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Potential scattering is treated by a minimum variational principle. The method, known as the error
method, is applicable to problems which can be cast as linear inhomogeneous equations. The method makes
use of a non-negative functional which reduces to zero for the exact solution. The magnitude of the func-
tional for approximate solutions provides an indication of the accuracy of the wave function. The method
is illustrated by some examples, and compared with the Schwinger and Kohn principles.

I. INTRODUCTION

VARIATIONAL principles have come into exten-
sive use for the calculation of phase shifts or

scattering amplitudes in potential scattering prob-
lems. ' ' A number of different principles have been
formulated. The Hulthen' and Kohn" methods make
use of differential operators and thus require trial
wave functions of correct asymptotic form to satisfy
boundary conditions. The Schwinger" method and
several related ones"" make use of associated integral
operators which implicitly contain the boundary condi-
tions, and do not restrict the choice of trial function.
Kato'4 developed a generalized functional from which he
obtained those of Hulthen, Schwinger, and Kohn; other
workers have given different generalized functionals. "

Variational principles for the eigenvalue problem
generally have the desirable feature that they give
bounds on the eigenvalues. It has been noted that the
aforementioned methods for scattering do not, in
general, give bounds or an error indication. ""'7 Moe
and Saxon" have looked for minimum functionals for
the phase shifts or scattering amplitude with no suc-
cess. Kato"" has shown that upper and lower bounds
on phase shifts can be obtained if certain conditions

are fulfilled. In general the bounds are difficult to calcu-
late, although Spruch" could obtain one of them quite
readily for certain cases. Recently, Rosenberg and
Spruch" have developed methods by which they can
obtain rigorous lower bounds on the phase shifts for
compound system scattering as well as for potential
scattering.

In the present work use is made of an error func-
tional, one which reduces to zero for the correct eigen-
function and is positive otherwise. Minimizing such a
functional with respect to the parameters in a trial
wave function yields an approximate state function
which may then be used in calculating scattering cross
sections. This application is a special case of a general
error method for finding approximate solutions to
linear inhomogeneous equations. "

The method is described in general outline in Sec. II.
The inhomogeneous integral scattering equations are
given in Sec. III. A generalized functional is introduced
in Sec. IV, from which the error, Kohn, and Schwinger
principles may be obtained. Some procedures for calcu-
lating approximate phase shifts or scattering ampli-
tudes are described in Sec. V. In Sec. VI, two numerical
problems are considered for illustrative purposes; one
makes use of a spheroidal potential scatterer.
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II. ERROR METHOD

%e consider an arbitrary nonsingular linear operator
L, and desire the solution f to the inhomogeneous
equation Lf=g, where g is an arbitrary source function.
Here, and in what follows, operators are indicated by
sans serif.

Let fs represent a parametrized wave function (a
trial solution) which is determined by minimizing the
so-called error functional As= J'~Wee~'dr, where the
function ep is defined by es= g—Lfs, and I is a suitably
chosen nonsingular weighting operator. Here, and in
ghat follows, trial solutions are indicated by a tilde.
The error functional reduces to zero only when
vanishes, yielding the exact wave function for fs The.
precise nature of the operator I does not affect these
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considerations. If the function is itself of secondary
importance, and is only required for the subsequent
calculation of phase shifts or scattering amplitudes, it
is desirable to pick a weighting function which yields
the smallest error in the latter quantities. For example,
in our case of potential scattering it is desirable to
have the accuracy of the wave function greatest in the
region where the potential is large. This suggests the
potential itself as a multiplicative weighting operator.
The effect of the multiplicative weighting operator in
the error functional is treated in Sec. VI.

