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Potential scattering is treated by a minimum variational principle. The method, known as the error
method, is applicable to problems which can be cast as linear inhomogeneous equations. The method makes
use of a non-negative functional which reduces to zero for the exact solution. The magnitude of the func-
tional for approximate solutions provides an indication of the accuracy of the wave function. The method
is illustrated by some examples, and compared with the Schwinger and Kohn principles.

I. INTRODUCTION

ARIATIONAL principles have come into exten-
sive use for the calculation of phase shifts or
scattering amplitudes in potential scattering prob-
lems.® A number of different principles have been
formulated. The Hulthén® and Kohn!® methods make
use of differential operators and thus require trial
wave functions of correct asymptotic form to satisfy
boundary conditions. The Schwinger® method and
several related ones'>'® make use of associated integral
operators which implicitly contain the boundary condi-
tions, and do not restrict the choice of trial function.
Kato! developed a generalized functional from which he
obtained those of Hulthén, Schwinger, and Kohn; other
workers have given different generalized functionals.'s
Variational principles for the eigenvalue problem
generally have the desirable feature that they give
bounds on the eigenvalues. It has been noted that the
aforementioned methods for scattering do not, in
general, give bounds or an error indication.!®'617 Moe
and Saxon® have looked for minimum functionals for
the phase shifts or scattering amplitude with no suc-
cess. Kato1® has shown that upper and lower bounds
on phase shifts can be obtained if certain conditions
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are fulfilled. In general the bounds are difficult to calcu-
late, although Spruch'® could obtain one of them quite
readily for certain cases. Recently, Rosenberg and
Spruch™ have developed methods by which they can
obtain rigorous lower bounds on the phase shifts for
compound system scattering as well as for potential
scattering.

In the present work use is made of an error func-
tional, one which reduces to zero for the correct eigen-
function and is positive otherwise. Minimizing such a
functional with respect to the parameters in a trial
wave function yields an approximate state function
which may then be used in calculating scattering cross
sections. This application is a special case of a general
error method for finding approximate solutions to
linear inhomogeneous equations.?

The method is described in general outline in Sec. II.
The inhomogeneous integral scattering equations are
given in Sec. III. A generalized functional is introduced
in Sec. IV, from which the error, Kohn, and Schwinger
principles may be obtained. Some procedures for calcu-
lating approximate phase shifts or scattering ampli-
tudes are described in Sec. V. In Sec. VI, two numerical
problems are considered for illustrative purposes; one
makes use of a spheroidal potential scatterer.

II. ERROR METHOD

We consider an arbitrary nonsingular linear operator
L, and desire the solution f to the inhomogeneous
equation Lf=g, where g is an arbitrary source function.
Here, and in what follows, operators are indicated by
sans serif.

Let fo represent a parametrized wave function (a
trial solution) which is determined by minimizing the
so-called error functional Ap= /" |We|2dr, where the
function ¢ is defined by eo=g— L.fo, and W is a suitably
chosen nonsingular weighting operator. Here, and in
what follows, trial solutions are indicated by a tilde.
The error functional reduces to zero only when e
vanishes, yielding the exact wave function for f,. The
precise nature of the operator W does not affect these
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VARIATIONAL PRINCIPLE FOR SCATTERING

considerations. If the function is itself of secondary
importance, and is only required for the subsequent
calculation of phase shifts or scattering amplitudes, it
is desirable to pick a weighting function which yields
the smallest error in the latter quantities. For example,
in our case of potential scattering it is desirable to
have the accuracy of the wave function greatest in the
region where the potential is large. This suggests the
potential itself as a multiplicative weighting operator.
The effect of the multiplicative weighting operator in
the error functional is treated in Sec. VI.

A procedure similar to that of Rayleigh-Ritz exists
for systematic improvement of a trial wave function.
Define e;=¢y— L fi, where f; is a new parametrized
function of adjustable amplitude. The error functional
with ¢; is smaller than that with ¢ as long as f; is not
zero. Thus the function fo+7i, which satisfies e
=g—L(fo+f1), is by this criterion closer to the exact
solution. By proceeding in this manner, using the error
of an approximation as the source for the next approxi-
mation, we have a systematic procedure for improving
the accuracy. Moreover, the size of the error func-
tional, after minimization, can be used as a criterion
for. convergence. Unfortunately, this iteration pro-
cedure is only as good as the intuition of the investigator
in choosing new trial functions f,.

