicircles to the right. If the
energies of the 7'; are now increased, the dipoles move
right and the contours must be shifted right to avoid
these advancing singularities. Singularities in the form
cannot occur until the 7; becomes such that it is no
longer possible to distort the contours to avoid both
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Fic. 3. Intersection of
contours with Imk?=Rek
=0 manifold at a vertex
s'ngularity.

&

the advancing dipole singularities and the fixed mass
singularities, for arbitrarily small 2628

For a visual understanding of the boundary of the
singularity-free region it is helpful to bear in mind a
plot of the mass singularities. These lie at the simul-
taneous solutions of

(Rek)2+ (Imk)2=m2+ (Rek)?+ (Imk?)?,
Rek® Imk*= Rek-Imk.

Figure 2 represents an hyperbola of revolution about
the vertical axis, which represents either Imk° or Rek.
The interior, or funnel, region of the diagram is free
of mass singularities. For 7;=0 the important parts of
the contours run up the vertical axis. If, with increasing
T, the contours can be kept inside their respective
funnels, for arbitrarily small ¢, then the forms remain
singularity free.

For the special case in which the vector parts of the
T; can be taken to vanish, it is possible to simul-
taneously keep all contours in the vertical planes
Imk;=0, for which the mass singularities extend least
far to the left. The point in 7'; space at which the
contours can no longer be confined to the funnels is at
the threshold 7;=3;m;. If, on the other hand, the
imaginary vector parts of the T'; are nonvanishing, the
various contours cannot all be confined to the planes
Imk;=0, and mass singularities extending below the
threshold energy %°=m,; can become important. For
instance, for the simplest vertex part, the limiting
point is represented in Fig. 3. The solid vectors repre-
sent, to within a sign, the points where the contours
pass through the region Imk°=Rek=0, and they are
required to lie inside their respective circles. The dashed
lines represent the external momenta. If the dashed
figure can, by an appropriate translation, be made to
lie with each of its vertices inside its associated circle,
then the form remains nonsingular. This provides a
direct geometric derivation of the triangle condition of
Karplus, Sommerfield, and Wichmann.* The same
arguments carry over to more complicated diagrams.

In the limit e— 0, only points simultaneously in the
neighborhood of all the conservation dipoles can
contribute. One can deform the contours so that they
always stay close to the points at which all the conser-
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vation dipoles overlap and consider, therefore, the
important parts of the contours to be constrained by
the conservation laws. It is when the contours so
constrained cannot be kept away from the mass
singularities that singularities in the forms can occur.

The conditions on the k; that must be satisfied at a
singularity are the conservation laws, the mass con-
straints, and the condition that it is not possible to
distort the contours so as to maintain the conservation
laws but avoid the mass singularities. Variations of the
k; consistent with the conservation laws are con-
veniently expressed using Feynman loops (closed loops
in the diagram). It is possible to choose the signs of
momentum-energy vectors so that the vectors point
in the direction of the closed loops, if these are also
chosen appropriately. If the variation of the momentum
of the jth loop is 8¢;, then the variation of the vector
k,’ is

Oki=2_ €0,

where the e; are coefficients equal to one or zero,
depending on whether or not the jth loop passes along
the ¢th line. The variation of quantity k.2 is then

5ki2= 2 Z k;é;,ﬁqi,

where the 8g; can be chosen arbitrarily.

The 6k can be fixed arbitrarily by an appropriate
choice of the 8¢;, unless it is possible to find some «,
such that

Z.’ az‘kiéij=0 (all ]),
a;#0 (some 7).
(condition A4)

This is the condition that the variation 6k be linearly
dependent. If condition 4 cannot be satisfied, then it
is possible to fix the 8k? arbitrarily and thereby to
distort the contours away from the mass singularities
without conflicting with the conservation requirements.
The necessary condition for a singularity is, therefore,
the simultaneous validity of the conservation laws, the
mass constraints, and condition 4. This is just the
result obtained by Landau? and others?® as the necessary
condition for singularities in the terms of the pertur-
bation expansion of field theory.

If condition A is satisfied, the 8k cannot be arbi-
trarily fixed. However, it may still be possible to
distort the contours away from the singularities. For
instance, if the contours are pinched by conservation
singularities coming from the side k2<mg2, then the
singularity of the form can occur only if it is not possible
to make all the 6k simultaneously negative. This will
be the case if it is possible to satisfy condition 4 with
a;Z 0.

