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crystal is normally considered to be in the F&'+& elec-
tronic state (single Slater determinant with all orbitals
doubly occupied), in which the linear term in (1) can be
taken to vanish. If a "con6gurational instability" mech-
anism applies to these phenomena we must then ask
which degenerate state or states are involved and which

normal modes excited. We thereby focus attention on
interactions heretofore largely ignored.
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A variational expression for the binding energy of a single electron coupled simultaneously to a Coulomb
potential and to a longitudinal optical mode phonon field, is obtained using the Feynman path integral
technique. No assumption is made about the strength of the couplings. The binding is explicitly evaluated
by numerically minimizing the variational expression for a set of physical parameters which correspond to
cadmium sulfide. The effective mass of the electron in the periodic potential is retained as a parameter and
is determined by matching the observed binding to the variational result. An effective mass of 0.2m, is found
to give good agreement. The results of the variational calculation are found to be consistent with a perturba-
tion treatment of the phonon interaction.

INTRODUCTION

N electron in the interior of a crystal interacts with
its surroundings. In many cases of practical

interest the coupling between the electron and the longi-
tudinal optical modes of vibration of the crystal lattice
is suSciently strong so that the usual perturbation tech-
niques do not apply.

In this paper we make use of a variational path
integral formulation, similar to the one enployed by
Feynman, ' to compute the ground-state energy of a
single electron coupled simultaneously to an attractive
Coulomb potential and a longitudinal optical mode
phonon 6eld. . No assumption is made concerning the
strength of the coupling. The crystal is treated as a
polarizable continuum and the eGect of the periodic
potential is replaced by an effective mass.

In Sec. I, a variational expression for the energy is
obtained. and its various limiting forms are discussed. In
Sec. II the binding is explicitly evaluated by numeri-
cally minimizing the variational expression for a set of
physical parameters (high-frequency dielectric constant,
low-frequency die1ectric constant, and optical-mode
phonon frequency), which corresponds to cadmium
suldde. In Sec. III the phonon interaction is treated by
the usual weak coupling methods and the equivalent of
the nonrelativistic S-state Lamb shift for the electron-
phonon 6eld is computed.

I. VARIATIONAL EXPRESSION

The Hamiltonian characterizing the interaction of
an inlnitely heavy singly charged ion and an electron

' R. P. Feynmsn, Phys. Rev. 97, 660 (1955), hereafter to be
caGed I.

coupled to a phonon field is taken as

H =Hp+N+H, +Hr,
with

(1a)

Hp ——P'/2, (»)
(1c)

H.= e'/re„, — (1d)

and, ~0, ~„are respectively the static and high-frequency
dielectric constants of the medium.

Hr= (V »)ig P——Latria(e-~'x —1)~E —aa (e+~'x —1)g. (1e)

In this expression at~ and e~ are the annihilation and
creation operators for the phonons. The phonon fre-
quency is assumed to be independent of the wave
number. The momentum of the electron is P and its
coordinate is I; V is the crystal volume. The ion is
assumed localized at the origin; hence the —1 in H;. Our
units are such that A, the frequency of the phonon's co,

and the mass of the electrons rN (in the periodic poten-
tial), are unity. Conventionally g is defined in terms of a
quantity a.

g—= (2v2mn)»,

where 0. in ordinary units is given by

1) e' (2~)»
2(e„ep)A 5 A ) '
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This result is precisely the value obtained by fitting the
"hydrogen atom" problem by using a Gaussian trial
wave function in the usual variational approximation.
The Gaussian wave function is an eigenfunction of the
model problem, and the "Feynman Variational Prin-
cipal"4 is identical to the usual variational principle for
an arbitrary 6xed central potential in 5&. It is approxi-
mately 13%higher than the true value —P'/2 (in these
units).