A procedure similar to that of Rayleigh-Ritz exists
for systematic improvement of a trial wave function.
Define ei ——eo —Lfi, where fi is a new parametrized
function of adjustable amplitude. The error functional
with ei is smaller than that with eo as long as fi is not
zero. Thus the function fo+ fi, which satisfies ei
=g—L(fo+fi), is by this criterion closer to the exact
solution. By proceeding in this manner, using the error
of an approximation as the source for the next approxi-
mation, we have a systematic procedure for improving
the accuracy. Moreover, the size of the error func-
tional, after minimization, can be used as a criterion
for. convergence. Unfortunately, this iteration pro-
cedure is only as good as the intuition of the investigator
in choosing new trial functions f„

ui(r) =r U&(r)ji(kr),

yi(r) =rU'(r)Si(r),

(2)

(3)

LP —= I kr U'(r) gi(r,—r') U i(r')r' dr', (4)
0

with I the identity operator, and gi(r, r') the radial
Green's function

g, (r,r') =Ni(kr&) ji(kr&). (5)

Here r& and r& denote the greater and lesser of (r,r'),

"L.I. SchiG, Qgantum Mechanics {McGraw-Hill Book Com-
pany, Inc. , New York, 1955), 2nd ed."P.M. Morse and H. Feshbach, Methods of Theoreticat Physics
(McGraw-Hill Book Company, Inc. , New York, 1953), Part I,
Chap, 7.

IIL SCATTERING EQUATIONS

In this work we treat both spherical and spheroidal
potential scattering by the method of partial waves. In
both cases spherical harmonic expansions are used. The
partial wave equations for a spheroidal potential are
developed in Appendix A, and may be easily particu-
larized to yield those for a spherical potential.

The method of partial waves for a spherical potential
is treated in a number of standard texts.""Following
in part the notations of Kato' and Kolsrudy we may
write the partial wave integral equations in the form

LPyi(r) =ui(r), t=0, 1,
where

respectively, and (Ni, ji) are the spherical Neumann and
Bessel functions of order /, respectively. The function
U(r) is the potential, in atomic units; in these units,
the energy of the incident plane wave exp(ik r) is k'.
The function e~ then represents the 1th expansion co-
eScient in a spherical harmonic expansion of the plane
wave; similarly, the y& represent the wave function
P(r), which is the (unique) solution of the Schrodinger
equation for scattering of the plane wave by a given
potential U(r). The function S,(r) is a real function
proportional to the radial wave function Ri(r) of the
radial Schrodinger equation of order /.

In this notation, the phase shift 6& is given by

taQ8~ = —k Quilt'.
0

(6)

IV. VARIATIONAL PRINCIPLES

In this section we formally discuss several variational
principles. All of these may be applied with certain
modifications to the partial wave equations for a
spheroidal scatterer, or directly to the integral form of
the three-dimensional Schrodinger equation. For sim-
plicity we give a generalized variational function for
the partial wave equations (1) for a spherical potential,
which are rewritten here without the subscript t:

Lny —u=o.

As a generalized variational functional for this equa-
tion we write

ArJ= LWr(L"y —u))LWo(L"y —u) jdr, (10)
0

where Wi and W2 are nonsingular but otherwise arbi-
trary linear operators; different choices for these lead
to different variational principles. For example, if we

"V.Bargmann, Revs. Modern Phys. 21, 488 {1949).

Once the tan6~ have been found, the scattering cross
section is unambiguously determined. "

The radial wave function Ri(r) must be everywhere
bounded; it may be complex, but it must be of the form

R, (r) =CiSi(r),

with C~ a complex constant. This follows because all
the operators in the radial Schrodinger equation are
real twe consider here orally elastic scattering, so the
potential U(r) is realj. It is well known that there
exists a "dispersion relation" connecting the ratio of
imaginary to real parts of Ri(r) to the phase shift. "This
relation is

Im(Ci)/R(Ci) =—i i ——tanbi.

In Appendix A we obtain the corresponding result
in the partial wave treatment of a spheroidal potential.
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the quadratic near ) =Xp. The latter is similar to the
Schwinger functional for the high-energy case and
turns out better for the low-energy case in that it has no
singularities and is flat over a relatively wide range of

near Xp. Calculations for energies intermediate be-
tween those quoted here were carried out. In general,
the error method combined with the quadratic approxi-
mation gave the most reliable results for these test
cases.