The dimensionality of the manifolds of singularities
are determined by counting unknowns and equations.
There are N unknown vectors %;, and M vector equa-
tions from the conservation laws. There are N—M
vector equations in condition A4, so the number of
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vector equations equals the number of vector unknowns.
There are NV scalar equations, the mass conditions, and
N variables a;, of which one is an arbitrary scale factor.
Thus there is one more equation than determinable
unknowns, and one constraint is placed on the external
variables. Since the equations are relativistically
invariant the locations of the singularities depend only
on scalar invariants and the manifold of singularities
is a manifold whose position is defined in terms of scalar
invariants of dimension one complex variable less than
that of the full space.®

APPENDIX I
The Physical Sheet

The equations giving the locations of the singularities
required by unitarity are defined over the entire space
of the T';. However, the solutions of physical interest
are those in the manifold defined by the mass con-
straints. Thus instead of starting the continuation of
the function giving the singularities from 7';=0, which
may not be in the physical manifold, it is more ap-
propriate to consider only those 7'; in the physical
manifold. In this manifold the cuts specifying the
physical sheet are defined as the locus of singular
points under the scale transformation m; — am;, where
ms are the internal masses and « is a scale parameter
ranging from infinity to unity. As a decreases the mass
singularities converge, and the points T';(e) are defined
as the values of T'; for which the pinching of contours
cannot be avoided as the value « is assumed. The cuts
are the locus of points T';(a) for @ real and greater than
unity.

In defining the M functions, the no-scattering parts
of the .S functions were identified by their dependences
on the volume of space-time, and were separated out.
More generally, the S function can be separated into
many parts on the basis of volume dependence. The
contribution to the scattering function corresponding to

processes in which various subgroups of particles

interact only among themselves will be expected to
have one added factor of the volume of space-time for
each division into subgroups. This comes from the
integration of the interaction center of each group over
all of space-time. Correspondingly, in momentum-
energy space there will be a separate conservation law
constraint corresponding to each subgroup. The M
function is then separable, generally, into parts con-
strained by different added conservation laws. These
parts are defined over different manifolds and the
physical sheet is a collection of physical sheets, one for
each manifold.

The analyticity requirement allows the unitarity
equations for the various parts of the M functions to be
isolated and treated separately. Thus the M function
appearing on the left of the unitarity relation can be
considered the nonseparable part of the indicated M

45 See reference 29 for detailed discussions of several examples,
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function, and the contributions on the right correspond-
ingly limited. The remaining contributions to the
unitarity relation will be identically satisfied if the
unitarity relations for all nonseparable parts are
satisfied, provided the separable parts of an M function
are the products of the nonseparable parts of the M
functions corresponding to the appropriate subgroups.
This decomposition law can be considered either an
ansatz or an added postulate. But it probably follows
from the postulates already given.

In the construction of the singularities required by
unitarity the é-function expressions for the density of
states factors have been expressed as a limit e— 0 of
functions defined for all 7';. This alternate expression
gives the basis for practical calculations based on
unitarity.

The unitarity relation given in the text was derived
using the condition that So(K’, —K’), the no-scattering
part of the normal-ordered S function, was unity. More
generally, the unitarity relations would read

M(K/, _K//)SO*(KN, __K//)
+So(K’, =K )M*(K", —K)

==3 / M(K', —K)K-éM*(K", —K),
and :
M(K', —K")S¢*(K’, —K")
+So(K", —K'"YM*(K", —K')

=-Z /M(K: ~K")K-¢M*(K, —K'),

where So(K’, —K') is now permitted to be an arbitrary
phase factor. For K'=K", application of the CPT
transformation and inversion of order to each M
function takes the first form into

(=D)Vox [M(Ky', —K1')So*(K', —K')
+So(K’, —K"\M*(K+', —K71')]

=X /M(KT: —K)K-6M*(Kr, —K7'),
K

where K7 represents the set K with transposed order.
This is almost the same as a special case of the second
form of the unitarity relation and one can deduce that

So(Kr', —K1")=So(K’, —K") (= 1)Va(K).

If one takes the So(K’, —K’) to be unity, when K’
contains only particle variables—no antiparticle
variables—then the only solution consistent with the
decomposition law is

So(K', —K')= (=1)4%,
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where A(K') is the number of abnormal antiparticles
in the set K’. Here it has been assumed that either the
symmetric or antisymmetric case obtains and the
abnormal particles are those having the abnormal
symmetry relative to the interchange of the particle
and antiparticle variables. This form of the unitarity
relation, with the (—1)4&" on the left, leads to a
completely different type of analytic structure. Consider
an analytic continuation from the case where K'=K"
contains only particle variables, to the case where one
abnormal final particle has been carried over to an
initial antiparticle. In this second case 4 (K') and 4 (K"')
differ by unity and it is the difference rather than the
sum of the two M functions that appears on the left.
If there is a region below both thresholds where the
right-hand sides of both equations vanish, as for
instance occurs in the scattering of the smallest mass
particles, then both the sum and difference of the two
M functions vanish and hence so must the M functions
themselves. Also, on the right of the unitarity relation
the analytic continuation takes various contributions
into contributions to the new unitarity relation, but
sometimes with the wrong sign. These remarks suggest
that the abnormal statistics are inconsistent with the
postulates, even without the requirement that self-
conjugate combinations of amplitudes can be considered
observable.