Unfortunately, as in the case of the free polaron
problem, the second term in Eq. (9) cannot be evaluated
analytically. However, it is possible to discuss some
interesting limiting cases. Consider first the case of
vanishingly small P; in this limit X —+ 0 and we may
expand the square root in (11)to obtain an approximate
expression for v~ and v2.

sir=sr vs= (W/v)Xl. (16)

If subsequently the terms in Eq. (5) are expanded to
first order in tis (i.e., X&), we find

E=Et, +-,sash —2Psr
—

&(ri/W)ris&, (17)
where

n /'W)s "y'e &dy (ti' —W')
1—

3y~& z 1, LG(y)]'* v'

The second two terms in Eq. (17) correspond. to the
binding energy of our weakly bound polaron. To order
p' Eq. (17) may be minimized with respect to ti& using
free polaron values for v and 8' and the result is

E Ei,, —(4/3s—r) (ti/W——)'(1/6). (19)

In the weak coupling polaron limit small n,

E Ef = —(4/3sr)P'L1+n/6+8(n')] (20)

while in the strong coupling polaron limit, large 0.,

E E„„=—(4/3 )PsL—16 /(Ssr )1. (21)

In both cases the weak central potential limit gives us an
eRective mass correction to the zero order variational
6t to the binding. '

Secondly we give the expression in the strong central
potential limit (P —+ oo). In this case X))ri and W and
we And,

E= —(4/3sr)P' —(4/3Ã)Pn —3 (1112)/2P
—n'/3sr+ O (1/P'). (22)

TABLE I. Results of minimizing the variational expression for
the energy.

(m/m. ) —E/tko Etree/terr Eionieeitton/tier

0.46
0.65
0.79
2.0
3.0
5.0
7.0
9.0

0.1
0.2
0.3
1.9
4.3

11.8
23.4
38.4

0.81
1.37
1.95

10.7
23.4
64.4

125.7
215.7

0.45
0.63
0.78
2.0
3.1
5.4
8.1

11.5

0.36
0.74
1.17
8.7

20.3
59.0

117.6
204.1

ing to cadmium sulfide were chosen and Eq. (9) was
minimized on an IBM 7090 computer using a 15-
point Laguerre integration formula for the single
numerical integral appearing in the calculation. The
binding energy is then a function of es, e„, A&o, and ttt the
effective mass of the electron. The ratio ttt/rtt„where
m, is the "bare electron mass, "was retained as a param-
eter and the values &0=9.1, e„=5.3,4 and A~=0.038 ev
were chosen. ' The experimantally observed binding is'
0.032~0.002 ev. In conventional units,

P = (1/es) (27.2/Ato) &(ttt/rtt, )&, (23)

n= L(es—e-)/(«e-) 3(136/&~)'(~/~ )' (24)

The results of the minimization appear in Table I. In
all cases W was fixed and the function minimized with
respect to the two parameters K and v. The results were
insensitive to the values of E and v chosen.

The energy evaluated at no=0.2m, seems to be in
reasonable (10%) agreement with the experimental
value of 0.82+0.03(tttto). Hypothetically high values of
the mass ratio were chosen to determine where the
energy started to deviate from linearity. For values of
a up to aboutt 2, the binding energy is nearly linear
scaling with the bare mass. For values of o, larger than
two, the magnitude of the binding energy decreases
more rapidly; however, it does not decrease nearly as
fast as an eRective mass correction would indicate. The
effective mass gets extremely heavy very rapidly for 0.

above 2 (see Table II). We conclude then that for
values of the ratio of p/n of the order of unity and for
couplings n of unity or less, there are to within 10%
no explicit polaron effects (weak coupling results
are valid). The real parameter in the electron phonon
coupling is not n but rather n/6 or n/10 as in the free-

II. NUMERICAL EVALUATION OF
GROUND-STATE ENERGY TABLE II. Tabulation of effective mass values.

For intermediate values of P and n Eq. (9) must be
minimized numerically. A set of parameters correspond-

met i/m .1.31 1.8 3.8 14.2 62.5
' S. J. Czyzak, W. M. Baker, R. C. Crane, and J. B. Howe,

J.Opt. Soc. Am. 47, 240 (1957).
~ This is not a self-evident statement. In fact 'it is probably not

true for intermediate values of cx. It is true of course that there is an
an effective mass correction to the exact hydrogenic binding
energy for all values of u.