If the error functional is 1 jo or less of the source
term J'Nsdr, we find in all cases that the quadratic
phase shift is within 1% of the exact value. Using the
other expressions for tanb, the corresponding errors
came out as high as 50/q.

These results support the view that it may be ad-
vantageous to first use the error method to determine
an approximate wave function, and then use a sta-
tionary expression such as the Schwinger or Kohn func-
tional to evaluate the approximate phase shift or scat-
tering amplitude. Alternatively, the error functional
can be used solely as an error indicator; for example, a
wave function may be determined by the Kohn or
Schwinger principles, and then an accuracy indication
can be obtained by evaluating the error functional for
this function.

VI. ILLUSTRATIVE PROBLEMS

In this section we consider two numerical problems
which illustrate certain features of the error method.
Part A is concerned with the eHect of weighting opera-
tors in the error functional; part 8, with the application
of the error method to scattering from a spheroidal
potential. . All numerical calculations were done on the
IBM type 650 digital computer at Rensselaer Poly-
technic Institute.
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A. weighting Oyerators

We base the discussion here on the error functional
for the real partial wave scattering equations (1). For
these equations, the error functional is

FIG. 1. Calculated s-wave phase shifts from spherical square
well potential. Radius=a, depth=E', Ea=4 (a) E'/k'=well.
depth/incident energy= q. (b) E'/k'=4.

of I and y, Eqs. (2) and (3), we find that Eq. (19) may
be written

Az —— [W (L~y I)]'dr, —
tauri= —k j i(kr) U(r)S&(r)r'dr,

0

(20)

where I is a nonsingular linear operator. Again we
consider only the t=0 case for simplicity.

In order to decide what sort of weighting operator is
likely to lead to the greatest accuracy in an approxi-
mate phase shift for a particular trial function, we look
at the expression for the exact phase shift, Eq. (6):

tanb = —k Nydr.
'

0

We remember that I and y both contain the square
root of the potential as a factor, so the integrand con-
tains the potential linearly. Referring to the definitions

where the real function S& is defined by writing the
complex radial wave function Eg as

Ri(r) = D 1+i tanbi)/(1+ tan'bi) jSi(r).

From this we see that the greatest contribution to
tanbi comes from the region of r where r'U(r) is large,
provided the rest of the integrand, (the product jiSi),
is not relatively small there.

These considerations suggest the use of the identity
for the weighting operator W, inasmuch as this choice
leaves the quantity r'U(r) in the integrand of the error
functional (18).
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TABLE I, Comparison of weighting operators for the error method in the s-wave scattering from the potential
U(r) = —Up(a/r) exp( —or), r &a; =0, r)a, with Usa =0.64, os=1.0, and ka=7.0.

Method

Error variational
Error variational
Error variational
Error variational
Error variational
Born approximation

Weighting
operator

ErU'(r) 7'
L«'(r) j '
Lr«'(r)3 '
unity
unity

Trial radial wave
function form

"Exact"
Parabola
~~, (~r)
Parabola
bjp (kr)

tanBp

0.1107
0,1059
0.1080
0.1082
0.1098
0.1096

Source term

k (Ws)'dr
0

3.252
3.252
3.252
8.391
8,391

~ ~

0.00002
0.166
0.030
0.196
0.033

We choose as an example a spherical shielded Cou-
lomb potential which is set equal to zero outside a
spherical surface of radius a. The potential is given in
the heading of Table I. We compare two weighting
operators: the identity, and the multiplicative one
LrU:7 ', which causes the quantity r'U(r) to be re-
moved from the error functional integrand. To find the
"exact" value of tan6, we first numerically integrate the
1=0 radial Schrodinger equation to obtain the func-
tional form of the exact radial wave function. Then
we apply the error method to find the correct amplitude,
and evaluate tanb= kfp"uydr. Th—is result is listed
in the first row of Table I. The value of AE for this case
would be zero except for the inaccuracies inherent in
numerical computation. The approximate phase shifts
are evaluated from the linear expression kJ;"Nydr. —
We see that for a given trial function, use of the
identity operator leads to the more accurate phase shift.