If one uses an indefinite metric of the form (—1)4&",
then the above-mentioned factors (—1)4®" occurring
in the (pseudo) unitarity relation are moved to the
right-hand side where they produce no conflict with
analyticity.

APPENDIX J
1. Notes on Spinor Analysis

The following notes on spinor analysis were valuable
to readers of a preliminary draft.

Four-vectors and 2-by-2 matrices can be placed in a
one-to-one correspondence by the relation

V=v0e,=v0¢+V- 0,

where ¢ is the Pauli spin matrix vector and oy is the
unit matrix. The determinant of V is

detV=()?—v-v=1"y,

where =1 and »;=—v% Consider a transformation
V—V'=AVB. If detA=detB=1 (4 and B uni-
modular), then detV=detV’, and wv,=v",’. The
transformation leaves squares of all four-vectors
invariant. It consequently leaves inner products v“w,
invariant, as one sees by considering the squares of
74w and v—w.

If the matrix V is Hermitian, then the vector v is
real. The requirement that Hermitian matrices stay
Hermitian under V — V' demands B=-+A, where bar
denotes Hermitian conjugate. The transformations

generated by V — V' with B=A are called the real
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Lorentz transformations. If the constraint B=A is
relaxed, one obtains the complex Lorentz trans-
formations.
The Lorentz transformation matrix L*,(A4,B) is
defined by
v'b=L*(A4,B)v,

and it is clearly a linear transformation.

Unimodular 2-by-2 matrices have six degrees of
freedom. Those in a finite neighborhood of the identity
can be written in the form

A=exp(30¥0,0,)=exp(3iQ-o+3%- o),
where
0 =—80,,, N=20° and Qi=¢e*;.

The matrix B will be defined as
B=exp(—%iQ-0+1%-0).

Then for real 6# one has B=A, and real Lorentz
transformations are generated by real 6. With complex
6# the A and B can be arbitrary independent unimodular
matrices.

The real Lorentz transformations generated by the
unitary A,=exp[3iQ- ¢, with real Q, generate pure
rotations. For example,

A,=exp[3i0c;]=cos(6/2)+ic3 sin(6/2)
gives
21/ =1v; cosf-+v, sing,
and
vy’ =195 cosfl—v; sind.

The pure time-like real Lorentz transformations are
generated by the Hermitian (not unitary) matrices

At=_exp[(0/2)a'n]== cosh(6/2)+ (e-n) sinh(6/2).

This gives
2’ =1° coshf+v-n sinhé,
and
v/-n=v-n coshf-+12° sinhf,

the other components being unchanged. The square
of A, is

A2=exp[fo-n]=coshf+ ¢-n sinhf= r#g,,

where 7= (coshf,n sinhf) is the vector into which a
unit time-like vector transforms under the action of
the transformation. The notation A4;= (r-0)* is often
convenient.

Introducing the matrix

0 —1
c=( ) Cci=—C,
10

one verifies (Pauli Lectures, University of California,
1958) for any 2-by-2 matrix,

s m
sme=( "),

§2
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the identity
MyCM=C detM = C("ICE))

where (nC%) is the real inner product. It follows that
under ¢— §=A¢ n—9'=An the form (9C§) is
invariant.

It is conventional to write C! with upper indices
and to define

fr= (CT)PEp=ePt.

Then the above invariant takes the form —n.£* This
provides the basis for a spinor analysis formally similar
to tensor analysis. The two-valued indices are called
spinor indices, and those associated with the trans-
formation matrix B according to £ — £ = £B are dotted:

£ £/ =B
Thus the original matrix V will have matrix elements
labeled V.5, and the Pauli spin matrices o, out of
which it was constructed will have matrix elements
Cpaf
Carrying along the indices is rather tedious. It is

convenient to construct an equivalent matrix algebra.
For spinors transforming as § — § = £B we shall define

=g

Then ¥ = C-1Btré=CB"CE= B, where for any matrix
M,
=C-M=C= (M)~ detM,

the last part coming from the Pauli identity. For the
matrices B, with detB=1, B=B", and for real
rotations, which are given by unitary B=A, B,=4,.
Therefore, £ and £ transform the same way under real
rotations, although differently in general. In spinor
notation, the components of the spinors £ and & would
have lower undotted and upper dotted spinor indices,
respectively. The definitions above also imply that

6,=C0,C= (00, — 0)=0,%.