III. SCATTERING EQUATIONS

In this work we treat both spherical and spheroidal
potential scattering by the method of partial waves. In
both cases spherical harmonic expansions are used. The
partial wave equations for a spheroidal potential are
developed in Appendix A, and may be easily particu-
larized to yield those for a spherical potential.

The method of partial waves for a spherical potential
is treated in a number of standard texts.2?? Following
in part the notations of Kato'® and Kolsrud,”* we may
write the partial wave integral equations in the form

LlRyl(r)=ul<r)7 l———O, 1) Ty, 0, (1)

where
wi(r)=rU¥(r)ji(kr), (2)
yi(r)=rU7r)S:(), (3)

L,Rs]-—krU%(r)/ g(r YU ) - - -dY',  (4)
0

‘with | the identity operator, and g;(7,) the radial
Green’s function

gu(rr')=mikrs)ji(kr<). ©®)

Here 7>, and r< denote the greater and lesser of (r,7'),

2 L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, Inc., New York, 1955), 2nd ed.

22 P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGr:;lw-Hill Book Company, Inc., New York, 1953), Part I,
Chap. 7.
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respectively, and (n;,7;) are the spherical Neumann and
Bessel functions of order J, respectively. The function
U(r) is the potential, in atomic units; in these units,
the energy of the incident plane wave exp(ik-r) is %2
The function #; then represents the Ith expansion co-
efficient in a spherical harmonic expansion of the plane
wave; similarly, the vy, represent the wave function
¥(r), which is the (unique) solution of the Schrodinger
equation for scattering of the plane wave by a given
potential U(r). The function S;(r) is a real function
proportional to the radial wave function R;(r) of the
radial Schrédinger equation of order /.
In this notation, the phase shift §; is given by

00

tand;= —k / wyyidr. 6)
0

Once the tand; have been found, the scattering cross
section is unambiguously determined.?

The radial wave function R;(r) must be everywhere
bounded ; it may be complex, but it must be of the form

Rz(f’)=C1Sz(7’), (7)

with C; a complex constant. This follows because all
the operators in the radial Schrédinger equation are
real [we consider here only elastic scattering, so the
potential U(r) is real]. It is well known that there
exists a ‘“‘dispersion relation” connecting the ratio of
imaginary to real parts of R;(r) to the phase shift.? This
relation is

Im(Cy)/R(Cy)=v;=tans,. (8)

In Appendix A we obtain the corresponding result
in the partial wave treatment of a spheroidal potential.

IV. VARIATIONAL PRINCIPLES

In this section we formally discuss several variational
principles. All of these may be applied with certain
modifications to the partial wave equations for a
spheroidal scatterer, or directly to the integral form of
the three-dimensional Schriodinger equation. For sim-
plicity we give a generalized variational function for
the partial wave equations (1) for a spherical potential,
which are rewritten here without the subscript 7:

LEy—u=0. 9)

As a generalized variational functional for this equa-
tion we write

Ao= / [W (25— ) TWa(L®y—u)ldr,  (10)

where W1 and W, are nonsingular but otherwise arbi-
trary linear operators; different choices for these lead
to different variational principles. For example, if we

2 V. Bargmann, Revs. Modern Phys. 21, 488 (1949).
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choose W1=W,=W, we get

AE=/ [W (LBj—u) J2dr, (11)

which is the error functional for Eq. (1).
Another interesting choice for W; and W, is W;=1,
W= (LE)-1—1. Inserting these in Eq. (10), we find

Y —
0

+/ y(L‘W—Zu)dr—{—/ uydr. (12)
0 0

The use of the operator (L)~ here is purely formal,
since we cannot evaluate it. (If we could, the problem
would already be solved.) We notice that this func-
tional does not provide an error indication because of
the last term. This term cannot be evaluated without
knowledge of the exact solution y. This fact has no
effect on the use of this functional for variational pur-
poses, since the last term is constant. The problem arose
because of the nature of W,

From the fact that L® is symmetric, it follows that
the first two terms of Eq. (12) are separately stationary
for LEy=u. The first is the error functional ; the second
is closely related to the Schwinger functional, as will be
shown. These two terms taken together comprise the
Kohn functional, as shown in Appendix B. In what
follows we refer to the second term of Eq. (12) as Ax'.