For this relatively high energy problem we expect the
Born approximation to be quite accurate. The Born ap-
proximation here consists of putting y=rU&j p(kr) and
evaluating tank = kfpj ps(kr) U(r)r'dr. I—t is interest-
ing to note that a "quasi-Born" approximation, where
we let the error method determine the amplitude b in
a trial function y=brU'j p(kr), is more accurate than
the Born approximation only for the identity weighting
operator. Also note that the ratio of the error functional
to its "source" term fp" (WN)'dr is consistently smaller
for the identity operator.

B. Spheroidal Potential

In recent years a number of authors have employed
spheroidal and other nonspherical potentials to repre-
sent the eGect of the nucleus in scattering alpha par-
ticles, neutrons, and electrons. "" It has also been
shown that the general neutron transport equation
reduces to a set of coupled one-dimensional Fredholm
integral equations, " which have the same form as the
spherical harmonic partial wave equations which we
find in Appendix A for a spheroidal scatterer.

Although apparently excellently suited to these
problems, variational methods have not been widely
applied to them. The use of variational methods for
nonspherical scattering problems seems to have been
con6ned to the problem of scattering by simple tensor
forces, a problem which can be represented by two or
three coupled equations in one variable. ""

In this subsection we make use of the error method
to calculate the approximate scattering cross section
for an oblate spheroidal Gaussian potential, in order to
illustrate a procedure for using the error method in a
relatively complicated problem. In addition, we are
able to point out certain characteristics of the Kohn,
Schwinger, and error principles which have not yet
been noted.

As shown in Appendix A, the spherical harmonic
partial wave equations for a spheroidal potential have
the form

Q J&t
"8

&
'"(r)—I't"j t (kr) = 0,

Lr=m

ps
SYMMETRY

AXIS

SYMMETRY
AXIS

IN X-Z PLA

FrG. 2. Geometry for a spheroidal scatterer. The incident wave
vector is k; a particular scattering direction is indicated by
Ir'=kr". (a) Conventional coordins, tes; S=. scattering angle. (b) Co-
Ordinates used in calculation.
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I'+=Pt (cosy), (22)

with I'I, the associated I egendre polynomial of order
(l,m), and y the angle between the incident direction it
and the symmetry axis of the potential (see Fig. 2).
The integral operator J« is given by

where the index m can take on integral values from zero
to infinity, and t from m to infinity. The function RP (r)
is the radial wave function. The parameter 1 ~ is
dehned by

(degrees)

0
45

90

Differential cross section Total cross section
10'k'0 (8,y) (10'k'/4s )(r

7.254+0.186 cos8 —0.180 cos'8
7.323+0.356 cos8+0.170 sing cos y—0.092(cos8—sin8 cosy)'
7.384+0.527 cos8 —0.189 sin'8 cos' y

7.194
7,261

7,321

TABLE II. Error method results for the potential U (r,8.)= —U's expL —(or)'(1 e—'cos'8) j, r &a; =0, r)a, with ~'= —2,
Uoa'=4, O.a=2, ka=0.6.

Jit ~=8tt ik— g~'(r r') V« "(r') (r')'«', (23)

with g~'(r, r') the radial Green's function,

g~'(r, r') = Ljt (kr &)+irst (kr~) jjt (kr&),
and

(24)

Vip (r) =const)(, Pi (cos8~)Pp (cos8~)

&& U(r, 8.) sin8, d8, . (25)

Here U(r, 8,) is the spheroidal potential, and 8, is the
colatitude of Fig. 2(b). V~& is always real for a sphe-
roidal potential; it would not be for a potential not
having a plane of symmetry.

Just as in the spherical case, a phase shift bt may be
defined here for each partial wave (f,m). It is shown in
Appendix A that the tansy+ determine the scattering
and are given by

—„'.I'~ sin25~

tial is an oblate spheroidal Gaussian with a major-minor
axis ratio of v3, and is quite strongly screened. We have
chosen a low energy, for which we expect the scattering
to be primarily s-wave. Kith this in mind we limit m to
the values (0,1,2), and, for each m, m&i&2. We find
later that these terminations of the summation indices
provide sufhcient accuracy, inasmuch as the quadratic
terms in sin8, and cos8, in the scattering amplitude are
already negligible.

