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Microwave Absorption in Cubic Strontium Titarlate*
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An analysis of the temperature dependence of the microwave loss in SrTiO& is presented using the linear
chain model of a ferroelectric as a basis for discussion. It is shown that a plausible explanation of the tem-
perature dependence of the microwave loss tangent above liquid air temperature is possible if one considers
the loss to be due to the damping of a virtual excitation out in the wing of a fundamental lattice absorption.
The fundamental lattice absorption is associated with a low-frequency "ferroelectric" transverse optical
mode of the material. The microwave loss tangent can be expressed by tanb= (T Tc) '—(A+BT+DTs).
The parameter A is a measure of the damping due to the presence of imperfections in the lattice. The parame-
ters 8 and D are shown to arise from damping due to three- and four-phonon processes whose origin is attrib-
uted to the anharmonic interactions of the lattice.

I. INTRODUCTION are
(Nq') (pop' —res)
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ECENTLY Rupprecht and Bell have measured
the dielectric constant and loss tangent of single-

crystal strontium titanate above liquid air temperature
and at microwave frequencies. ' Their results are pre-
sented in the preceding paper in this journal. In the
present paper it will be shown that a plausible ex-
planation of the origin of the temperature dependence
of the microwave loss tangent is possible, if the para-
electricity of strontium titanate is regarded as origi-
nating from a low-lying temperature-dependent optical-
mode frequency. ' The relationship between this mode
and the properties of Che ferroelectric and paraelectric
state has been previously discussed by Anderson, '
Landauer, Juretschke, and Sorokin, ' and Cochran. '

A transverse microwave radiation 6eld will drive the
low-lying transverse optical mode of the material in a
forced vibration. Energy is transferred from the electro-
magnetic iield to this lattice mode and is then degraded
into other vibrational modes of the material. That this
is the likely origin of the observed microwave loss can
be shown by the following considerations. A uniform
density X of viscously damped harmonic oscillators
has a complex dielectric constant e, given by

(1.2)
(Nq') pry

Em/( o' —')'+ ''
Imagine a situation for which

(a) ceps»op,

(b) Nq'/srscpps»1,

(c) ~o'-(r ro). —

T is the absolute temperature and Tp a constant to be
identiied with the Curie temperature. The dielectric
constant and loss tangent are then

e'=Nq'/~os-1/(T Tc), s'&&1—,

tanb= e /e =ary/Pops —osy/(T —Tc).
and

e 1=E(Nqs/~—)/~os &+~—
q is the charge on the oscillator, ns is the oscillator mass,
coo is the resonant frequency, co is frequency of the
applied electric 6eld, and y is the damping constant.
The real and imaginary parts of the dielectric constant
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Equations (1.3) and (1.4) describe the observed
behavior of strontium titanate quite well. The di-
electric constant exhibits no relaxation at the highest
microwave frequencies employed (35 kMc/sec). This is

(1.1) believed to result from the appreciable difference
between the microwave frequency and natural fre-
quency of the oscillator (condition a). The dielectric
constant is very large when compared with the micro-
wave or dc dielectric constant of other nonparaelectric
crystalline materials, e.g., the alkali halides. This can
be explained by an anomalously low natural fre-
quency s (condition b). These considerations show
that the results of experiment roughly determine an
upper and lower bound for the low-lying transverse
optical-mode frequency. It must be su%ciently low
compared with the frequencies found in nonpara-
electric materials to yield a high dielectric constant;
however, it must be suKciently high compared with the
microwave frequencies involved since no change from
the dc dielectric constant is observed. The temperature
dependence of this frequency leads to the Curie-Weiss
behavior of the dielectric constant4s (condition c).
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One contribution to the loss tangent of strontium
titanate obeys a Curie-Weiss law as does the dielectric
constant, (Figs. 1 and 5 in reference 1). It is seen that
a temperature-independent damping constant gives a
result in agreement with this observation. The possible
origin of this damping will be discussed in Sec. IV. At
higher temperatures the loss tangent deviates strongly
from any Curie-Weiss type behavior. At the highest
temperatures it increases linearly with temperature
(Fig. 1 in reference 1).This behavior can be understood
if one assumes that at these higher temperatures,
lattice anharmonic interactions contribute appreciably
to the observed loss. Specifically, a fourth-order
anharmonic interaction treated in lowest-order or a
third-order anharmonic interaction treated in next-to-
lowest order may be held responsible for the observed
temperature dependence of the damping constant y.
These interactions will produce a damping constant
which is a quadratic function of temperature,

and therefore [using Eq. (1.4)j
tanb-re&/(7 —1"c). (1.6)

At temperatures high compared with Tg this gives a
linear dependence of the loss tangent on temperature
which is in agreement with observation. It is interesting
to note that the temperature dependence of the damping
constant of some alkali halides has been found to be
proportiona1 to the square of the temperature at high
temperatures. 6 The anharmonic damping in strontium
titanate wi11 be discussed in greater detail in Sec. V.

