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Classical Equations of Motion for a Polarized Particle in an
Electromagnetic Field
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(Received April 12, 1961)

This paper gives the classical relativistic equations of motion for a particle with intrinsic angular mo-
mentum in an external electromagnetic field, including the e6ects of first-order field gradients. The system
considered especially is a nucleus in its ground state. The preferred value of the electric quadrupole moment
Q is found to be —(2I—1)p(A/mo), where I is the spin and ts the magnetic moment of the particle.

I. INTRODUCTION

~CLASSICAL relativistic equations of motion for a~ particle with intrinsic angular momentum have
been given by Frenkel' and by Kramers' using a
Lorentz six-vector to describe the polarization. Barg-
mann, Michel, and Telegdi' recently found equations
of motion using a Lorentz four-vector for the polari-
zation. The two approaches are equivalent, as has been
shown in detail by Ford and Hirt. 4 All these authors
consider the situation where derivatives of the external
electromagnetic Gelds are negligible, in which case the
charge and magnetic moment are sufhcient to distin-
guish the classical particle. The purpose of the present
paper is to extend the argument to include the effects
of Grst-order Geld gradients, in which case the electric
quadrupole moment is also needed to describe the
particle. The four-vector description of the polarization
is used since it seems to be simpler.

In order to find the equations of motion, a system of
nucleons, interacting with each other and with the
external Gelds, is considered. The internal variables are
eliminated in such a way that coupled differential
equations for the position and polarization of the
particle are obtained.

Some new considerations come in when a composite
particle is treated. The system considered especially
here is that of a nucleus in its ground state. First of all,
quantum-mechanical nonrelativistic equations of mo-
tion for the position and polarization are found under
the following main assumptions: (1) The internal
motions of the nucleons are nonrelativistic. (2) All
effects of the higher energy states may be disregarded
(3) Terms of second degree in the external fields are
negligible. Secondly, the classical no@relativistic equa-
tions of motion are written down. Finally, the relativ-
istic equations of motion are inferred using an argument
essentially the same as that of Bargmann, Michel, and
Telegdi.
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[p. ,xe ]=it'tb, ;[(m /m) —b.e].
The operator

J=P (x &&p +s )

(2)

is the total angular displacement operator in the sense
that

[J,,v&]=skettsvs,

II. NONRELATIVISTIC EQUATIONS OF MOTION

The Hamiltonian for the system is

H=P (2m ) '[p —e c 'A(x )] [y —e c 'A(x )]
+p e„p(x ) p—(g e„/2 mcv)s B(x.)+t't, (1)

where n is the serial number of the individual nucleons
in the nucleus. Here e„and m~ are the charge and mass
of the proton and s, is srIltr . The symbols A, P, B are
for the externally applied fields, possibly time de-
pendent. The h term is for the internal electromagnetic
and nuclear-force effects. It is supposed that h depends
on the spins and relative coordinates only.

The center-of-mass coordinate is defined by

xp ——P.m.x./m,

where m=P m is the total mass of the nucleus. The
internal coordinates are defined by

Xcr —Xrx
—Xp.

/

They are not all independent, since

P m.x.'=0.

The total canonical momentum is

ps=a p

and internal canonical momenta are deGned by

p '=y.—(m /m)yo.

They also are not all independent:

2 p-'=o.

The external variables xp, pp are conjugate to each other,

[pp, ,apt] = —iitb, ;,
and they commute with all the variables x ', p ', s .
The only nonzero commutators among the primed
variables are given by
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where v is any vector formed from x, pp, and s~. It
may be written as

where
J=xoXpo+ J',

J'=P (x 'Xy '+s ).
Since xo and po commute with the internal variables it
is clear that J' is the angular displacement operator
for the variables x ', pp', s~. Therefore one may apply
all the theorems that follow from angular momentum
algebra to J' and these variables.

In the absence of external fields the Hamiltonian
reduces to

II=(2m) 'po ps+a(2m-) 'p-' p-'+h(x', s).