We use the simple trial functions

R("(r)= (bz+icP) ji(kr), (28)

even though we expect for the low energy considered
here that the full partial-wave Born approximation
(bi ——1) would be quite inaccurate. Previous experience
has led us to believe that this "quasi-Born" approxima-
tion (both fi and c arbitrary) often works well where the
full Born approximation is poor.

We use here the error functional,

= —k P r'«j~(kr) V«(r) Tt (r), (26)
L=m

I & ("« "Ri'") I'i jtl'r'«(29)

where Ti (r) is a real function related to the radial
wave function Ri (r) by

Ri (r) = (1+i tauri )Ti (r). (27)

Kohn and Schwinger functionals may be easily for-
mulated for Eqs. (21), but their stationary values do
not provide approximations to the individual tansy+ or
sin28p, which they do for the tang in the spherical
case."In this formulation of the spheroidal problem, we
have been unable to find any functionals whose sta-
tionary values do provide approximations to the in-
dividual phase shifts.

The potential used in this sample calculation is
given in the heading of Table II. For convenience, we
set the potential equal to zero outside a spherical sur-
face of radius a. For the parameters chosen, the poten-

(30)ci /bi"=—op= tauri".

The computed cross sections tabulated in Table II are

TAsLE III. Values of the error functional and its corresponding
source terms for scattering by the oblate spheroidal Gaussian
potential.

The values we 6nd for this functional for diferent
choices of incident direction are given in Table III,
along with the corresponding values of the source term
P((1'P)'Jj&~jP(kr)r'dr. Note that for each m the ratio
As /(source term) is quite small (&10 '), indicating
that the corresponding phase shifts are quite accurate.

In evaluating the (l,m) contribution to the scattering
amplitude, we make use of a result obtained in
Appendix A,

' This limitation of the Schwinger, Kohn, and similar prin-
ciples in the spheroidal potential problem is a result of the spherical
harmonic expansion used here. An expansion in spheroidal har-
monics is no better in this regard, except for a very limited class
of potentials for which the Schrodinger equation separates com-
pletely in spheroidal coordinates. If we were to expand the wave
function as P(r)=Z s cosrap, F (r,8,), and the other quantities
similarly, these variational principles for the resulting equations
in two variables would then have their usual property of directly
approximating the quantities analogous to tanb& .

y (degrees)

0
45
45
45
90
90
90

Source term

8.22 X10 '
7.44 X10 '
1.873 X10 '
1.66757X10 '
6.71 X10 '
3.6928 X10 3

6.6702 X10 '

kAE

2X10 4

2X10 4

4X10 7

6X10 "
2X10 4

8X 10-7
2X10 "
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in terms of the conventional coordinates (8,q) shown
in Fig. 2(a).

VII. DISCUSSION

The error method may be regarded from a point of
view which provides some additional insight. Minimiza-
tion of the error functional leads to a wave function
which may be regarded as the exact solution of the
scattering function with an altered source function. We
refer to the difference between this function and the
correct source function as the difference function. The
error functional is then the weighted mean-square
value of the magnitude of the difference function.
Minimization of this tends to reduce the scattering
from this additional source. The size of this minimum
functional relative to that of the corresponding one in-

volving the correct source function, Lthe source term
J»"(Wu)2drj, serves as a guide to the accuracy of the
calculation. However, since the scattering is not com-
pletely determined by the magnitude of the wave
function at the scatterer, this cannot be considered as
a completely reliable guide to the accuracy of the
scattering amplitude.

In general the method compares favorably with the
Schwinger method over the limited range in which it
has been tested. It may also be useful in connection
with problems for which it is desirable to know the
wave function close to the scatterer. A number of such
problems exist in connection with the interaction of
electrons with defects in solids.