The procedure for obtaining amplitude-independent
functionals from those already given is illustrated for
the case of Ax’. Let 3(r)=0f(r). Using the stationary
property dAx’/0b=0, we get

b= fd w‘LR"d.
/(’ujr/ﬁf fdr

Substituting this in the expression for ¥ and inserting
in Ax’, we get

0 2 0
Ag=— (f uj:dr) // JLEFdy,
0 0

which is easily recognized as the Schwinger functional.
It is clearly immaterial whether we write f or ¥ in the

integrands. )
By the same procedure, the following amplitude-
independent form can be found for the error principle:

Af'=— { [ [) " oWa) (wuy)drT / [) w(WLR_v)zdr}

+/ (Wau)2dr. (15)

(13)

(14)
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In practice the amplitude-independent form of a given
variational principle yields the same results as the
amplitude-dependent form.

V. APPROXIMATE PHASE-SHIFT CALCULATIONS

As mentioned previously, the calculation of an
approximate wave function is only an intermediate
step in the scattering problem. We desire a functional
of § which yields the correct phase shift for the exact y
and is insensitive to small errors in §. An expression of
this character is one whose stationary value is an
approximation to a particular phase shift. The Hulthén,
Schwinger, and Kohn functionals are of this type; the
error functional is not. Consider, for example, the
previously discussed stationary functional Ag’:

)

AK’=—/ F(LEy— 2u)dr. (16)

The numerical value of this functional when j=y is
then Ax'=— fruydr=tané/k. Thus the approximate
value of the phase shift is quadratic in the error in ¥
if A" is used for its determination. This can be con-
trasted with the linear dependence when we determine
the phase shift from the expression —ku¥ydr. The
former expression is preferable as being less sensitive to
small errors in §. There are an infinite number of such
expressions to choose from which reduce to the correct
phase shift when the exact wave function is used. No
attempt is made here to optimize this choice. We merely
compare the two already mentioned for a few numerical
examples.

We wish to investigate the accuracy of the phase
shifts determined by the error method in conjunction
with each of the above-mentioned expressions. In par-
ticular we compare them with the Schwinger method for
the case of s-wave scattering by a square well for two
different incident energies. We pick a well of radius a
and depth K2. The trial function is chosen to be

¥=">b sin(\kr), 17

where b is to be determined variationally and X is a
parameter which is held fixed during the variation. For
the choice A=Xo=k"(k2+ K?)}, where 2 is the incident
energy, all methods lead to the exact answer.

The results are plotted in Fig. 1. The dashed curves
are the Schwinger results for the phase shift. The
dash-dot and solid curves are the corresponding results
for the error method. The former are the results when
the linear expression —k_f;u¥dr for tans is used while
the latter are from the quadratic expression Ax’, Eq.
(16). The numerical values of the error functional are
also plotted in units of k. Note that in the low-energy
case, Fig. 1(b), the Schwinger functional has a singu-
larity on each side of A=N\,; these merely correspond to
phase shifts which are odd multiples of x/2.

As expected the linear expression is not as good as
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the quadratic near A=X\o. The latter is similar to the
Schwinger functional for the -high-energy case and
turns out better for the low-energy case in that it has no
singularities and is flat over a relatively wide range of
M near \o. Calculations for energies intermediate be-
tween those quoted here were carried out. In general,
the error method combined with the quadratic approxi-
mation gave the most reliable results for these test
cases.

If the error functional is 19} or less of the source
term JSu*dr, we find in all cases that the quadratic
phase shift is within 19, of the exact value. Using the
other expressions for tand, the corresponding errors
came out as high as 509.

These results support the view that it may be ad-
vantageous to first use the error method to determine
an approximate wave function, and then use a sta-
tionary expression such as the Schwinger or Kohn func-
tional to evaluate the approximate phase shift or scat-
tering amplitude. Alternatively, the error functional
can be used solely as an error indicator; for example, a
wave function may be determined by the Kohn or
Schwinger principles, and then an accuracy indication
can be obtained by evaluating the error functional for
this function.