The preceding discussion in the main also applies to
barium titanate in the paraelectric state. The observed
loss tangent of barium titanate however is some orders

For an interesting discussion of this point see page 457 of a
work by A. A. Maradudin and R. F. %allis, Phys. Rev. 120, 442
(1960).

of magnitude larger than the strontium titanate value. ~

Consequently, it is believed that anharmonic damping
is not observed in a loss tangent vs temperature plot
for this material since these interactions contribute a
negligible amount to the loss over the entire tempera-
ture range of measurement. It is possible that the intro-
duction of a chemical catalyst to facilitate a phase
transformation from the hexagonal to perovskite
modi6cation is responsible for the large value of the
loss tangent. Strain is another possibility to be
considered.

The origin of conditions (a), (b), and (c) is essentially
explained by a theory of the ferroelectric behavior of
barium titanate proposed by Slater. ' Slater assumed
that only the titanium ion can move and is therefore the
only ion contributing a lattice part to the polarization
of the medium. In Slater's theory the large value of the
dielectric constant results from an almost complete
cancellation of the short-range restoring forces on the
titanium ion by the long-range Coulomb dipolar forces.
This feature together with a slight linear temperature
dependence of the short-range restoring force on the
titanium ion leads to a Curie-Weiss behavior of the
dielectric constant. To help make explicit some of the
points presented in the preceding discussion, a simpli-
fied model of the perovskite structure will be introduced.
This will make possible an investigation of certain
aspects of the origin of the microwave loss. The non-
irreversible properties of the model will be obtained in
a manner analogous to that of Slater.

The model to be considered is as follows. The
titanium and oxygen ions are coupled along chains in
the [100j, [OT07, and [001]directions of the unit cell.
The oxygen ions are constrained to move only per-
pendicular to the unit cell face on which they lie. The
titanium ions are allowed a displacement in an arbitrary
direction; however, the component of motion along one
chain is taken to be uncoupled from motions along the
other chains. In other words, shear forces are neglected.
The strontium ions are assumed to be axed in position
and in the following treatment serve only to space the
oxygen and titanium ions, and to constrain the motion
in the manner described. This model will allow the
motion of the titanium and oxygen ions to be described
simply by a superposition of the modes of a linear chain.
The origin of the microwave loss can then be discussed
in terms of the damping of a linear chain. Figure j.
shows the k=0 optical mode displacements. This is
just the mode in which a uniform polarization is
generated and will subsequently be called the uniform
or polarization mode. Only external Gelds applied along
the [100j direction will be considered. This will limit
the analysis to the dynamics of one chain. The existence
of the chains in the three directions will, however, yield
a theory which is isotropic. The propagation vector x

T. S. Benedict and J. L. Durand, Phys. Rev. 109, 1091
(1958);E. Stern and A. Lurio, r'bid 123, 117 (196.1).

s J. C. Sister, Phys. Rev. 78, 748 (1950).
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of the transverse microwave radiation field is chosen 'o
lie in the $001]direction. This field drives the transverse
optical mode of the system in a forced vibration. The
driven mode is composed of ionic displacements along
the L100] direction since this is the direction of the elec-
tric Geld. The absolute value of the propagation vector

is suKciently small to enable one to neglect the
phase difference between the chains over a domain of
dimensions large compared with the lattice parameter
but small compared with the sample size. It is just over
such domain that periodic boundary conditions are
imposed on the chains. The investigation of the tem-
perature dependence of the microwave loss tangent
reduces essentially to an investigation of the damping
of the k=0 mode of one of the chains. ' In other words,
the microwave loss in SrTi03 will be investigated by
considering the damping of a linear chain. The neces-
sary three-dimensional aspect of the problem (the inclu-
sion of the long-range dipolar interaction) is obtained by
assuming that all the chains are driven in phase by the
electric Geld over a small region of the crystal. The effect
on the local Geld by the dephasing of the chains outside
of this region is zero for a mode of transverse polari-
zation.

For the very simple model we are to consider, the
masses of the titanium and oxygen ions are chosen
equal; the ionic charges of titanium and oxygen are
taken to be equal in magnitude but opposite in sign;
an equal electronic polarizability is attributed to each
ion.

po'=uEi o, pr =u~E& r'. (2.1)

The electronic polarization due to each of the ions is

Po'= (u/Sd')Ei o, PT = (u/Sd')Ei T'., (2.2)

Sd' is the volume of the cubic unit cell, where d is the
nearest-neighbor distance between oxygen and titanium
ions. The local field at each of the sites can be written'

To be precise, this mode which is coupled directly to the
radiation 6eld is not the k =0 mode. It is a mode for which k =0,
To distinguish between longitudinal and transverse mode fre-
quencies, one must take into consideration the 6nite wavelength
of this mode. Once this distinction is made, however, the mode can
be treated as the k=0 mode since its wavelength is very large
compared with all the other modes of interest. For a more detailed
discussion of this point see E. W. Kellerman, Phil. Trans. Roy.
Soc. 238, 513 (1940); T. H. K. Barron, Phys. Rev. 123, 1995
(1961).