APPENDIX A

Partial Waves for a Spheroidal Potential

We make use of spherical polar coordinates. The
symmetry axis of the potential is chosen as polar axis,
with the origin at the geometrical center of a spheroidal
surface. This is the coordinate system (r,8„p.) of
Fig. 2(b). In these coordinates the spherical harmonic
expansion of the wave function is

P(r) =Q P i'» QtmP~~(cos8, ) cosrrlq, Rp(r), (A1)
m~ L=m

where e =2—5,0, with 8,0 the Kronecker delta;
Og =(2l+1)(l—m)!/(3+m)!; PP(cos8, ) is an associ-
ated Legendre polynomial; Rp(r) is an unknown radial
wave function. The absence of sinmq, in the sum follows
from the fact that the plane wave exp(ik r) can be ex-
panded in terms of the cosine only. " The double
sum P»"P~ " is identical with the usual form

E=O m-0'.
In this coordinate system a spheroidal potential is a

function of r and 8, only; it may be written

U(r, 8,)= ULr(1 —»' cos'8.)&j, (A2)

with e' the eccentricity.
Inserting the expansion (Ai) for P(r) into the three-

V~v"(r)Rv"(r) =0, (A3)
l'=m

where

V (( (r) = ,'0( "-[exp-', in-(/' l)j— Pg (cos8,)
0

&&Pv (cos8,)U(r, 8,) sin8, d8, . (A4)

From the facts: (1) that the potential U(r, 8,) is an
even function of cos8„and (2) that the product
Pp(cos8)P~ (cos8) is even in cos8 if /' —i is even, odd
if l' I, is odd—, it follows that V~v (r) is nonzero only for
even 1'—/,. It is therefore real.

Since all the operators in Eq. (A3) are real, the
solution R& (r) which is everywhere bounded must be
of the form

R("(r)= (1+ivy)Tp(r), (AS)

where Tp(r) and vp are real. Substituting this in
Eq. (A3), we ffnd that the Tp(r) must themselves
satisfy this equation, and that

In the radial Schrodinger equation, the term involv-
ing V&v (r) is negligible asymptotically for potentials
which fall oB faster than r-'. In particular, it is zero for
r& u for potentials truncated at r=a. For such poten-
tials, then, the equations decouple in the asymptotic
region and are satis6ed there by spherical Bessel and
Neumann functions:

TP(r) CPL jp(kr) —tanbzep(kr)], (A7)

with Cp a constant, and 8p the phase shift.
We could now write an integral equation for TP(r),

using the Green's function for the radial Schrodinger
equation. However, we would make an error in identify-
ing tanbp with the coefficient of e&(kr) in the asymp-
totic form of Tp(r) obtained from this integral equa-
tion. We must erst consider the integral equation for
the complex radial wave function Rp(r):

RP(r) =rPj((kr) —ik
r' 0

&&+ V~v (r')Rv (r')(r')'dr', (AS)

where gq'(r, r') is the complex radial Green's function

g&'(r, r') =Lj&(kr&)+in&(kr&) jj~(kr&). (A9)

If we now substitute Rp(r) = (1+iv+)Tp(r) in Eq.

dimensional Schrodinger equation, we obtain for each
m a set of radial Schrodinger equations coupled over
all values of l &m. These equations may be written

tr d' 2 d i(!+1))
+ —+k' — ~Rp(r)i
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and

e use of Eqs. (A6) and (A9), we find

z. (J')ll "Tl (r)=rl"jl kr,(1+(vl )

6~0l Pl (cos8,,) cos»nq&qf(8.,(,) =Z-

'
V ~R r'dr, (A20)X —Ql jlV«" v r

")lv Tv"(r)= —Zl (J )«" v,~T,,m(r), (A11)

w er ~ d (Jr) ll m are rea in egwhere (J")«"an
given by

r

(Jv)«, 8« ——kn—l(kr)
r

/ 2d /j,(kr') Vll "'(r') (r')'dr

(A12)
» 0

j,(kr) n, (kr') Vll -(»' . .r' . (r')'dr'

'
kr') V«(r') (r')'dr'(Jr)«."——kjl(kr) j l(kr

0

(A13)

Suppose we write

(A14)Sl (r)=L1+(vl")']Tl" r .