Assuming that h is reQec'tiom and rotation invariant,
one considers then a set of functions lt (x ') with the
properties

t.Z(2m-) 'p- y-'+&]It-=E4-,
J'Q =hsI(I+1)P„,
J,'gp = hml't

(3)

P (—x ')=)P„(x '),

where E, I, and ) are the energy, spin, and parity of
the ground state of the nucleus. It is assumed below
that these functions, perhaps perturbed by the external
6elds, form a complete set for describing the internal
nuclear eBects.

The Hamiltonian of Eq. (1) implies these equation. s
of motion in the Heisenberg picture:

mdxo/dt= po —P e.c-gA(x ),
mdsxo/dts=p e E(x )+p(e /2m c)Lp —e c 'A(x )]

XB(x )—P(e /2m c)B(x )
XPy.—e.c-gA (x.)]

+P(g.e„/2m, c)V (s B).

Here the second-degree terms in the fields are to be
disregarded and an expansion of the 6elds is to be made,

E(x ) = Eo+(x 'V'0)E0 B(x )=$0+ (x 'V'0)&0,

where Eo denotes E(xo). Also only the blocks of these
operators which are effective between the states gP

need be retained. Many of the terms drop out because
of the parity consideration and the acceleration equa-
tion simplifies to

md xo;/dP= 8E0 + (e/2mc)e jo(Bospo j+poj~oo)
+P(e /2m c)e,jo(x g'P +P x l )(BBoo/Bxog)

+P(g 8„/2mrc)s; (BBoj//Bxo, ), (4)

where e=g e is the total charge on the nucleus. From
Eq. (2) one fgnds that

/ / / /
pa j xag +xaj pag

=g'm h gQ„(2mp) 'pp' pp'+h, x x„g'],

and so, as a consequence of Eq. (3), this quantity is

zero in the block being considered. The last two terms
in Eq. (4) now may be combined together in terms of
the total g factor for the nucleus. For the states under
consideration, as an application of the signer-Eckart
theorem, the g factor is de6ned by

PL(e /2m. c)x.'Xy. '+(g.e„/2m, c)s.]
= (ge,/2m„c) J'. (5)

The result is

md'xo/dt' = eE0+ (e/2c) P (dxo/dt) X Bo
—B0X (dxo/dt)]+ (ge„/2m„c)V'0( J' Bo), (6)

for the acceleration equation.
This process leads to these equations of motion for

J' in the Coulomb gauge:

dJ /dt= —P(e /mc)e g, x ~x&z'gPoj(BAo& /BxooBxo'g)

+p e 0'g, x 'x g'(B'italo/BxooBxog)

+eij& (ge~/2m~c) J Bo&.

It is clear that J' is not an appropriate variable to
describe the internal sects because it depends on the
gauge. A better choice is the physical internal angular
momentum, de6ned by

g =P (m.e;,ox. (dx.o'/dt)+s. ;]
P eac e;joxaj jl g(x~).

The time derivative of this extra term can be evaluated
by the same methods, and then one finds

de /dt=P(e. /2mc)x „'x.g'[Po'(BB0./Bxol)

+ (M or/Bxog) po po (B&0 /—Bxog) (B'&0;/Bx—og) po ]
—g 8 e ox x'l (BEok/Bxog)+e''k(ge„/2m c)J Boy. '

The quadrupole moment q for the states in question
may be de6ned by

P ea(xai xaj sBgjxa )
=t'J J +J J,' sory,;hsI(I+1)]—(q-/2Ih). (7)

The connection between this notation and Blatt and
%eisskopf's' is

q=Q/h(2I —1).