II. LOCAL FIELD

A uniform polarization developed along the L100)
direction will contribute to the local electric field at
each site. In what follows, contributions to the local
electric Geld from oxygen ions not lying on the chains
in the L100] direction will be neglected. The electronic
dipole moment of each ion can be written in terms of
the polarizability cx and the local fields:

5'
E),.o =E' +-Po+ Pr;,

3Ep 36p

b'
E),,r'= E+ Po+ Pr;, Lb'= 8.182).

36p 3tlp

(2.3)

E is the macroscopic or average Geld, ep is the permit-
tivity of free space, and P is the polarization due to the
ion designated by the subscript; this includes a lattice
and an electronic part,

P= P'+P'. (2.4)

III. DIELECTRIC CONSTANT

The energy of a chain lying along the direction in
which the field is applied is fusing Eq. (2.6)]
IIp ——-', m Q; (xP+uP}

+-',EQ;((x;—I~i)'+(x —I i)'}
+ (Ne/b) [Ee'"+(aP'/2 op)) P;(x;—u;) (3.1)

x; and I; are the displacements from equilibrium of
the ith oxygen and titanium ions, respectively; e is
the number of electronic charges on each ion; 8 is the
amplitude of the applied field of frequency co, m is the
mass of each ion; E is the spring constant coupling for
nearest neighbors.

The Hamiltonian is next written in terms of the
complex normal coordinates qI,

x;=(2') &Pp(qp —qp') exp(ikX );
I;= (2/m) 'Q&(q& +q&o) exp(pkU ) (3.2)

—pr/2d &k &n./2d.

X; and U,' are the equilibrium positions of the oxygen
and titanium ions, respectively.

Substituting Eq. (3.2) into Eq. (3.1), we obtain

IIo=-;QpQp p-a+(~p)'qp q p)
+-', Q~o Q p'p p'+(~p')'qp'q-a')
+p L'(Po')'+cur (qo')'] —(ne/b)Ee'"'(21Y'/m) &qp', (3.3)

with
(or'= (~po)' ——,'( eN)' a/pmpd'b,

~P= (4I'C/nz) & sin(kd/2),

(apo ——(4E'/nz) & cos (kd/2).

(3 4)

(3 5)

Consistent with the linear chain model, the lattice
polarization of each sublattice acrid the local fields at
the two different sites are equal. Equations (2.3) reduce
to

E)., E+(a/pp)——P, a=(1+b')/6. (2.5)

Combining Eqs. (2.2), (2.4), and (2.5) the local field
can be written in terms of the lattice polarization only,

Ei = (1/b) LE+ (a/po)P'], b= $1—2ua/Sd'pp]. (2.6)

The constant b characterizes the electronic contribution
to the local Geld.



i924 B. D. SI LVERMAN

p» is the momentum conjugate to q». Equation (3.5) is
just the usual dispersion relation for a monotonic chain
with only nearest-neighbor coupling. The separation
into acoustical and optical modes is performed merely
to assist in interpreting the results of this analysis. The
more familiar Brillouin zone of wave vector interval
s./d has been folded about the value s/2d. Modes of
wave vector less than s/2d are called acoustical
Modes of wave vector greater than s/2d are called
optical. For a diatomic chain these two branches are
separated since there is a discontinuity at s/2d.

It is seen that the dipolar Geld reduces the frequency
of the k=0 optical mode PEq. (3.4)j. This is the mode
in which the two diBerent type ions move 180' out of
phase and produce a uniform lattice polarization. In
general the dipolar 6eld will modify the frequencies of
all the modes. Our treatment does not include this
featur- only the modiGcation of the k=0 optical mode
appears. This occurs since the local Geld has been taken
to be proportional to the polarization. Only the k=0
optical mode has a nonzero polarization associated with
it, since cyclic boundary conditions have been imposed
on the ionic motion.

A transition to the ferroelectric state occurs when the
polarization mode becomes unstable (rer —+ 0). This is
believed due to the cancellation of the short-range
repulsive forces by the dipolar forces. Cochran has
discussed this point in detail in a recent article. '

Using the Hamiltonian PKq. (3.3)j one can solve
for the motion of the system to obtain the polarization
and in turn the dielectric constant

2a (ee)' 1
e=1+ + (3.6)

8dsbes ~dsbses (~re —tes)

Only the uniform mode is involved in determining the
dielectric constant since all the modes are uncoupled
in the harmonic approximation. The first two terms
on the right of Kq. (3.6) are the square of the optical
index of refraction. The third term is the lattice con-
tribution to the dielectric constant which vanishes at
infinite frequency.

To obtain a Curie-Weiss behavior of the dielectric
constant we make use of an effective temperature-
dependent spring constant,

4E (nc)'a
$1+c(T Tc)j. (3.7—)

4&pmd'b

This relation is obtained (Appendix II) by including
the effects of anharmonic interactions on the spring
constant of the linear theory. The derivation presented
in Appendix II follows the work of Slater' very closely.
As the temperature is increased the ions experience an
increased restoring force or stiver spring.