VI. ILLUSTRATIVE PROBLEMS

In this section we consider two numerical problems
which illustrate certain features of the error method.
Part A is concerned with the effect of weighting opera-
tors in the error functional ; part B, with the application
of the error method to scattering from a spheroidal
potential. All numerical calculations were done on the
IBM type 650 digital computer at Rensselaer Poly-
technic Institute.

A. Weighting Operators

We base the discussion here on the error functional
for the real partial wave scattering equations (1). For
these equations, the error functional is

A= f “TW (Ly— 1) T, (18)

where W is a nonsingular linear operator. Again we
consider only the /=0 case for simplicity.

In order to decide what sort of weighting operator is
likely to lead to the greatest accuracy in an approxi-
mate phase shift for a particular trial function, we look
at the expression for the exact phase shift, Eq. (6):

tand=—~% / uydr: (19)
0

We remember that # and y both contain the square
root of the potential as a factor, so the integrand con-
tains the potential linearly. Referring to the definitions
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Frc. 1. Calculated s-wave phase shifts from spherical square
well potential. Radius=a, depth=K?, Ka=4. (a) K2/k*=well
depth/incident energy = . (b) K2/k*=4.

of # and y, Egs. (2) and (3), we find that Eq. (19) may
be written

00

tand;= —k / §1(kr)U () S1(r)r*dr, (20)

where the real function S; is defined by writing the
complex radial wave function R; as

Rt(f) = [(1+1/ tanﬁ;)/(l—l—tanz&;)]&(r).

From this we see that the greatest contribution to
tand; comes from the region of r where 72U (r) is large,
provided the rest of the integrand, (the product j.S1),
is not relatively small there.

These considerations suggest the use of the identity
for the weighting operator W, inasmuch as this choice
leaves the quantity 72U () in the integrand of the error
functional (18).
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TaBLE I. Comparison of weighting operators for the error method in the s-wave scattering from the potential
U(r)=—Uo(a/r) exp(—ar), r<a; =0, r>a, with Usa2=0.64, aa=1.0, and ka=7.0.

Source term

Weighting Trial radial wave © .

Method operator function form tand, k /; (Waydr kAg
Error variational [Ur) ] “Exact” 0.1107 3.252 0.00002
Error variational LU r) T Parabola 0.1059 3.252 0.166
Error variational DU 1! bjo(kr) 0.1080 3.252 0.030
Error variational unity Parabola 0.1082 8.391 0.196
Error variational unity bjo(kr) 0.1098 8.391 0.033
Born approximation e s 0.1096 e ce

We choose as an example a spherical shielded Cou-
lomb potential which is set equal to zero outside a
spherical surface of radius a. The potential is given in
the heading of Table I. We compare two weighting
operators: the identity, and the multiplicative one
[»U¥], which causes the quantity 2U(r) to be re-
moved from the error functional integrand. To find the
“exact” value of tané, we first numerically integrate the
/=0 radial Schrodinger equation to obtain the func-
tional form of the exact radial wave function. Then
we apply the error method to find the correct amplitude,
and evaluate tand= —£k f;uydr. This result is listed
in the first row of Table I. The value of Ag for this case
would be zero except for the inaccuracies inherent in
numerical computation. The approximate phase shifts
are evaluated from the linear expression —k /o uydr.
We see that for a given trial function, use of the
identity operator leads to the more accurate phase shift.

For this relatively high energy problem we expect the
Born approximation to be quite accurate. The Born ap-
proximation here consists of putting ¥=rU?%j,(kr) and
evaluating tand =~ —Fk f;°j2(kr)U (r)r2dr. It is interest-
ing to note that a “quasi-Born’ approximation, where
we let the error method determine the amplitude 4 in
a trial function =0brU?%jo(kr), is more accurate than
the Born approximation only for the identity weighting
operator. Also note that the ratio of the error functional
to its “source” term /5" (Wu)2dr is consistently smaller
for the identity operator.

(v-u9
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@ (b)

F1c. 2. Geometry for a spheroidal scatterer. The incident wave

vector is k; a particular scattering direction is indicated by

’=k#. (a) Conventional coordinates ; @ =scattering angle. (b) Co-
ordinates used in calculation.

B. Spheroidal Potential

In recent years a number of authors have employed
spheroidal and other nonspherical potentials to repre-
sent the effect of the nucleus in scattering alpha par-
ticles, neutrons, and electrons.?*~* It has also been
shown that the general neutron transport equation
reduces to a set of coupled one-dimensional Fredholm
integral equations,® which have the same form as the
spherical harmonic partial wave equations which we
find in Appendix A for a spheroidal scatterer.