2. Spinor Functions
Consider M (v)=v-0=o0,,5v*=V. Then by definition
AM (v)=AM (v)B.

Generally the operator A, applied to a matrix M
instructs one to multiply each spinor of M by the
transformation matrix associated with that index.
From the relationship

AM@®)B=AVB=V'=M ()
=M (Lv) =0,.5L* (A,B)v"

it follows that AeB=0L(A4,B), which can be considered
the definition of L(4,B). Also A ;M (v)=M (Av), where
now Av= Lv. The equation A, M (v)=M (Av), generalized
to functions of many vectors and many spinor indices,
characterizes the class of (invariant) spinor functions.

Notice that equations of the form VE=4 and Vi=¢
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are invariant under Lorentz transformations, since
t—E'=A¢, 17— #7'=Bn,
V—V'=AVB, V— V'=BVA,
and
B=B1, A=A,
3. Parity

The parity operation is generally represented by
going to a 4-by-4 representation. Let

V o &,
oy A e
0V oy

define #*. Then space inversion is represented by

0 1
P:( )=67
I 0

as one sees by inspection. That there is no matrix 4
corresponding to parity follows from the fact that any
matrix A commuting with the rotation operators, 4.,
must commute all three Pauli ¢; and hence with the
time transforms A4..
4. Dirac Equation
The free-field Dirac equation is

ke, U*(k)=BmU=(k),
which in terms of

()

becomes the covariant equations
(k-5)t(k)=mq(k) and (k-o)7(k)=mE(k).
The introduction of ¢ defined by
tk)=A.(k)p= ((k-0)m™)'e,
gives for the solution
a(k)=A (k)= ((k-5)m™)i¢
in virtue of the identity
(k-3)(k-0)=(k-0)(k-&)=m2

The free-field solutions of the Dirac equation are
therefore

A(k)g ((k-a)m™)
+ (D) — = =L (R)U£(0
UHE) (:tjf,(k)qs) (:I:((k-a)m*l)%) LHRTHO)

where £71(k) is the Lorentz transformation that takes
spinors from the frame in which the particle is at rest
to the frame in which it has momentum-energy k. The
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charge conjugate solution is

(., Yomeston ()

- (k)<~c (is) ’

which has the same transformation properties as U (k).
If only real Lorentz transformations are allowed, U (k)
can be taken to be U*(k). The spin vectors ¢ are not
spinors. They are the spin vectors in that rest frame
of the particle obtained from the general coordinate
frame by the Lorentz transformation £(k).

5. Connection between Field Theory and
the M-Function Formalism

In field theory one writes

'k
Ya(2)= / =28 (k2 —m2)0 (ko) 2m
(2m)*

X 2 [Uulko)e*a(k,o)+Valk,o)et ™ b(k,o)],

where
{a(k,)a(k',0"))o= 2w/ Zm_) (27)% (k—K")5,,/
= (b(k,0)b (k' ,0"))o,
and
(a(k,o )P (2))o=U*(k,0)e* e,
W(@)b(x,0) o= V*(k,0)e =,

The dependence of the covariant Feyman scattering
function on ¢¥(x) is

[rwar e,
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and the corresponding contribution to the scattering
matrix for a final particle (k,0) is

(othn [ J(x)}oﬁz\«xwx

=U*(k,0)BN (k)= (j:g:)ﬂ (jl EZ)

=& (k)i (k) +7*(k,0)¢ (k)
= £*(k,0)7* () +i* (k,0) £ (k)
=¢*(@)[ (k- o)’ (k) + (k-5)3¢ (k) ],
where we have taken m=1. Thus
R(k)= (k-0)* (k)+ (k-7)*¢ (&),
M )= (ko) RIV=F (k) +h-0 1 k).

The ¢'(k) and n'(k) are analytic functions of %, and
continuation gives

M(—k)=E(—k)—k-on'(—k).
The R function for the antiparticle is therefore
(k-SNM (—k)=(k-0)3 (—k)— (ko) ' (— k).

This is to be compared to

and

[ GVt s

(k-0)iC8*(0)
— (1-9)Co* @)
— (o) UL (k-3¢ (— B) (ko) (— )

The function occurring in field theory is interpreted by
dotting from the left on s- ¢, whereas ours is interpreted
by dotting from the right on —s-e. The extra factor
C* compensates for this difference.

= —V*(ko)BN (— k)= — BN (k)
( )