From Eqs. (3.4) and (3.7) we obtain

(Ne)'ac
a&r' —— (T Ta). —(3 8)

4epeuPb

(me)' 1

4rndsb'ep ((or' —aP)
(3.10)

For all microwave pump frequencies whose square is
small compared with the square of the polarization
mode frequency (condition a, Sec. I) the dielectric
constant obeys a Curie-Weiss law,

e=C/(T Tc), C=—1/abc. (3.11)

This is obtained from Eqs. (3.8) and (3.10). A com-
parison of the two frequencies involved can now be
made under the least favorable conditions for the veri-
Gcation of condition a of Sec. I. We write the square of
the polarization mode frequency at liquid air tempera-
ture (77'K) and the square of the highest microwave
frequency employed (35 ltMc/sec),

te'= 5 X1(F/sec',
ter'= 5 X10ss/sec',

and therefore
aP/(ur'= 10—'.

So we conclud- if the large value of the dielectric
constant of SrTi03 is associated with a low-lying optical
mode frequency it is not surprising that no relaxation
of the dielectric constant has been observed in the
microwave range.

IV. IMPERFECTION DAMPING

One contribution to the loss tangent of strontium
titanate obeys a Curie-Weiss law (Figs. 1 and 5 in
reference 1). It has been shown in the introduction
that this behavior can be understood if the damping
of the polarization mode is assumed to be temperature

'o Since a phase transformation has been observed at about110'K by various investigators one is not certain as to the validity
of the present treatment below this temperature. For pubhshed
evidence concerning this phase transformation see K. A. Muller,
Phys. Rev. Letters 2, 341 (1959).

This temperature dependence of the polarization mode
frequency has been proposed previously4 ' and is
implicit in the work of Slater. A choice of the generalized
Lorentz factor a enables one to determine b and c from
experiment. The numerical determination of these
constants is discussed in Appendix I. The frequency of
the temperature-dependent polarization mode, written
in terms of the number of electronic charges per ion, is

ter ——8.5X10"I(T—Tc)~. (3.9)
For n=1, the wavelength of the radiation field required
to excite this mode is recorded for liquid air" and room
temperature:

320' at 77'K,

j.40@ at 298'K.

The optical value of the dielectric constant is small
compared with the microwave or dc value, essentially
condition b, Sec. I and, therefore, Eq. (3.6) is written
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Il; p=-', E' P. (x,—n,+i)'+-',E'P (x; I; i—)',
i, imp j,imp

E'=Er—K (4 1)

Only the first term on the right in Eq. (4.1) will be
considered since both terms will damp the uniform mode

independently. The calculation presented here and in
Sec. V is similar in procedure to that of Blackman'
who treated the damping of a diatomic chain by lattice
anharmonic interactions. Equation (4.1) is written in
terms of the complex normal modes [Eq. (3.2)] where

only terms contributing to the damping of the polari-
zation mode in lowest order are retained:

Z D(k)qp qo'
Xm I

D(k)= Q exp(ikX )(1—e'~ ).
i, imp

The total Hamiltonian is

&=&0+&imp~

(4.2)

where Hp is given by Eq. (3.3). The Hamiltonian is

next written in terms of the creation-destruction
operators u~; and then transformed to the interaction
representation (see Appendix III),

independent —the case for which the damping constant

y is independent of temperature [Eq. (1.4)]. This
suggests that the damping is due to the presence of
imperfections in the lattice, e.g. , impurities, dislocations,
local strains, etc. These imperfections will couple the
polarization mode to other modes and provide a
mechanism for the scattering of energy out of the
driven mode.

A speci6c model for the damping will be introduced
to illustrate in greater detail the general features of
the loss mechanism which lead to a temperature
independent damping constant. By no means do we

suggest that the actual mechanism responsible for the
observed loss is understood. The results of the analysis
to be presented will show however, the possibility of
explaining the order of magnitude of the observed loss

tangent even though the measurements are performed
at a frequency for which the dielectric constant exhibits
no relaxation.

Let us assume that a number of springs along a
chain have modified spring constants E~ due to the
presence of interstitials or local strain. These modified

springs are located randomly along a chain. The change
in the Hamiltonian due to the presence of these springs
is

E' D(—k)qp'
a~,'= —i

2/m orh, ,;
exp(ipp 0; t).

If we let qpp
——qpp(0)e*'"', the set of Eqs. (4.5) can be

combined simply to yield the equation of motion for
a damped driven oscillator,

qp'+ (cpr'+ii')qp'= (ne/b)Ee'"'(21''/m) &, (4.6)
with

1(E' )' D(k)D(—k) sin[(cp+&a 0; )t]
(4.7)

2 kÃm) & 1 Alp' (~+~ p;)
(Note that I'= cps; where y has been defined in Sec. I.)