Now the internal coordinates can be eliminated in favor
of q and the charge radius r,

pe x 's=er',

so that the equation of motion becomes

drl /dt= (q/4mchI)(J„'Jl'
+J 'J,')vapo, (BBo,/Bxo )+ ~ ]
—(q/2Ih)e;o (J 'Jl'+Jg'J ')(BEoo/Bxog)

+e;jo(ge~/2m, c)J Boo
—(1/3c) t ers —h (I+1)q]( (2m) gppo l (BIt0—;/Bxol)

+ (BB0;/Bxol)Pol]+ BIto,/Bt),
~ J. M. Blatt and V. F. Weisskop~, Theoretira/ 1Vzfcleur Physics

(John Wiley R Sons, Inc. , New York, 1952), p. 28.
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Nu+o;;o O~Boo, (9)
28$pc

where again second-degree terms in the 6elds have been
disregarded. Equation (6), with J' replaced by Ii'tO on
the right, and Eq. (9) form a set of coupled difFerential

equations for xp and Q of the desired type.
The corresponding classical equations are found

simply by disregarding commutators. The results are

5$d xp 8 dxo
=eEp+- XBo+tlVo(0 Bo),

dP c d3
(10)

where the homogeneous Maxwell equations,

Vp Bp=0, VpXEp+c 'BB—o/Bt=0,

have been used. This result suggests that one should
define the polarization operator 0 for the nucleus to be

O;= (g + (1/3c)t er' —h(I+1)q jBo,)/II't, (8)

since it has equations of motion independent of the
charge radius:

dO; q (dxp, BBo BBo„dxo,' dxp„BBp;=—(O„Oi+OiO, ) i +
dt 4c 5 dt Bxpi Bxpi dt dt Bxpi

BBp; dxp, ) BEoo
i+-', qo;„o(O„Oi+OiO )

Bxoi dt ~

with the requirements

Ntlt = —iq

N„T„=0.

(13)

(14)

dT„ tI, (ti e )
FpgTcr+) ~upuoFo~T~

dr Ih (Ih escl

8F„. tj ) BF„.
+qT, T.+ q+ — ~u„u„T,— T„(16)

Bx, pmc)
"

Bx,

do have the correct nonrelativistic limit. Here Ii and
are the electromagnetic 6eld tensor and its dual,

I" ~-= &;pa&I, ~'4= —~4 = —&~;,

~sg =&g~~I ~4 = —~
Also Eq.~(15) implies that

F44 ——0,

P D 0

as.,~
—',mc—(u,u„)= (1+u„u,)ttu, u, T„

d7' 8x~

These last two equations are implied by the definitions
of I and T.

It is easily seen that the equations

dup ( BF~o BFgo
~pic =eF„,uo+p~ u. To+u„u,u. To ~, (15)

dr k ax, ax, i

dO p=—OXBo
dr Ik

so if Eq. (13) applies at the start it is valid forever.
ft is consistent therefore to postulate that Eqs. (13),
(15), and (16) all apply. Then one finds that d(u„T„)/dr

1 dxp is a factor times u„T„so that Eq. (14) is also consistent.

+q(0 Vo) OX~ Eo+- XBo ~, (11) Equations (13) to (16) therefore all together give the
cdt )J solution of the problem. It is seen that

where
u =c 'dx /dr=c'y-dx /dt, -

v=(1—+) ',

r is the proper time, and v is dx/cdt. (In this section
the zero subscripts are left off and the Greek indices
run from 1 to 4, x4 being ict.) The polarization is
de6ned to be a I,orentz four-vector with components

(0,0) in the instantaneous rest system of the particle.
This means that T and 0 are related by

T=O+y'(y+1)-'0 vv, T4 o&0 v. (12)——
The problem is to find covariant equations of motion
which reduce to Eqs. (10) and (11) when terms propor-
tional to c ' are disregarded and which are compatible

where p= (ge~IA/2pio„c) is the magnetic moment.