r
' E s. (A10) does not' g "()

fl
h h tl

ot ver use
nnot eq ( l")'

o ed by any conce va e p
r). Theref'ore we work witfunctions TI, r . e

equations
pl J«Rv"=&1"yl, (A15)

— -1 -'(1+ ')Tl(r)-1'1(1+vP) ' j l

I,m

di o 1, (1

"=,J', «+l '
lv .

s titution
k

hihlmd oE
does eliminate e

11~v~ .
d (6) of the text for pthe s herica scaan o

re wed (A13) Th ltand (A11), using (A12) and
omit the m):

Kahn Principle

we show t ah t the Kohn variational
o

tions L~ —u=0 may e w
'

of Eq. (12) of the text, viz. ,

—u ~ 2u) dr, (3—1)(L' —u)'«+ l(L 3—y —I

is the error functiona,al and the

h.'ll-..'k w'h h. --',"
d lf

mitted. We s a w

of hi
he comp e a

In the development o is
Kohn' considers the functional

J= r2drRDR, (82)
0

f the radial Sehrod-where the operator D
'
is taken rom

inger equation:

of Fig. 2(b). Usingare the coordinates o ig.
(A19), fi d fo f 8„Eqs. (A4), (A18), and

expression

l e 0 P (cos8,)
"(1+'

t n8 ") (A21)X

cosmic,

I'g sin26~ i a

s s that for a sphericals the same form as ae p

I d ofi df(8,
reduces directly o

whereg
(8 ) are the convventiona coor i

f coordinates.
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APPENDIX B

Tl(r)- —kvl '~ Pv

z l
'l ' nl, (A16)Xz i k j&V)& T~r2 r e)

0

A17)Jl ll' l'r
'

V T r'dr ~(jl—vlnl). (

d' 2d
+ +k'—

dr' r dr

l(l+1)
r2

—U(r) (113)

must satisfydial wave functionso that the exact ra ia

Kohn shows that the in eginte ral

, and com-Kcients of j& in both equations, and =J— jURr2drX

vg =tan5~

6nd

l for the quantity(A18 is a varia
''

tional functiona or

jI,UR r'dr=k sin &

—1 '
eib)

l ll' P ~
~T,m»2d» (A19)
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sjn2$ fo — fJ tem

-.Th. 6"-.f-.t'-~c pc 1S asymptotic form. e ror the scattering amplitude f( „The expression for the sca er'
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where 5 is a trial function which need not. be defined
in the region outside the potential. Using (88) and

R()=j(k )—'k g(, ')U( ')R(r') "d '. (85)

partial waves for a spherical potential is

DR= —Uj+US+UG(US). (812)

J= r'dr ULg —G(US)gt j—S—G(US)j. (813)

This guarantees the correct asymptotic form for R. Using (811) and (812) in the integrand of J, Kq. (82),
It is useful to rewrite this equation in an operator we 6nd

notation. If we define

G= ik— g(r, r') r"dr',

then we may write (85) as

R=j—G(UR).

(86)

(87)

Following the procedure of Eqs. (9)—(11) of the text,
we define

(814)

We will need the expressions Dj and DG. Since j is a
spherical Bessel function we have immediately

N=rU&j, (815)

L= I+[rUlG(Urr )$. (816)

Dj= —Vj.

It is easy to show that

DG = —I —UG.

(BS)

(89)

Using these in (813) and in the second term of (84),
we find after some manipulation that the Kohn func-
tional is

R=j—G(US), (811)

As a check, we note that putting (87) for R we get

DR= Dq —DG(UR)
= —Uj+UR+ U(j—R) =0. (810)

In order to ensure that the trial function has correct
asymptotic form, we may write

Ax= — dr(Lv —u)'+ dr v(Lv —2u), (817)
0 0

which has the same form as (Bi).
The error functional with identity weighting operator

for the complex partial wave equation Lv u=0 —is
h~ ——Jo"dr

~

Lv —ui'. The first term in the Kohn func-
tional (817) is equivalent to the error functional only
for the case of all real quantities.