The damping constant I' can be evaluated by going
to the limit of a chain of in6nite length. The damping
constant is found to b'e

I'= (4E'/m)'(n/2$) [00j((F00)'], (4.8)

(n/2$) is the line density of modified springs. The
damping arises since phonons of microwave pump
frequency virtually excited in the polarization mode
are scattered into an acoustic mode whose frequency
is equal to the microwave pump frequency. "Crystalline
momentum is not conserved in the process. In general
the polarization mode phonon is scattered into any
mode whose frequency is equal to the microwave
frequency.

From Eqs. (4.6) and (4.8) the loss tangent may be
written

tan&= I /(~P —Z) =r/~r col(2' —Tc). (4 9)

Use has been made of conditions (a), (b), and (c) of
Sec. I. Part of the observed loss tangent of strontium
titanate is in agreement with Eq. (4.9) (Figs. 1 and 5
in reference 1). The temperature dependence of the
loss tangent is a reflection of the temperature depend-
ence of the frequency of the transverse polarization
mode. This temperature dependence will be the same
for any temperature independent damping process.
High-loss polycrystalline samples of barium-strontium

The equations of motion for the system are

Pp~

ne )21Vy &

p 0 — 00 sq 0+ «iort~
Imi

I|." (4.5)
+ P D(k)ap; exp(i(op t),

Ãm ~,&.

ne (2Xq&
&=-'[(Pp')'+~~'(q")'] ——«'"'I

b km)E'
P D(k)ap; exp(i(op; t)qp' (4.4).

Em ~, ~

"M. Blackman, Z. Physik 86, 421, (1933).

"This is not quite true. Since the damping constant y is of the
order of the microwave pump frequency, polarization mode
phonons are virtually excited in a band of width comparable to
the microwave frequency. These phonons are therefore scattered
into a band of acoustic frequencies. The treatment of. the damping
in this section is still well defined since the width of the band is
small compared with the range of frequenc''es of the acoustic
branch. These considerations also apply to Sec. V.
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titanate mixtures" and single-crystalline samples of
barium titanate' exhibit loss tangents that are de-
scribed quite well by Eq. (4.9). The loss tangent of
crystalline SrTi03 increases linearly with temperature
at the higher temperatures (Fig. 1 in reference 1). It
will be shown in the next section that the damping of
microwaves due to lattice anharmonic interactions may
be held responsible for this behavior.

An interesting question to consider is the following
one. Is the order of magnitude of the SrTi03 loss
tangent reasonable for pump frequencies at which no
relaxation of the dielectric constant is observed' We
will show that the order of magnitude of the loss tangent
can be obtained with reasonable values for the parame-
ters of the preceding analysis. Using Eqs. (4.8) and
(4.9) one can write

tanb = (4Z'/m)'(0/2E) L(o/(coo')'~r']. (4.1o)

Let us assume that the change in the spring constant
E' is of the same order as the spring constant E.

Since (rao')'=4E/m LEq. (3.5)7, one can write

tan8= (e/2S) Lcu(ooo/a P]. (4.11)

Since tanb, co, coo', and ~g are either known or can be
estimated, one can obtain an order-of-magnitude esti-
mate for (N/2X):

n/21V=10 .

A three-dimensional treatment of the damping would
lead one to interpret (N/2N) as the volume density
of modiied springs. This result shows that it is not
unreasonable to attribute the observed microwave loss
to some type of imperfection damping of the polari-
zation mode. It is emphasized once more that the actual
detailed origin of the damping is still to be determined.

A word should be said about the frequency depend-
ence of the loss tangent. The frequency dependence of
the loss tangent for all the samples studied to date is
linear. ' The damping mechanism considered in this
section was chosen speci6ca, lly for this reason. Had we
chosen pairs of modified springs (symmetric about a
given ion) distributed randomly, the loss tangent would
have been proportional to the cube of the pump fre-
quency. It can be argued that any damping mechanism
which gives rise to a loss tangent with a stronger than
linear dependence on frequency would not be observed.
Any extra power of ~ in. the numerator of Eq. (4.10)
would of necessity introduce a factor of coo in the
denominator of this expression (for dimensional
reasons). Since co/coo =10 ' at E band, it seems unlikely
that any nonlinear dependence of the loss tangent on
frequency vrould be observed.

Davis, Jr. , and L. G. Rubin, J. Appl. Phys. 24, 1194
(1953); A. von Hippel, Revs. Modern Phys. 22, 221 (1.950);
J. G. Powles and W. Jackson, Proc. Inst. Elec. Engr. III, 96, 383
(1949).

X& Z ' L(*'—N; i)'—(x;—Ng&)~], (5.1)

where n is the third-order coupling coeKcient. The
total Hamiltonian of the system is

&=&0+%.h, (5 2)

whera Ho is given by Eq. (3.3). The Hamiltonian
I:Eq (5.2)] is then written in. terms of the creatjon
destruction operators and transformed to the inter-
action representation" (see Appendix III).

&=-'I:(Po')'+~r'(Co')'] —(& /&)«'"'( &/ )'Vo'

+—Q F(k k')go'ay'ag '
Q~ a, a

XexpI i(~@'+» ' )~]&w-~ &,

F(k,k') =
I 4n/(2es)&]I (1+e-"")(1—e—"")+c.c.],

(5.3)

6&y+p~)=0 for k+k &0,
=1 for k+k'=0.