Although apparently excellently suited to these
problems, variational methods have not been widely
applied to them. The use of variational methods for
nonspherical scattering problems seems to have been
confined to the problem of scattering by simple tensor
forces, a problem which can be represented by two or
three coupled equations in one variable.-35

In this subsection we make use of the error method
to calculate the approximate scattering cross section
for an oblate spheroidal Gaussian potential, in order to
illustrate a procedure for using the error method in a
relatively complicated problem. In addition, we are
able to point out certain characteristics of the Kohn,
Schwinger, and error principles which have not yet
been noted.

As shown in Appendix A, the spherical harmonic
partial wave equations for a spheroidal potential have
the form

i JumRym(r) =T, (kr) =0, (21)

UV=m

2 D. D. Kerlee, J. S. Blair, and G. W. Farwell, Phys. Rev.
107, 1343 (1957).

2 B. Margolis and E. S. Troubetzkoy, Phys. Rev. 106, 105
(1957).

26 D. M. Chase, L. Wilets, and A. R. Edmonds, Phys. Rev.
110, 1080 (1958).

27V, V. Vladimirsky and L. L. Ilyina, Nuclear Phys. 6, 295
(1958).

28 E. V. Inopin, Zhur. eksptl. i teoret. Fiz. 34, 1455 (1958).

2 B. W. Downs, D. G. Ravenhall, and D. R. Yennie, Phys.
Rev. 106, 1285 (1957).

3% D. G. Ravenhall and D. R. Yennie, Proc. Phys. Soc. (London)
A70, 857 (1957).

31 D. G. Ravenhall, Revs. Modern Phys. 30, 430 (1958).

2 H. S. Wilf, J. Math. Phys. 1, 225 (1960).

3 F. Rohrlich and J. Eisenstein, Phys. Rev. 75, 705 (1949).

3 J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952);
L. C. Biedenharn and J. M. Blatt, sbzd. 93, 1387 (1954).

35 S. I. Rubinow, Phys. Rev. 98, 183 (1955).
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where the index # can take on integral values from zero
to infinity, and / from m to infinity. The function R;™(r)
is the radial wave function. The parameter I'/” is
defined by

I'jm= P (cosy), (22)

with P/ the associated Legendre polynomial of order
(I,m), and v the angle between the incident direction k
and the symmetry axis of the potential (see Fig. 2).
The integral operator J;;™ is given by

©

Jzz'm=5lz'~ikf g/ (r,YVum@')- - (r")2dr', (23)
=0

with g/ (r,7") the radial Green’s function,

g/ (r,")=Lgu(krs)+inmi(krs) 151 (kr <), (24)
and
V™ (r)=const X / Pi(cosh,) Py™(cosh,)
’ XU (r,6.) sinfudb,. (25)

Here U(r,.) is the spheroidal potential, and 6, is the
colatitude of Fig. 2(b). V™ is always real for a sphe-
roidal potential; it would not be for a potential not
having a plane of symmetry.

Just as in the spherical case, a phase shift §;* may be
defined here for each partial wave (/,m). It is shown in
Appendix A that the tand;” determine the scattering
and are given by

1™ sin26,™

==k 3 | Pdrj i) Vur ()T (), (26)

V=mJ

where Ty(r) is a real function related to the radial
wave function R(r) by

Rzm(f) = (1+’L tanB{")T{"(r). (27)

Kohn and Schwinger functionals may be easily for-
mulated for Egs. (21), but their stationary values do
not provide approximations to the individual tand;” or
sin26;, which they do for the tand; in the spherical
case.?® In this formulation of the spheroidal problem, we
have been unable to find any functionals whose sta-
tionary values do provide approximations to the in-
dividual phase shifts. °

The potential used in this sample calculation is
given in the heading of Table II. For convenience, we
set the potential equal to zero outside a spherical sur-
face of radius e. For the parameters chosen, the poten-

3 This limitation of the Schwinger, Kohn, and similar prin-
ciplesin the spheroidal potential problem is a result of the spherical
harmonic expansion used here. An expansion in spheroidal har-
monics is no better in this regard, except for a very limited class
of potentials for which the Schrédinger equation separates com-
pletely in spheroidal coordinates. If we were to expand the wave
function as ¢ (r)=Zmen cosm¢.Fn(r6.), and the other quantities
similarly, these variational principles for the resulting equations

in two variables would then have their usual property of directly
approximating the quantities analogous to tand;”.
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TaBLE II. Error method results for the potential U(r6.)
=—Ugexp[— (ar)?(1—e? cos?,) ], r <a; =0, r>a, with &=—2,
Uoa?=4, ca=2, ka=0.6.