IIL RELATIVISTIC EQUATIONS OF MOTION

In making the relativistic generalization of Eqs. (10)
and (11) it is convenient to use as dependent variables
the dimensionless velocity I and the polarization T .
The velocity is defined by

dO ti 1
=—-QX (M+qN)—

dh IA y mc
OXN

p, i
+ — OX (vX V)0. (M+~N)

sec (y+1)
7 8

+qO V+ vX(vXV)+v 0
'r+ 1 cBI,

X (E+yv XM), (18)

d(T„T„)/dr =0,

so that the size of the polarization vector 0 is an

integral of motion.
It is clear that the auxiliary conditions make the

equations of motion redundant and that actually only
three orbit equations and three polarization equations
are needed. If v and 0 are used as dependent variables,
the equations of motion are

mcd(yv)/dt=eE+evXB+pyLV+vX (vXV)

+v(8/c8t) jO (M+yN), (17)
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where
M= 8+y(y+ I)-'EX v,

N=y(p+1) '(E+vXB)Xv. (20)

Here the partial derivatives V, 8/r)t operate on the
fields E, 8 as functions of space and time.

Ii = ehI/nzc. (21)

Actual nuclear moments are about this size or smaller.

Analogously, there is a special value of the quadrupole
moment for which the last term in Eq. (16) is zero.
One 6nds

Q = —(2I—1)p (II/mc). (22)

Actual nuclear moments are usually large compared
to this value.

There is a limitation on the usefulness of a classical
approximation carried out to include field-gradient
terms this way. Considering Eq. (10) for example, one
sees that, in treating the second term on the right
classically, the commutator between the terms ec 'Bp;
and dip, /dt is disregarded. This commutator amounts to
(eh/mc)r)Bp, /r)xp, However, .the third term on the right
amounts to (ge„IA/2m~c) r)Bp /r)xp& The'refore . the
quantum-mechanical effect of the distortion of the
wave packet by the external 6elds is of the same order
as the effect of 6eM gradients on the average position
of the packet. This is exemplided by Niels Bohr's
argument, quoted by Mott, ' against the possibility of
observing a Stern-Gerlach effect for electrons. If the
charge or the magnetic 6eld gradient is zero, this

6 N. F. Mott, Proc. Roy. Soc. (London) A124, 425 (1929).

IV. DISCUSSION

Although a nuclear system was considered especially
in Sec. II, it is clear that the same arguments apply to
an atomic system as long as the assumptions listed in
the Introduction are valid. Also Eqs. (10) and (11)
hold for an electron or nucleon if q is set equal to zero
and 0 replaced by e; the results of Sec. III can therefore
be applied for those cases also.

It is already known' that in the classical treatment
of polarization there is a special magnetic moment for
which the second term on the right in Eq. (16) is zero.
This moment is

limitation is not there and, in any case, it is felt that
these equations will be useful in estimating and visual-
izing the effects of field gradients.

One may ask when it is sensible to disregard the
second-degree 6eld terms, especially since it is the fields
in the rest system of the particle that are pertinent.
To discuss this, it is convenient to use units such that
m„, e„, c are 1. Nuclear angular momenta and magnetic
moments are of the order of 5=137. The unit of
distance is (e„'/m„c')=1.5X10 " cm so nuclear dis-
tances are 10' or 10'. However, the unit of electric or
magnetic field is (m ' c/e~') =2X 10" gauss. Thus
laboratory 6elds are much smaller than can ever be
compensated for by factors depending on the nuclear
structure and it is sufhcient to keep only linear terms
in such fields. On the other hand, the electric field of a
nucleus near the surface is about 10 ' and, for phe-
nomeDa depending on such fields, the higher degree
terms may not be neglected.

Classical equations of motion for particles with
intrinsic quadrupole (and higher order) moments have
been found by Havas, ' using an entirely classical
approach. The problem he considered is somewhat
different than the one treated here and his equations
of motion differ from those given in Sec. III mainly in
two respects: (1) He obtains quadrupole contributions
in both the translational and rotational equations
whereas here, since only first-order field gradients are
retained, there is a quadrupole contribution only in
the rotational equation. (2) Here, elementary particles
without quadrupole moments are considered and the
quadrupole moment of the composite particle is an
aspect of the. charge distribution of the system. On
the other hand, Havas allows for particles possessing
intrinsic quadrupole moments of different types, not
necessarily limits of distributions such as those con-
sidered here, and thus he is led to several alternative
sets of equations of motion.
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