' W. Pauli, Verhandl. deut. physik. Ges. 6, 10 (1925)."We use the langauge of quantum mechanics to describe
essentially a classical calculation. Quantum-mechanical results
can be obtained simply by keeping track of the commutation
relations and by assuming the initial oscillator states to be
populated in accord with Bose-Einstein statistics. This is not
necessary at temperatures sufhciently high so that a significant
number of the states involved in the scattering are populated in
accordance with classical statistics.

V. ANHARMONIC DAMPING

The loss tangent of a single crystal of SrTi03 in-
creases linearly with temperature at the highest tem-
peratures (Fig. 1 in reference 1). This increase in loss
is not believed due to bulk electronic semiconduction
for several reasons. ' The measured value of the con-
ductivity is too small to account for the observed loss.
The frequency dependence of the loss tangent is linear.
One would expect a reciprocal dependence on frequency
if the loss was due to electronic conduction. The
temperature dependence of the loss does not appear to
be exponential. In this section it will be shown that a
third- or fourth-order anharmonic interaction may be
held responsible for the observed behavior of the loss
tangent.

First we consider the damping of microwaves due
to third-order anharmonic interactions. Many years
ago Pauli'4 calculated the effect of a third-order an-
harmonic interaction on the damping of a linear chain
of equal masses. The calculation described here is
similar to the calculation of Pauli except for one
feature —that is the temperature dependence of the
polarization mode frequency. The notation and treat-
ment to be presented is similar to a calculation of
Mackman" concerning the damping of a linear diatomic
chain.

The third-order anharmonic energy of a chain is
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Only terms contributing to the damping of the polari-
sation mode in lowest order have been retained. The
equation of motion for the polarization mode coordinate
ls

pop (cpP+iI')(1p = (zze/b)Eec"'(2E/rN)&, (5.4)
where

is written in terms of the creation-destruction operators
aa; and then transformed to the interaction repre
sentation

x((p p 0)2+cpr2
(g po)2j

—(rze/b) Ee'"'(21')/r)z) &goo

kT [F(k, —k) (

+a —+I'
4E a (coao)'(cpao)'

smL(co —cpa'+cpa )t) (5 5)
X

07—071(; COp

+—Z F(k,k', k")go'cza cza.,' cza-;-.
Q I,r', a-

(5.9)
XexpLz(cpa +co ~;. +co „,„o)tg

I' =L64(2)&n'kT/rl'(coo')']co,

and
tanb= I'/p)zr ET!(T Tc)jp)—. (5.6)

For T&&Tq this will contribute a temperature-inde-
pendent part to the loss tangent. The third-order

damping essentially arises since a polarization mode
phonon virtually excited by the electromagnetic 6eld
is destroyed with the simultaneous destruction of an
acoustic phonon and the creation of an optical phonon.
The linear temperature dependence of the damping
constant results from the assumption that the acoustical
and optical modes are populated in accordance with
classical statistics. The anharmonic damping of micro-
waves presented here is somewhat arti6cial since the
small microwave energy separation required between
the acoustical and optical branches is achieved solely
due to the choice of the spectrum of a monotonic chain.
This small separation occurs near the edge of the zone.
No anharmonic damping of the type described would

result from the treatment of a diatomic chain since the
separation between the acoustical and optical branches
of the frequency spectrum would be of the order of
optical frequencies. The work of Cochran, ' however,

suggests that the low-lying transverse optical branch
crosses the longitudinal acoustic branch at some point
within the Brillouin zone. If the modes are populated
in accordance with classical statistics near the cross-
over, one might expect some anharmonic damping of
the type described. In the real crystal, other third-order

damping processes are'possible. A polarization mode
phonon can decay into two acoustic phonons. The decay
can also occur with the scattering of phonons between
diferent acoustic branches. It is dificult to estimate
the relative importance of the various processes until
a more realistic picture of the lattice vibrational
spectrum of SrTi03 is available. With similar reser-
vations we proceed to calculate the microwave loss
tangent due to fourth-order anharmonic interactions.

The fourth-order anharmonic energy of a chain is

8, a=-,'P g; L(x;—I; ))'+(pp; —zing)'j. (5.7)

The total Hamiltonian of the system,

X~(I+I +g,~ ),
F(k,k', k")=)(P/r)zo) P(1+e-'ae) (1

X (1—e "'")+c.c.j.
The equations of motion for the system are
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(5.10)

XexpLi(cpa o+cp a. ; +cpa"; )tj
X&(a a+a-). (5.13)

These equations are solved by assuming

aa;(t) =ba,+ca;(t), (5.14)

where the b» are diagonal in the noninteracting phonon
representation and the ca; (t) are considered to be small
compared with the b». If we assume an harmonic time
variation of the polarization mode coordinate,

q
o

q P(0)eclat

Eqs. (5.12) and (5.13) can be integrated.
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F(k, —b', &")
cp;"=—P . 2p'(0)bp b~ v"

g r, a'I

{expLz(pi+(up p+id i, ;"+p~p-;- )&]—1)
X
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g2r
tanb=