Differential cross section Total cross section

Y
(degrees) 103%% (8, ¢) (10%2/47)o
0 7.2544-0.186 cosf—0.180 cos? 7.194
45 7.3234-0.356 cosf+0.170 sind cos ¢ 7.261
—0.092 (cosf—sind cos )2 ;
321

90 7.38440.527 cosf—0.189 sin cos?p

tial is an oblate spheroidal Gaussian with a major-minor
axis ratio of V3, and is quite strongly screened. We have
chosen a low energy, for which we expect the scattering
to be primarily s-wave. With this in mind we limit » to
the values (0,1,2), and, for each m, m <I<2. We find
later that these terminations of the summation indices
provide sufficient accuracy, inasmuch as the quadratic
terms in sinf, and cosf, in the scattering amplitude are
already negligible.
We use the simple trial functions

R(r) = (bym+icim) ju(kr),

even though we expect for the low energy considered
here that the full partial-wave Born approximation
(bi»=1) would be quite inaccurate. Previous experience
has led us to believe that this “quasi-Born” approxima-
tion (both b and ¢ arbitrary) often works well where the
full Born approximation is poor.

We use here the error functional,

(28)

2 o 2
Am=Y | | Z QuwmRy™)—Tmji|%dr.  (29)

I=m [qo U=m

The values we find for this functional for different
choices of incident direction are given in Table III,
along with the corresponding values of the source term
S (T2 fo2i 2 (kr)rtdr. Note that for each m the ratio
Ag™/(source term) is quite small (<1072), indicating
that the corresponding phase shifts are quite accurate.
In evaluating the (J,m) contribution to the scattering
amplitude, we make use of a result obtained in
Appendix A,
™/ b= v/ =tand™. (30)
The computed cross sections tabulated in Table II are

TaBLE III. Values of the error functional and its corresponding
source terms for scattering by the oblate spheroidal Gaussian
potential.

v (degrees) m Source term kAE™

0 0 822 X107 2X10*
45 0 744 X102 2X10™
45 1 1.873 X103 4X1077
45 2 1.66757X 106 6Xx10™
90 0 6.71 X102 2% 10~
90 1 3.6928 X103 8X1077
90 2 6.6702 X106 2X 10710
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in terms of the conventional coordinates (6,¢) shown
in Fig. 2(a).

VII. DISCUSSION

The error method may be regarded from a point of
view which provides some additional insight. Minimiza-
tion of the error functional leads to a wave function
which may be regarded as the exact solution of the
scattering function with an altered source function. We
refer to the difference between this function and the
correct source function as the difference function. The
error functional is then the weighted mean-square
value of the magnitude of the difference function.
Minimization of this lends to reduce the scattering
from this additional source. The size of this minimum
functional relative to that of the corresponding one in-
volving the correct source function, [the source term
Jo°(Wu)2dr], serves as a guide to the accuracy of the
calculation. However, since the scattering is not com-
pletely determined by the magnitude of the wave
function at the scatterer, this cannot be considered as
a completely reliable guide to the accuracy of the
scattering amplitude.

In general the method compares favorably with the
Schwinger method over the limited range in which it
has been tested. It may also be useful in connection
with problems for which it is desirable to know the
wave function close to the scatterer. A number of such
problems exist in connection with the interaction of
electrons with defects in solids.