~ R. J. Collins, J. Appl. Phys. 30, 1135 (1959).
r W W. Piper and R..E.Halsted, Proceedings of the International

Conference on Semiconductors Physics, Prague, 1NO (Czechoslo-
vakian Academy of Sciences, Prague, 1961),Vol. 2.
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polaron case. H the hydrogenic binding energy is small
compared with the phonon energy (Ace), then to lowest
order in this ratio the bound-polaron system is hydro-
genic with the bare mass replaced by the polaron mass.
For binding energies of the order of Aco the results of the
variational calculation indicate that use of the eRective
mass is a good approximation at low 0, , however, as we
could have expected, it over corrects for a fixed P/n and
large 0.. Crudely speaking, binding to the center is
proportional to (rn/m, ) whereas the coupling to the
phonons is proportional to (m/rn, )&. The electron in a
"tightly bound orbit" has too high a velocity to be
characterized by an effective mass. In fact, in the limit
of strong central binding it fails to polarize the lattice at
all. In this limit one should have a hydrogenic like
system characterized by ~„and the bare mass of the
electron.

IIL PERTURBATION TREATMENT OF THE
PHONON INTERACTION

g2

DE2 ————
(2~)'

d'K (il e-~'x
I n)(nl e+er'x li)

. (25)(E„E,—+1)

Here E„are the energies of the hydrogenic intermediate
states. The denominator may be expanded as

(E„—E;+1)
(E„E; —K'/2—)

(26)
(1+K'/2) (E E;+1—) (1+K'/2)

The first term in Eq. (26) yields the first-order self-
energy of a free polaron and must be subtracted from
582 to give the shift in the binding. Subtracting this
term and expanding the denominator once more we find
that

In the vreak phonon coupling limit the second order
energy shift of an S-like hydrogenic state is where

AE2 Ei„.=E—'+E",

(2s)'

d'K(E.—E'—K'/2) &il e ~'
I n) &nl

e+~'x li)

K'(1+K'/2)'
(27)

g2

(2')'

daK(E„E;—K'/2)'(—i
I
e ~'x

I n)(n I
e+'x'

I i)

K'(1+K'/2) '(E —E;+1)
(2g)

E' may be shown to be zero, since Since (i
I

is an 5 state,

Z(E.—E')(ile-~'ln)(nle+~'I') &ilH(P+K) —H(P)li)=(ilK'/2 —K Pli)=K'/2. (30)
t Ir - x~a+~ xl S E"is negative definite and may be bounded by replacing

=(ilP(P+K) —H(P) li). (29) E„E,in the denominat—or of Eq. (28) by zero.

g2 (E E; K—'/2)'—&il e ~'x
I n)(n

I
e+~.x li)

0&—E"& P d'K
(2s)' K'(1+K'/2)'

(31)

g' de
i (K'P' 3 i

(2s.)' K'(1+K'/2)'(E E; K'/2—)'&iI e— ~
lx)& l

n+~e' lxi)

= &i I (K P)'li) (32)

The sum over intermediate states may be done as in the state energy:
previous case by expressing it as an integral over a
double commutator,

The result is that

0(—E"(P'/3. (33)

g2

(2s)' K'(1+K'/2),

If we expand the denominator once again and neglect
terms of order (E„—E;—K /2)4 we arrive at an expan-
sion in P for the perturbation correction to the ground-

E2 BV(r) 8
X i —V2V(r) —K

3 Br Br
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For the ground state the integrals are easily evaluated
to yield