Q)z' T Tg
(5.20)

yhe fourth-order damping described here is essentially
due to the decay of a polarization mode phonon with

the simultaneous destruction of two acoustic phonons
and the creation of an optical phonon. At temperatures
high compared with Tg, the loss tangent [ Eq. (5.20)j
increases linearly with temperature. This is in agree-
ment with the experimental results (Fig. 1 in reference
1). The linear frequency dependence of Eq. (5.20) is

also in agreement with observation. The quadratic
temperature dependence of the damping constant can
also result from two successive third order anharmonic
scatterings. The first scattering could destroy the
polarization mode phonon along with an acoustic
phonon and create an optical phonon. Except for con-
servation of energy, this is similar to the third order
process treated in the beginning of this section. The
second scattering would destroy another acoustic
phonon along with the optical phonon previously
created and then create yet another optical photon.
These successive three-phonon processes are equivalent
to the four-phonon process discussed previously. An-
other four-phonon process contributing to the damping
of the linear chain is one which involves two optical
phonons and one acoustic phonon. This has not been
considered explicitly but can be treated by the same
procedure described in this section. The contribution
to the loss tangent from this process is of the same form
as Eq. (5.20). Damping due to one four-phonon process
or to two successive three-phonon processes does not

Using Eqs. (5.10) to (5.16) and the relation

[bp['—=kT/2pip' (equipartition law), (5.17)

the equation of motion for the polarization mode co-
ordinate qo is

jp'+ (&or'+il')qp'= (zze/b)Ee'"'(2N/zzz)", (5.18)

where

[z(u, ~' —u —~') ['
I'=

4Np ~.p' (ppp')'(pii, ")'(pip+a")'

x(~~p—~p"—~a+a")

sin((ip pppp+pp—p '+pip+&') &jx, (519)
(pp ppp'+pip—"+pic+i, )

require a close approach (to within the order of micro-
wave frequencies) or crossover of the optical and
acoustical branches as does the damping due to a three-
phonon process. A significant fraction of the modes
involved, however, must be populated in accordance
with classical statistics. In the real crystal other four-
phonon processses are possible. The polarization mode
phonon can decay into three acoustic phonons. The
decay can also occur with the scattering of phonons
between diferent acoustic branches. These processes
will also contribute loss tangents with a temperature
dependence given by Eq. (5.20).

VL CONCLUSION

Figure 5 in the preceding paper shows a plot of
(T—Tc) tan8 vs temperature for crystalline SrTiOp
doped with Gd'+ aad Fe'+. The solid curve has been
fitted to the data by using the following expression:

(T Tc) tan—5= PA+BT+DT'j. (6.1)

The fitted curve agrees with the data over the measured
temperature range above Ij.o'K to within the experi-
mental accuracy. '0 The work of Rupprecht and Bell
indicates that the parameters 8 and D are intrinsic
properties of the sample unaffected by the quantity of
Fe'+ or Gd'+ added to the lattice. They also conclude
that the parameter A is dependent on the impurity
content of the material. Figure 1 in the preceding paper
indicates that above the transition temperature, the
sample of pure crystalline SrTiO~ has a negligible
contribution to its loss tangent from imperfection
scattering. The parameters 8 and D, however, have
the same values as the doped material. These experi-
mental results are in agreement with the explanation
proposed io this paper and elsewhere. '

APPENDIX I
Identifying the square of the optical index of re-

fraction, zz, with the first two terms in Eq. (3.6), we
write

b=2a/8dzpp(zz' —1) (AI.1)

Using (AI.1) and the definition of b LEq. (2.6)] we find

2n/pp ——8d'/L1/(zz' —1)+u]. (AI.2)

Since zz' and d are known from experiment, a choice of
the constant c will determine the average electronic
polarizability a and the constant b. c is determined in
Sec. II.

a = (1+8.182)/6= 1.53.

This value is slightly large since we have neglected
contributions to the local Geld from the strontium ions
and oxygen ions not lying on a chain. For simplicity
we chose a= i. This determines an enhancement factor

3a/b= 15,

which is in rough agreement with Slater's' enhancement
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factor of 16. Using a=1, Sd'=59.6X10-oo m', and with
e' —1=3.961, one obtains

b=0.202, {)/pp ——23.8X10-~m. (AI.3)

(ne)'ac
p)r' —— (T Tc),—

4~0nsd'b

p=C/(T —Tc), C= 1/abc

(AI.4)

Next the frequency of the transverse polarization mode
is determined. We had [Eqs. (3.8) and (3.11)]

g e &o—&n p)la&gp{fq
h2N phase space

g e Hp{p—, q)jkTQ h(p q)dp~q
(kT)h'"

&p=p Ps[pa p o +({pp)'qo'q a']

+p go [pppp oo+({pp')'qpoq a']

(AII.2)

A knowledge of the Curie constant C determines c

C=8.25X104 'K, c=6.00X10 ' 'K. '.