APPENDIX A
Partial Waves for a Spheroidal Potential

We make use of spherical polar coordinates. The
symmetry axis of the potential is chosen as polar axis,
with the origin at the geometrical center of a spheroidal
surface. This is the coordinate system (7,0.,¢,) of
Fig. 2(b). In these coordinates the spherical harmonic
expansion of the wave function is

\b(r)=§ i tle 2Py (cosh,) cosmo.Ri™(r), (Al)

m=0 l=m

where €n=2—08,,0, With 8., the Kronecker delta;
Q= (21+1)(l—m)!/(I+m)!; Py (cosf;) is an associ-
ated Legendre polynomial ; Ry*(r) is an unknown radial
wave function. The absence of sinm ¢, in the sum follows
from the fact that the plane wave exp(ik-r) can be ex-
panded in terms of the cosine only.? The double
Sum Ym0, 1-m® is identical with the usual form
DIFIN ) PLY

In this coordinate system a spheroidal potential is a
function of » and 4, only; it may be written

U(r,8.)=U[r(1— & cos®,)t],

with € the eccentricity.
Inserting the expansion (A1) for ¥(r) into the three-

(A2)
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dimensional Schrodinger equation, we obtain for each
m a set of radial Schrédinger equations coupled over
all values of />m. These equations may be written

@2 2d 1(41)
(—+— LY )Rr»(r)
dr* rdr 72
— 2 Vum™@»)Rem(r)=0, (A3)
U'=m
where

Vim(r) =30 "Cexphin ('~ )] / Pin(cosd,)
0

X Pym(cosh,)U(r,6,) sinf.db,. (A4)
From the facts: (1) that the potential U(r,6,) is an
even function of cosf, and (2) that the product
Pym(cosf) Py™(cosh) is even in cosf if '—1 is even, odd
if I’—11s odd, it follows that V;;™(r) is nonzero only for
even I'—1. Tt is therefore real.

Since all the operators in Eq. (A3) are real, the
solution R;”(r) which is everywhere bounded must be
of the form

R (r)= (14iv) Tim(r), (AS)

where T'y"(r) and v/ are real. Substituting this in
Eq. (A3), we find that the Ty»(r) must themselves
satisfy this equation, and that

S vV (r)To™(r)=vm Xy Vium(r) Tzrm(f). (A6)

In the radial Schrédinger equation, the term involv-
ing Vu™(r) is negligible asymptotically for potentials
which fall off faster than #~2. In particular, it is zero for
r>a for potentials truncated at r=a. For such poten-
tials, then, the equations decouple in the asymptotic
region and are satisfied there by spherical Bessel and
Neumann functions:

T (r) ~Cy[ 51 (kr) —tandymn, (kr) ],

with C/™ a constant, and §;” the phase shift.

We could now write an integral equation for Ty"(r),
using the Green’s function for the radial Schrodinger
equation. However, we would make an error in identify-
ing tané/” with the coefficient of #;(kr) in the asymp-
totic form of T;(r) obtained from this integral equa-
tion. We must first consider -the integral equation for
the complex radial wave function R;™(r):

(A7)

0

R;’”(r)=1‘;'”j;(kr)—ikf gzl(f,f,)

=0

X; V™) Ry™(r') (r')dr’, (A8)

where g//(r,7') is the complex radial Green’s function
g/ (rr)=Lgi(krs)+im(krs) Jju(krs).  (A9)
If we now substitute R/(r)=(1+4i»/)Ti(r) in Eq.
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(A8) and make use of Egs. (A6) and (A9), we find
(14 (e ] 2o (3B um Ty (r) =T (kr),  (A10)
and
v (IR Ty (r)=—2 v (IDumTem(r),

where (J®);™ and (J7);™ are real integral operators
given by

(IB)yym=0,— kl ny(kr)

(A11)

r

jz(kr') V”:’"(r’) . (7’)2(1’,/
- (A12)
+]l(kr)/ ﬂz(kr') V”/m(f’) e (r’)2d7’/ :

(Jl)zl"”:kjl(kr)/ J1(Rr YV (") - - - ()Y (A13)

Suppose we write
Sem(r)=[1+ () 1T (7).

Substituting for the T/*(r) in Egs. (A10) does not
permit cancellation of the (14#?) factors. In fact, these
equations are not very useful, since they contain the
unknown quantities (»,”)?, which apparently cannot be
removed by any conceivable parametrization of trial
functions 77"(r). Therefore we work with the complex
equations

(A14)

S vdumRym=T"7,, (A15)

where Jym= (JR)”,m_'_,i(JI)”,m.

In the spherical case, J is diagonal, and substitution
of (A14) for T(r) does eliminate the unknown factor
1+»2 It is this very process which leads to Egs. (1)
and (6) of the text for the spherical scattering problem.