The first term is precisely the effective mass correction
since —P'/2=Esrq s, . The second is a Lamb-shift-type
correction for the phonon perturbed system. For P(1,
the "Lamb-shift"-like corrections are small; they are of
the order of 10-15% of the hydrogen binding even
for 0.'s of the order of unity. We might have expected,
from order-of-magnitude arguments, corrections due to

phonon coupling of the order of the hydrogen binding
energy itself.
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Measurements of the infrared absorption spectrum of compen-
sated and uncompensated heavily doped n-type germanium at
80, 200, and 295'K are reported. The edge absorption in the
doped samples differs strongly from the edge absorption in pure
germanium. Both the indirect and the direct energy gap change
with doping. The change depends on the total impurity concen-
tration Nz+Nrs approximately as (Nz+Nn)& For Nx+. Nr&

=4.7X10"cm—' the change of the indirect gap is about 0.07 ev,
the change of the direct gap about 0.06 ev. The absorption due

to indirect transitions rises more rapidly with the photon energy
in n-type germanium than in pure germanium. This extra absorp-
tion is proportional to the free electron concentration and must
be due to virtual electron-electron scattering between the (000)
and (111)valleys.

It is shown that the effective electron density in heavily doped
n-type germanium is larger than in most metals. The properties
of the conduction electrons in germanium with n&10'9 cm I
correspond to the properties of a dense electron gas (r, &1).

INTRODUCTION

HE optical properties of very pure germanium
have been studied extensively, and a great deal of

information on the band structure of this semiconductor
has been obtained. ' ' Extensive studies have also been
made of the energy states associated with impurities
in not too large concentrations. ' Recently, the appli-
cation of tunnel diodes has stimulated interest in the
properties of heavily doped semiconductors. A number
of optical studies on these "dirty semiconductors" have
already been published by Pankove' ' ' and by Car-
dona. ' '

In a heavily doped n-type semiconductor the localized
impurity states have disappeared, and the conduction
electrons may be regarded as a dense degenerate electron
gas perturbed by the presence of charged impurities.
Electron-electron interaction in such a situation be-

'T. P. McLean, Progress in Semiconductors (John Wiley Bt
Sons, Inc. , New York, 1960), Vol. 5, p. 52.' B. Lax and S. Zwerdling, Progress srs Selsscossdgctors (John
Wiley tk Sons, Inc. , New York, 1960), Vol. 5, p. 221.

'W. Kohn, Solid-Stute Physics, edited by P. Seitz and D.
Turnbull (Academic Press Inc. , New York, 1957),Vol. 5, p. 258.' J. I. Pankove, Phys. Rev. Letters 4, 20 (1960).' J. I. Pankove, Phys. Rev. Letters 4, 454 (1960).' J. I. Pankove, Ann. phys. 6, 331 (1961).' M. Cardona and W. Paul, Helv. Phys. Acta BB, 329 (1960).

s M. Cardona and H. S. Sommers, Jr., Phys. Rev. 122, 1382
(1961).

comes important, giving rise to electron correlation and
exchange energies just as in metals. As a result, the
one-electron approximation will no longer give an
adequate description of the properties of the system.

In this paper we report measurements of the absorp-
tion spectrum of heavily doped n-type germanium.
The results are discussed and some conclusions per-
taining to the band structure of heavily doped ger-
manium are drawn.

EXPERIMENTAL PART

Single crystals of I-type germanium doped with
various impurities were pulled from a melt containing
the required dope. Donor and acceptor concentrations
Ã~ and X~ in these crystals were determined by
chemical analysis. The free-carrier concentration n was
found from the Hall coeKcient R~ and the formula
Rrr= (ert) '. The relation rt=Ers 1V» was fu—lfilled. in
all cases within the experimental error. %e remark that
heavily doped crystals may contain precipitates and
regions with an inhomogeneous impurity distribution
as a result of "constitutional supercoo1ing" during
crystal growth. ' These regions are easily identihed by
etching. For the optical measurements crystals free
from such precipitates were used. The impurity concen-
tration in the crystals used is given in Table I.

' J.A. M. Dikhotf (private communication).