%e will also use

m=2momT;/(mo+mT;) =4.03X10-"kg.

Substituting these values in (AI.4) results in

neE—p(2N/m) ~q p (AII.3)

3P
H,„),= — P j1—e'o"i'(q&'q & +qooq po)(qp) . (AII.4)

Xm' I

To eliminate the term bilinear in the applied ield and
polarization mode coordinate we perform the following
transformation.

pod
——8.45X10"n(T—Tc)&. (AI.5)

qpo ) qpo+ [neEp/({pp')'](2lV/m) &. (AII.5)

~ = [1/(2)'](q"+q-"),
aoo= [1/(2)'](qpo+q ao),

~~ = [1/p(2)'](q" —q-o )
~~'= [1/p(2)'](q" —q-"),

(AI.6)4K/m = (ne)'a/4pomdob,

48Pk/mo (p)p')'= (ne)'ac/4

porn{i'b,

(AII.6)
(AI.7)

where k is Boltzmann's constant.
Dividing (AI.7) by (AI.6), we obtain (note: np and n o are independent of each other).

After the transformation (AII.5) and (AII.6) the
(AI 8) Hamiltonian is48Pip/mo (p)oo) 4=c

To determine the second- and fourth-order coupling Next, the real coordinates, nj and el' are introduced:

constants, we write [Eqs. (AII.12) and (AII.13)]

Using (AI.6), the spring constant is found to be

X=1.2X10'n' joule/mo. (AI.9)

=l Z L(' ')'+( ")'( )']
+-'. Z p [(~a')'+(~p')'(~p')']

(AI.S) determines the fourth-order coupling constant

P=2.1X10 n4 joule/m4. (AI.10)

the number of electronic charges per ion is found to be
m=0.5.

APPENDIX G

When one of the ions is moved a lattice distance, the
lattice energy expansion in powers of the displacement
should diverge, contributions from each order roughly
becoming equal. Setting .the harmonic contribution to
the energy equal to the fourth-order contribution,

Zd = (P/2)Z4,

6P (ne)'Ep'
+— {Pi1—e'o~i (ay~)'

mp (p)pp)4

(ne)'Eo'X
+P i1+e&o"i'({r P)P}— (AII.7)

k m({ppo)'

The free energy can be obtained to 6rst order in the
fourth-order anharmonic coupling constant by using
(AII.1), (AII.2), (AII.7). Integrations are performed
over the phase space of real coordinates. One obtains

(ne)'Ep'X (IpTi

m({ppo)' i a~i

48PkT (ne)'EpX+, (AII.S)
m' (p)pp)'

The free energy of a chain will be calculated to erst
order in the fourth-order anharmonic coupling constant
P. The free energy F is written

F/kT =LnZ'p (Zg/Zp), — — co is the geometrical mean of all the frequencies (neg-
(AII.1) lecting of course the A=O acoustical frequency). The
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line polarization of a chain is APPENDIX III

()P 2 (ne)2+ + 96P (ne)2+ + The comPlex normal coordinates and momenta are
P,a= — = kT— , (AII.9) related to the creation-destruction operators by the

&&0 tn(~00)' n2' (0000)0 following expressions:

which may be written as

with

2 (ne) 2EpX
P,g=

n2(4E/n2), f2

(4E~ 4E 48k TP
+

E n2)ef2 tÃ nt (Mp)

We had assumed LEq. (3.8)j that

ga oa. l ++a,—1 Qj +a,j
ga =+a, i +ca, P=Z—g caJ,

pa =~a, i'(o a, i —~ a, i ),
pa ~al (+ aa + a—1)j

(AII.10) ~h~~~ j=~1 and

L~-a—i~oa'i'7= baa'. 8'k/206'a.

The harmonic part of the Hamiltonian is

(4E) (ne)2a(1 cTc)—(ne)2ac ~ —p p (~„.~)2~ ..~ „.~+p p (~„.0)2~ .0~ .0
T. (A11.11)

k n2 )eff 200@cd b 2002ndab

Identifying the terms of (AII.10) and (AII.11), we
obtain the following taro relations:

+22$(pp')'+~&'(qp')'] (ne/b)—Se'"'(2N/~) ~qpo.

In the interaction representation this becomes

2so~'b

(ne)2ac48Pk

n22 (~00)2 200Mpb

4E (ne)2a(1 —cTc)
(AII.12)

(AII.13)

H;.2
——exp(i''t/k)H0 exp( —iH0't/k) —Bp'

', DP0-)2+ P(~,0)2j (ne/—b)Z'. 2(2X/~)&~00,

where

&0'=p p (~a; )'~ay~ a j'+Z Z (00ap)'~a/~ a
j k j' I y-'0

Equation (AII.12) determines the spring constant E,
and states essentially that the long-range dipolar
interaction cancels the eGect of the short-range re-
pulsion to roughly one part in a thousand. Equation
(AII.13) relates the fourth-order coupling constant to
the Curie constant.
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