We now write the asymptotic forms of Egs. (A10),
and (A11), using (A12) and (A13). The results are (we
omit the m):

Tz(f)~P1(1+v12)—l[]'l—l:—l’l‘l(l-l-vzz)

0

le' k/ ].qu’Tyﬂernl}; <A16)
0

0

Tl(r)~ - kllz—1<zl' / le”:Tpr2dr> (]l_ v,nl). (A17)
0

Equating coefficients of j; in both equations, and com-
paring either (A16) or (A17) with Eq. (A6), we find

(A18)

ym=tand;™;

3T sin26=—3_p k/ VT ymrdr.

0

(A19)

The expression for the scattering amplitude f(f.,¢.) is
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FOey00)=2m 21 enf™Pi™(cosb,) cosme

X[—Zz'/ ]'szz'”‘Rp"‘err:l, (A20)
0

where (0,,¢.) are the coordinates of Fig. 2(b). Using
Egs. (A4), (A18), and (A19), we find for f(8.,¢.) the
expression

fOe,00)= (2k)7 2om 21 enli™Pi™(cost.)

X cosmo '™ sin28/"(1+14 tand;™). (A21)

This expression has the same form as that for a spherical
potential, and reduces directly to the latter if k is
along the symmetry axis. In order to find f(6,¢), where
(6,¢) are the conventional coordinates of Fig. 2(a), we
perform a simple transformation of coordinates.

APPENDIX B
Kohn Principle

In this Appendix we show that the Kohn variational
principle for the spherical scatterer partial wave equa-
tions LBy—x=0 may be written as the first two terms
of Eq. (12) of the text, viz.,

0

Ax=— / (LA5—w)dr+ f F(Lr5—20)dr, (B1)
0 0

where the first term is the error functional, and the
second is Ag’, Eq. (16). Here, and in what follows, the
subscript / is omitted. We shall work with the complex
operator L. and the complex radial function R.

In the development of his variational principle,
Kohn' considers the functional

J=/ rdrRDR, (B2)
0

where the operator D is taken from the radial Schrsd-
inger equation:

@ 2d 1(1+1)
D=[——+— — B —

dr? rdr 72

- U(r)], (B3)

so that the exact radial wave function must satisfy
DR=0.
Kohn shows that the integral
Ax=J— / JURydr (B4)
0
is a variational functional for the quantity

]

f szerZdr= k1 sinBlei"z,
0

provided that the trial functions R have the correct
asymptotic form. The Green’s function formulation in
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partial waves for a spherical potential is

L]

R(r) =j(kr)—ik/ gry? YU )R(r')r"%dr'.

0

(BS)

This guarantees the correct asymptotic form for R.
It is useful to rewrite this equation in an operator
notation. If we define

0

GEik/ glr’) "%y, (B6)
0
then we may write (BS) as

R=j—G(UR). (B7)

We will need the expressions Dj and DG. Since j is a
spherical Bessel function we have immediately

Dj=-Uj. (B8)
It is easy to show that
DG=-1-UG. (B9)

As a check, we note that putting (B7) for R we get

DR=Dj— DG(UR)

= —Uj+UR+U(j—R)=0. (B10)

In order to ensure that the trial function has correct
asymptotic form, we may write

R=j—-G(US), (B11)
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where S is a trial function which nced not be defined
in the region outside the potential. Using (B8) and
(B9), we then find

DR=—-Uj+US+UGUS). (B12)

Using (B11) and (B12) in the integrand of J, Eq. (B2),
we find

J=/w72dr Ulj—GUSj—S-GUS)] (B13)

Following the procedure of Egs. (9)-(11) of the text,
we define

d=rU%S, (B14)
u=rU%j, (B15)
L=I14+[UGU---)]. (B16)

Using these in (B13) and in the second term of (B4),
we find after some manipulation that the Kohn func-
tional is

Ax=— / dr(Lo—up+ / dr 5(Lo—2u), (B17)
0 0

which has the same form as (B1).

The error functional with identity weighting operator
for the complex partial wave equation Lo—u=0 is
Ag=Jodr| Li—u|% The first term in the Kohn func-
tional (B17) is equivalent to the error functional only
for the case of all real quantities.



